
Graphical Models

Zoubin Ghahramani

University of Cambridge, UK

Uber AI Labs, San Francisco, USA

zoubin@eng.cam.ac.uk

http://learning.eng.cam.ac.uk/zoubin/

MLSS 2017
Tübingen

Representing knowledge through graphical models

A

D

C

B

E

• Nodes correspond to random variables

• Edges represent statistical dependencies between the variables

Why do we need graphical models?

• Graphs are an intuitive way of representing and visualising the relationships
between many variables. (Examples: family trees, electric circuit diagrams,
neural networks)

• A graph allows us to abstract out the conditional independence relationships
between the variables from the details of their parametric forms. Thus we can
answer questions like: “Is A dependent on B given that we know the value of
C?” just by looking at the graph.

• Graphical models allow us to define general message-passing algorithms that
implement probabilistic inference efficiently. Thus we can answer queries like
“What is p(A|C = c)?” without enumerating all settings of all variables in the
model.

Graphical models = statistics × graph theory × computer science.

Directed Acyclic Graphical Models (Bayesian Networks)

A

D

C

B

E
A DAG Model / Bayesian network1 corresponds to a factorization of the joint
probability distribution:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

In general:

p(X1, . . . , Xn) =

n∏
i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.
1“Bayesian networks” can and often are learned using non-Bayesian (i.e. frequentist) methods; Bayesian networks

(i.e. DAGs) do not require parameter or structure learning using Bayesian methods. Also called “belief networks”.

Directed Acyclic Graphical Models (Bayesian Networks)

A

D

C

B

ESemantics: X⊥⊥Y |V if V d-separates X from Y
Definition: V d-separates X from Y if every undirected path2 between X and Y is
blocked by V. A path is blocked by V if there is a node W on the path such that
either:

1. W has converging arrows along the path (→ W ←)3 and neither W nor its
descendants are observed (in V), or

2. W does not have converging arrows along the path (→ W → or ← W →) and
W is observed (W ∈ V).

Corollary: Markov Boundary for X: {parents(X) ∪ children(X) ∪
parents-of-children(X)}.

2An undirected path ignores the direction of the edges.
3Note that converging arrows along the path only refers to what happens on that path. Also called a collider.

Directed Graphs for Statistical Models:
Plate Notation

Consider the following simple model. A data set of N points is generated i.i.d. from
a Gaussian with mean µ and standard deviation σ:

p(x1, . . . , xN , µ, σ) = p(µ)p(σ)

N∏
n=1

p(xn|µ, σ)

This can be represented graphically as follows:

σ

xn

μ

N

≡

σ

x2

μ

x1 xN...

Inference in a graphical model

Consider the following graph:

A

D

C

B

E which represents:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

Inference: evaluate the probability distribution over some set of variables, given the
values of another set of variables.

For example, how can we compute p(A|C = c)? Assume each variable is binary.

Naive method:

p(A,C = c) =
∑
B,D,E

p(A,B,C = c,D,E) [16 terms]

p(C = c) =
∑
A

p(A,C = c) [2 terms]

p(A|C = c) =
p(A,C = c)

p(C = c)
[2 terms]

Total: 16+2+2 = 20 terms have to be computed and summed

Inference in a graphical model

Consider the following graph:

A

D

C

B

E which represents:

p(A,B,C,D,E) = p(A)p(B)p(C|A,B)p(D|B,C)p(E|C,D)

Computing p(A|C = c).

More efficient method:

p(A,C = c) =
∑
B,D,E

p(A)p(B)p(C = c|A,B)p(D|B,C = c)p(E|C = c,D)

=
∑
B

p(A)p(B)p(C = c|A,B)
∑
D

p(D|B,C = c)
∑
E

p(E|C = c,D)

=
∑
B

p(A)p(B)p(C = c|A,B) [4 terms]

Total: 4+2+2 = 8 terms
Belief propagation methods use the conditional independence relationships in a graph to do efficient

inference (for singly connected graphs, exponential gains in efficiency!).

Factor graph propagation

Algorithmically and implementationally, it’s often easier to convert directed and
undirected graphs into factor graphs, and run factor graph propagation.

p(x) = p(x1)p(x2|x1)p(x3|x2)p(x4|x2)

≡ f1(x1, x2)f2(x2, x3)f3(x2, x4)

Singly connected vs Multiply connected factor graphs:

x3

x1

x2
x4

f1

f2

f3

x3

x1

x2
x4

f1

f2

f3

f4

Factor Graphs

In a factor graph, the joint probability distribution is written as a product of factors.
Consider a vector of variables x = (x1, . . . , xn)

p(x) = p(x1, . . . , xn) =
1

Z

∏
j

fj(xSj)

where Z is the normalisation constant, Sj denotes the subset of {1, . . . , n} which
participate in factor fj and xSj = {xi : i ∈ Sj}.

x3

x1

x2
x4

f1

f2

f3

f4

variables nodes: we draw open circles for each variable xi in the distribution.
factor nodes: we draw filled dots for each factor fj in the distribution.

Propagation in Factor Graphs

Let n(x) denote the set of factor nodes that are neighbors of x.
Let n(f) denote the set of variable nodes that are neighbors of f .

We can compute probabilities in a factor graph by propagating messages from
variable nodes to factor nodes and viceversa.

message from variable x to factor f :

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from factor f to variable x:

µf→x(x) =
∑
x\x

f(x) ∏
y∈n(f)\{x}

µy→f(y)


where x are the variables that factor f depends on, and

∑
x\x is a sum over all

variables neighboring factor f except x.

Propagation in Factor Graphs

n(x) denotes the set of factor nodes that are neighbors of x.
n(f) denotes the set of variable nodes that are neighbors of f .

message from variable x to factor f :

µx→f(x) =
∏

h∈n(x)\{f}

µh→x(x)

message from factor f to variable x:

µf→x(x) =
∑
x\x

f(x) ∏
y∈n(f)\{x}

µy→f(y)


If a variable has only one factor as a neighbor, it can initiate message propagation.

Once a variable has received all messages from its neighboring factor nodes, one
can compute the probability of that variable by multiplying all the messages and
renormalising:

p(x) ∝
∏

h∈n(x)

µh→x(x)

Inference in Hidden markov models and
Linear Gaussian state-space models

X 3
�

Y3
�

X 1

Y1

X 2
�

Y2
�

X T
�

YT
�

p(X1,...,T , Y1,...,T) = p(X1)p(Y1|X1)

T∏
t=2

[p(Xt|Xt−1)p(Yt|Xt)]

• In HMMs, the states Xt are discrete.

• In linear Gaussian SSMs, the states are real Gaussian vectors.

• Both HMMs and SSMs can be represented as singly connected DAGs.

• The forward–backward algorithm in hidden Markov models (HMMs), and the
Kalman smoothing algorithm in SSMs are both instances of belief propagation /
factor graph propagation.

Software for Graphical Models

• BUGS and WinBUGS: inference via Gibbs sampling, not very scalable

• HUGIN: widely used, commercial, focus on exact inference

• Kevin Murphy’s Bayes Net Toolbox: Matlab, widely used

• Microsoft’s Infer.NET: advanced scalable libraries implementing factor graph
propagation, EP, and variational message passing.

• Jeff Bilmes’ GMTK: very good at HMMs and related time series models

• many others, see http://people.cs.ubc.ca/∼murphyk/Software/bnsoft.html

• Much of this is subsumed by general Probabilistic Programming frameworks: e.g.
Church, WebPPL, Turing, Anglican, Edward, STAN,...

Summary

• inference consists of the problem of computing
p(variables of interest|observed variables)

• for singly connected graphs, belief propagation / factor graph propagation solves
this problem exactly.

• well-known algorithms such as Kalman smoothing and forward-backward are
special cases these general propagation algorithms.

• for multiply connected graphs, the junction tree algorithm solves the exact
inference problem, but can be very slow (exponential in the cardinality of the
largest clique).

• one approximate inference algorithm is “loopy belief propagation”—run
propagation as if graph is simply connected; often works well in practice.

Learning parameters
x1

x2

x3
x4

p(x1)p(x2|x1)p(x3|x1)p(x4|x2)

0.2 0.3 0.5

0.1 0.6 0.3
x1

x2θ2

Assume each variable xi is discrete and can take on Ki values.

The parameters of this model can be represented as 4 tables: θ1 has K1 entries, θ2

has K1 ×K2 entries, etc.

These are called conditional probability tables (CPTs) with the following
semantics:

p(x1 = k) = θ1,k p(x2 = k′|x1 = k) = θ2,k,k′

If node i has M parents, θi can be represented either as an M + 1 dimensional

table, or as a 2-dimensional table with
(∏

j∈pa(i)Kj

)
×Ki entries by collapsing all

the states of the parents of node i. Note that
∑
k′ θi,k,k′ = 1.

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?

Learning parameters

Assume a data set D = {x(n)}Nn=1. How do we learn θ from D?

x1

x2

x3
x4

p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2, θ4)

Likelihood:
p(D|θ) =

N∏
n=1

p(x(n)|θ)

Log Likelihood:
log p(D|θ) =

N∑
n=1

∑
i

log p(x
(n)
i |x

(n)
pa(i), θi)

This decomposes into sum of functions of θi. Each θi can be optimized separately:

θ̂i,k,k′ =
ni,k,k′∑
k′′ ni,k,k′′

where ni,k,k′ is the number of times in D where xi = k′ and xpa(i) = k, where
k represents a joint configuration of all the parents of i (i.e. takes on one of∏
j∈pa(i)Kj values)

ML solution: Simply calculate frequencies!

2 3 0

3 1 6
x1

x2n2
0.4 0.6 0

0.3 0.1 0.6
x1

x2θ2

⇒

Maximum Likelihood Learning with Hidden Variables:
The EM Algorithm

X1

θ1

θ3θ2

θ4

X2 X3

Y

Goal: maximise parameter log likelihood given observables.

L(θ) = log p(Y |θ) = log
∑
X

p(Y,X|θ)

The Expectation Maximization (EM) algorithm (intuition):

Iterate between applying the following two steps:

• The E step: fill-in the hidden/missing variables

• The M step: apply complete data learning to filled-in data.

Bayesian Learning

Apply the basic rules of probability to learning from data.

Data set: D = {x1, . . . , xn} Models: m, m′ etc. Model parameters: θ

Prior probability of models: P (m), P (m′) etc.
Prior probabilities of model parameters: P (θ|m)
Model of data given parameters (likelihood model): P (x|θ,m)

If the data are independently and identically distributed then:

P (D|θ,m) =

n∏
i=1

P (xi|θ,m)

Posterior probability of model parameters:

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

Posterior probability of models:

P (m|D) = P (m)P (D|m)

P (D)

Summary of parameter learning

Complete (fully observed) data Incomplete (hidden /missing) data

ML calculate frequencies EM

Bayesian update Dirichlet distributions MCMC / Viterbi / VB

• For complete data Bayesian learning is not more costly than ML

• For incomplete data VB ≈ EM time complexity

• Other parameter priors are possible but Dirichlet is pretty flexible and intuitive.

• For non-discrete data, similar ideas but generally harder inference and learning.

Structure learning in graphical models

Given a data set of observations of (A,B,C,D,E) can we learn the structure of
the graphical model?

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

Let G denote the graph structure = the set of edges.

Structure learning

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

A

D

C

B

E

Constraint-Based Learning: Use statistical tests of marginal and conditional
independence. Find the set of DAGs whose d-separation relations match the
results of conditional independence tests.

Score-Based Learning: Use a global score such as the BIC score or Bayesian
marginal likelihood. Find the structures that maximize this score.

Bayesian Methods

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D) = P (D|θ)P (θ)
P (D)

P (D|θ) likelihood of θ
P (θ) prior probability of θ
P (θ|D) posterior of θ given D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ

Score-based structure learning for complete data

Consider a graphical model with structure m, discrete observed data D, and
parameters θ. Assume Dirichlet priors.

The Bayesian marginal likelihood score is easy to compute:

score(m) = log p(D|m) = log

∫
p(D|θ,m)p(θ|m)dθ

score(m) =
∑
i

∑
j

[
log Γ(

∑
k

αijk)−
∑
k

log Γ(αijk)− log Γ(
∑
k

α̃ijk) +
∑
k

log Γ(α̃ijk)

]
where α̃ijk = αijk + nijk. Note that the score decomposes over i.

One can incorporate structure prior information p(m) as well:

score(m) = log p(D|m) + log p(m)

Greedy search algorithm: Start with m. Consider modifications m → m′ (edge
deletions, additions, reversals). Accept m′ if score(m′) > score(m). Repeat.

Bayesian inference of model structure: Run MCMC on m.

Bayesian Structural EM for incomplete data

Consider a graphical model with structure m, observed data D, hidden variables X
and parameters θ

The Bayesian score is generally intractable to compute:

score(m) = p(D|m) =

∫ ∑
X

p(X , θ,D|m)dθ

Bayesian Structure EM (Friedman, 1998):

1. compute MAP parameters θ̂ for current model m using EM

2. find hidden variable distribution p(X|D, θ̂)

3. for a small set of candidate structures compute or approximate

score(m′) =
∑
X

p(X|D, θ̂) log p(D,X|m′)

4. m← m′ with highest score

Graphical Models and Probabilistic Programs

• Graphical models express conditional independence relationships between a
usually fixed, finite set of variables.

• Probabilistic programs define the relationship between the variables through a
computer program (simulator) than can generate the variables.

• PPs are generally more expressive than directed GMs:

– they can capture independence relationships and even existence of variables,
conditional on the values of other random variables.

– they can express models with potentially unbounded numbers of random
variables

– they make explicit the functional form of all relationships.

Graphical Models and Deep Learning

• Graphical models represent relationships between random variables

• Deep Learning represents nonlinear functions as neural networks

• You can mix and match as you wish by

– introducting hidden variables in the NN
– using NNs to model the conditional probability distributions

Sigmoid Belief Networks

Artificial Intelligence 56 (1992) 71-113 71
Elsevier

Connectionist learning of belief
networks

Radford M. Neal
Department of Computer Science, University of Toronto, 10 King's College Road,
Toronto, Ontario, Canada M5S 1A4

Received January 1991
Revised November 1991

Abstract

Neal, R.M., Connectionist learning of belief networks, Artificial Intelligence 56 (1992)
71-113.

Connectionist learning procedures are presented for "sigmoid" and "noisy-OR" varieties
of probabilistic belief networks. These networks have previously been seen primarily as a
means of representing knowledge derived from experts. Here it is shown that the "Gibbs
sampling" simulation procedure for such networks can support maximum-likelihood
learning from empirical data through local gradient ascent. This learning procedure
resembles that used for "Boltzmann machines", and like it, allows the use of "hidden"
variables to model correlations between visible variables. Due to the directed nature
of the connections in a belief network, however, the "negative phase" of Boltzmann
machine learning is unnecessary. Experimental results show that, as a result, learning in
a sigmoid belief network can be faster than in a Boltzmann machine. These networks
have other advantages over Boltzmann machines in pattern classification and decision
making applications, are naturally applicable to unsupervised learning problems, and
provide a link between work on connectionist learning and work on the representation
of expert knowledge.

1. Introduction

T h e w o r k r e p o r t e d he re can be seen f r o m two p e r s p e c t i v e s . F r o m one p o i n t
o f v iew, i t d e s c r i b e s a c o n n e c t i o n i s t n e t w o r k w i th c a p a b i l i t i e s c o m p a r a b l e
to t h o s e o f t he B o l t z m a n n m a c h i n e , b u t w i th b e t t e r l e a r n i n g p e r f o r m a n c e .
F r o m the o the r , i t shows h o w b e l i e f n e t w o r k s can be l e a r n e d f r o m e m p i r i c a l
d a t a , as an a l t e r n a t i v e , o r a s u p p l e m e n t , to t h e i r s p e c i f i c a t i o n b y exper t s .

Correspondence to: R.M. Neal, Department of Computer Science, University of Toronto, 10
King's College Road, Toronto, Ontario, Canada M5S 1A4. E-mail: radford@cs.toronto.edu.

0004-3702/92/$ 05.00 © 1992 - - Elsevier Science Publishers B.V. All rights reserved

• Explicit link between feedforward neural networks (aka

connectionist networks) and graphical models (aka belief

networks).

• Gibbs samples over hidden units.

• A Bayesian nonparametric version of this model which

samples over number of hidden units, number of layers,

and types of hidden units is given in (Adams, Wallach,

and Ghahramani, 2010)

ar
X

iv
:1

00
1.

01
60

v2
 [

sta
t.M

L]
 1

9
A

ug
 2

01
0

LEARNING THE STRUCTURE OF DEEP SPARSE
GRAPHICAL MODELS

By Ryan P. Adams∗, Hanna M. Wallach and Zoubin Ghahramani

University of Toronto, University of Massachusetts
and University of Cambridge

Deep belief networks are a powerful way to model complex prob-
ability distributions. However, learning the structure of a belief net-
work, particularly one with hidden units, is difficult. The Indian buf-
fet process has been used as a nonparametric Bayesian prior on the
directed structure of a belief network with a single infinitely wide
hidden layer. In this paper, we introduce the cascading Indian buffet
process (CIBP), which provides a nonparametric prior on the struc-
ture of a layered, directed belief network that is unbounded in both
depth and width, yet allows tractable inference. We use the CIBP
prior with the nonlinear Gaussian belief network so each unit can
additionally vary its behavior between discrete and continuous rep-
resentations. We provide Markov chain Monte Carlo algorithms for
inference in these belief networks and explore the structures learned
on several image data sets.

1. Introduction. The belief network or directed probabilistic graphical
model [Pearl, 1988] is a popular and useful way to represent complex prob-
ability distributions. Methods for learning the parameters of such networks
are well-established. Learning network structure, however, is more difficult,
particularly when the network includes unobserved hidden units. Then, not
only must the structure (edges) be determined, but the number of hidden
units must also be inferred. This paper contributes a novel nonparametric
Bayesian perspective on the general problem of learning graphical models
with hidden variables. Nonparametric Bayesian approaches to this problem
are appealing because they can avoid the difficult computations required
for selecting the appropriate a posteriori dimensionality of the model. In-
stead, they introduce an infinite number of parameters into the model a pri-
ori and inference determines the subset of these that actually contributed
to the observations. The Indian buffet process (IBP) [Ghahramani et al.,
2007, Griffiths and Ghahramani, 2006] is one example of a nonparamet-
ric Bayesian prior and it has previously been used to introduce an infi-
nite number of hidden units into a belief network with a single hidden
layer [Wood et al., 2006].

∗http://www.cs.toronto.edu/~rpa

1

Autoencoders

YDY1 Y2

X1 KX

YDY1 Y2
^^ ^

hidden

units

output

units

input

units

encoder
"recognition"

decoder
"generation"

(my figure from 1998 - ideas from mid-1980s)

Autoencoders and Factor Analysis

YDY1 Y2

X1 KX

YDY1 Y2
^^ ^

hidden

units

output

units

input

units

encoder
"recognition"

decoder
"generation"

YDY1 Y2
�

X1 KX

Λ

Latent Factor Models, RBMs, Variational Autoencoders, etc

Products of
Gaussians,

(MCA & XCA)

Factor
Analysis
(& PCA)

ICA

X

Deep
Boltzmann
Machines

X

RBM

Hierarchical
Nonlinear FA /
Sigmoid Belief
Nets / Deep
GPs/ VAEs

Undirected

Deep / Hierarchical

Nonlinear /Non-Gaussian

Neal (1992); Hinton & Gh. (1997);
Gh. and Hinton (1998);

Damianou & Lawrence (2013);
Adams, Wallach & Gh. (2010);

Kingma & Welling (2014);
Rezende et al (2014) ...

Hinton and Sejnowski (1986);
Salakhutdinov and Hinton (2009)

Williams and Agakov (2002);
Welling et al (2004)

Pearson (1901);
Spearman (1904))

Herault & Jutten (1986);
Comon (1994)

VAE = nonlinear factor analysis + recognition model + variational inference + sampling

A Note on Generative Adversarial Networks (GANs)

Assume a generative model that maps from a vector of latent variables xn to observed
variables yn, through a nonlinear function, implemented as a neural network with
parameters (weights) θ.

The likelihood is intractable:

p(Dtrain|θ) =
∏
n

p(yn|θ) =
∏
n

∫
p(yn|xn, θ)p(xn)dxn

We can use many methods to approximate the likelihood (variational inference,
MCMC, EP, VAEs, etc). Alternatively, since we can sample data Dsampled from
this model, we can use a two sample test to train the model:

test if Dsampled and Dtrain are drawn from the same distribution.

A GAN is nonlinear factor analysis, trained using two sample test, as a surrogate
loss function, where the test is implemented with a discriminative model.

(see also other two-sample-test surrogates for the loss function, e.g. MMD
(Dziugaite, Roy & Ghahramani, 2015; Li, Swersky, & Zemel, 2015))

Directed Graphical Models and Causality

Causal relationships are a fundamental component of cognition and scientific
discovery. Even though the independence relations are identical, there is a causal
difference between

• “smoking” → “yellow teeth”
• “yellow teeth” → “smoking”

Key idea: interventions and the do-calculus:

p(S|Y = y) 6= p(S|do(Y = y))

p(Y |S = s) = p(Y |do(S = s))

Causal relationships are robust to interventions on the parents.

The key difficulty in learning causal relationships from observational data is the
presence of hidden common causes:

A
H

B A BA B

Learning parameters and structure in undirected graphs

A

D

C

B

E

A

D

C

B

E

p(x|θ) = 1
Z(θ)

∏
j gj(xCj;θj) where Z(θ) =

∑
x

∏
j gj(xCj;θj).

Problem: computing Z(θ) is computationally intractable for general (non-
tree-structured) undirected models. Therefore, maximum-likelihood learning of
parameters is generally intractable, Bayesian scoring of structures is intractable, etc.

Solutions:

• directly approximate Z(θ) and/or its derivatives (cf. Boltzmann machine learning;
contrastive divergence; pseudo-likelihood)

• use approx inference methods (e.g. loopy belief propagation, bounding methods,
EP).

See: (Murray and Ghahramani, 2004; Murray et al, 2006) for Bayesian learning in undirected models.

Scaling Bayesian Methods

Case Studies:

• Microsoft XBox Live TrueSkill

• Microsoft AdPredictor

• Netflix Bayesian PMF

Approaches:

• Approximate inference

• Parallel (MPI) and cloud / distributed (Hadoop, MapReduce) data and inference

• Subsample data

Summary

• Probabilistic modelling and Bayesian inference are two sides of the same coin

• Bayesian machine learning treats learning as a probabilistic inference problem

• Themes:

– Graphical models: an intuitive and computationally useful representation for
probabilistic modelling.

http://learning.eng.cam.ac.uk/zoubin

zoubin@eng.cam.ac.uk

Readings and References

• Beal, M.J. and Ghahramani, Z. (2006) Variational Bayesian learning of directed graphical models

with hidden variables. Bayesian Analysis 1(4):793–832.

http://learning.eng.cam.ac.uk/zoubin/papers/BeaGha06.pdf

• Friedman, N. (1998) The Bayesian structural EM algorithm. In Uncertainty in Artificial

Intelligence (UAI-1998). http://robotics.stanford.edu/ nir/Papers/Fr2.pdf

• Ghahramani, Z. (2004) Unsupervised Learning. In Bousquet, O., von Luxburg, U. and Raetsch,

G. Advanced Lectures in Machine Learning. 72-112.

http://learning.eng.cam.ac.uk/zoubin/papers/ul.pdf

• Heckerman, D. (1995) A tutorial on learning with Bayesian networks. In Learning in Graphical

Models.

http://research.microsoft.com/pubs/69588/tr-95-06.pdf

• Koller, D. and Friedman, N. (2009) Probabilistic Graphical Models: Principles and Techniques.

MIT Press.

• Wood, F., Griffiths, T.L. and Ghahramani, Z. (2006) A Non-Parametric Bayesian Method for

Inferring Hidden Causes. In Uncertainty in Artificial Intelligence (UAI-2006), 536–543.

Appendix

Variational Bayesian Learning of Graph Structures
A case study for discrete directed graphs

• Bipartite structure: only hidden variables can be parents of observed variables.
• Two binary hidden variables, and four five-valued discrete observed variables.

yi1

si1 si2

yi2 yi3 yi4

i=1...n

• Conjugate prior is Dirichlet, Conjugate-Exponential model, so
VB-EM algorithm is a straightforward modification of EM.

• Experiment: There are 136 distinct structures (out of 256) with 2 latent variables
as potential parents of 4 conditionally independent observed vars.

• Score each structure for twenty varying size data sets:
n ∈ {10, 20, 40, 80, 110, 160, 230, 320, 400, 430, 480, 560, 640, 800, 960, 1120, 1280, 2560, 5120, 10240}

using 3 methods: BIC, VB, and a gold standard Annealed Importance Sampling AIS

• 2720 graph scores computed, times for each: BIC (1.5s), VB (4s), AIS (400s).

Results, averaged over about 100 parameter draws

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

n

su
cc

es
s

ra
te

 a
t s

el
ec

tin
g

tru
e

st
ru

ct
ur

e

VB
CS
BICp
BIC

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

n
po

st
er

io
r

pr
ob

ab
ili

ty
 o

f t
ru

e
st

ru
ct

ur
e

>
1/

13
6

VB
CS
BICp
BIC

VB is also more accurate than Cheeseman-Stutz (CS) approximation to the marginal
likelihood. In fact we can prove than VB ≥ CS (Beal and Ghahramani, Bayesian
Analysis, 2006).

How tight is VB bound?

10
2

10
3

10
4

10
5

−3700

−3600

−3500

−3400

−3300

−3200

−3100

−3000

−2900

−2800

Duration of Annealing (samples)

M
ar

gi
na

l L
ik

el
ih

oo
d

(A
IS

)

* ↙ AIS
← VB
← BIC

About 104 sweeps of sampling needed to achieve VB lower bound.

How many latent variables should there be?

Y - latent factors (e.g. diseases)
Z - graph structure (binary adjacency matrix)
X - observed binary features (e.g. symptoms)

Solution 1: Do model comparison for m = 1, m = 2, ...

Solution 2: Assume potentially m =∞ of which we only observe a finite number.

Note: this is analogous to the question of how many mixture components to use (model selection

for finite mixture model vs infinite mixture model using Dirichlet processs mixtures).

Graphical models with infinitely many latent variables

“A Non-Parametric Bayesian Method for Inferring Hidden Causes” (Frank Wood,
Tom Griffiths, & Ghahramani, Uncertainty in Artificial Intelligence, 2006)

Y - binary latent factors (diseases)
Z - graph structure
X - observed binary features (symptoms)

“Noisy-or” observations: P (xit = 1|Z,Y, λ, ε) = 1− (1− λ)
∑
k zikykt(1− ε)

What should we use as P (Z)?

The matrix Z is a binary matrix of size (N = number of observed variables) × (K
= number of latent variables).

But K →∞.

We can define a consistent distribution over such infinite
sparse binary matrices using the “Indian Buffet Process”
(IBP) (cf Chinese restaurant process, Aldous 1985; Pitman
2002).

A sample from prior shown on right.

Note “rich get richer” property.

We can derive a Gibbs sampler for this model.

ob
je

ct
s

(c
us

to
m

er
s)

features (dishes)

Prior sample from IBP with α=10

0 10 20 30 40 50

0

10

20

30

40

50

60

70

80

90

100

Graphical models with infinitely many latent variables

Gibbs sampling traces Comparison to RJMCMC

Seems to work reliably, and mixed better than RJMCMC.

Graphical models with infinitely many latent variables

(with Frank Wood and Tom Griffiths)
Inferring stroke localization from patient symptoms:

(50 stroke patients, 56 symptoms/signs)

Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

initialise all messages to be constant functions

an example schedule of messages resulting in computing p(x4):

message direction message value
x1 → f1 1(x1)
x3 → f2 1(x3)
f1 → x2

∑
x1
f1(x1, x2)1(x1)

f2 → x2

∑
x3
f2(x3, x2)1(x3)

x2 → f3

(∑
x1
f1(x1, x2)

)(∑
x3
f2(x3, x2)

)
f3 → x4

∑
x2
f3(x2, x4)

(∑
x1
f1(x1, x2)

)(∑
x3
f2(x3, x2)

)
where 1(x) is a constant uniform function of x

Propagation in Factor Graphs

x3

x1

x2
x4

f1

f2

f3

an example schedule of messages resulting in computing p(x4|x1 = a):

message direction message value
x1 → f1 δ(x1 = a)
x3 → f2 1(x3)
f1 → x2

∑
x1
f1(x1, x2)δ(x1 = a) = f1(x1 = a, x2)

f2 → x2

∑
x3
f2(x3, x2)1(x3)

x2 → f3 f1(x1 = a, x2)
(∑

x3
f2(x3, x2)

)
f3 → x4

∑
x2
f3(x2, x4)f1(x1 = a, x2)

(∑
x3
f2(x3, x2)

)
where δ(x = a) is a delta function

