

Massachusetts Institute of Technology

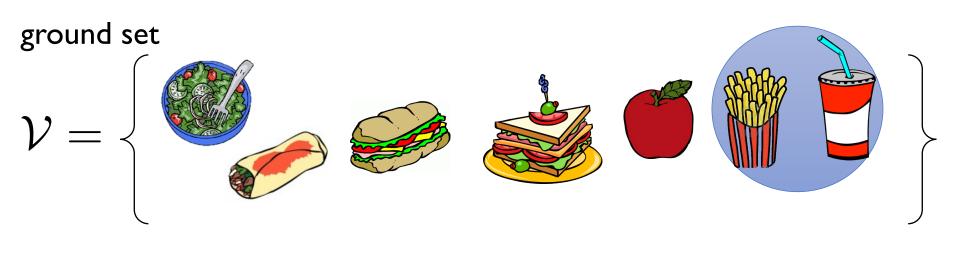
Submodularity and Machine Learning

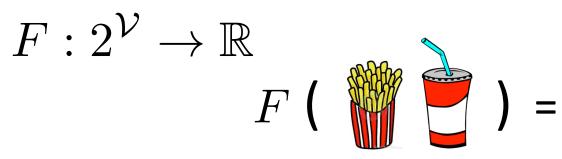
MLSS Tübingen, June 2017

Stefanie Jegelka MIT

slides:people.csail.mit.edu/stefje/mlss/tuebingen2017.pdf
papers etc: people.csail.mit.edu/stefje/mlss/literature.pdf

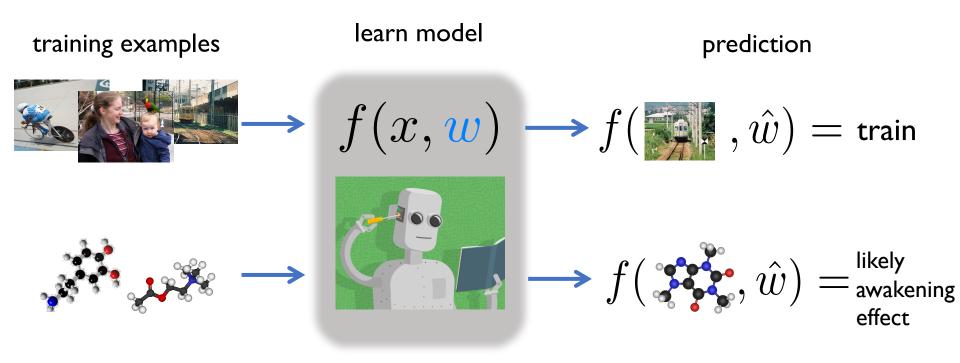
Set functions



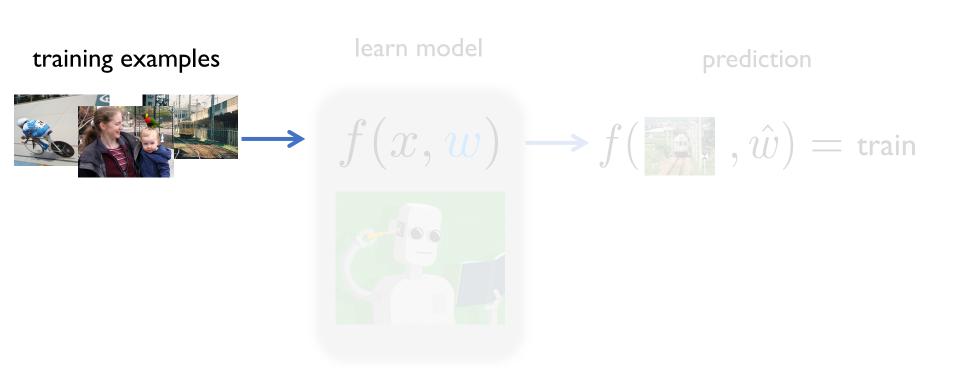


cost of buying items together, or utility, or probability, ... Plif

Machine Learning



Machine Learning



Phir

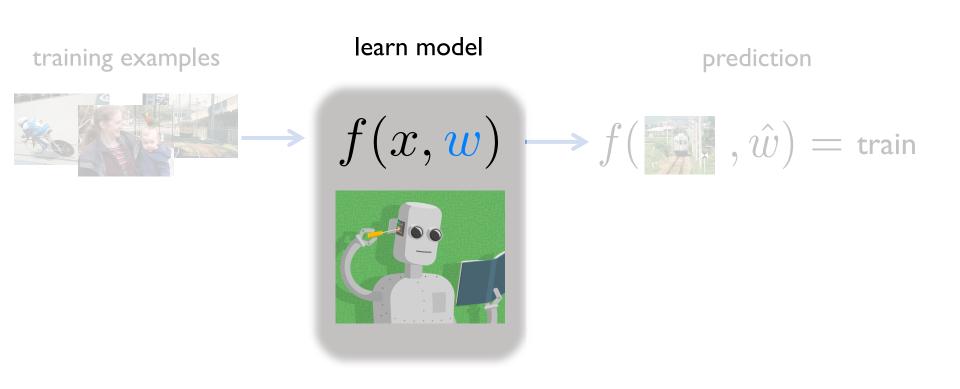
Informative Subsets

- Compression
- Summarization

- Placing sensors
- Designing experiments

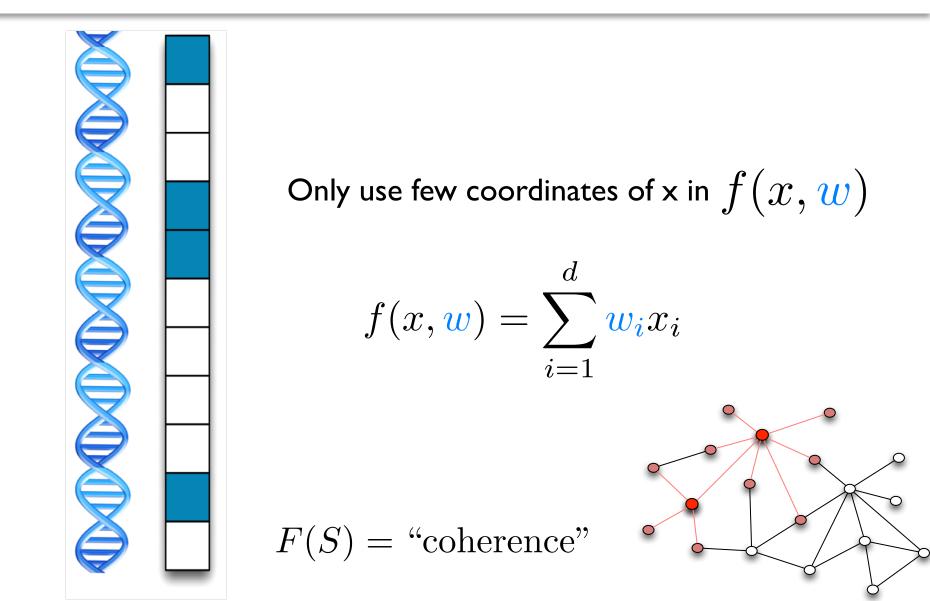
F(S) = "information"

Machine Learning

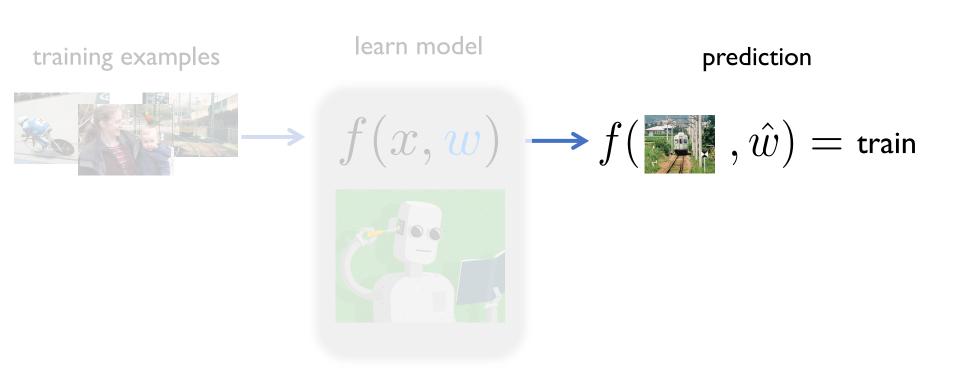


Phir

Variable (Coordinate) Selection

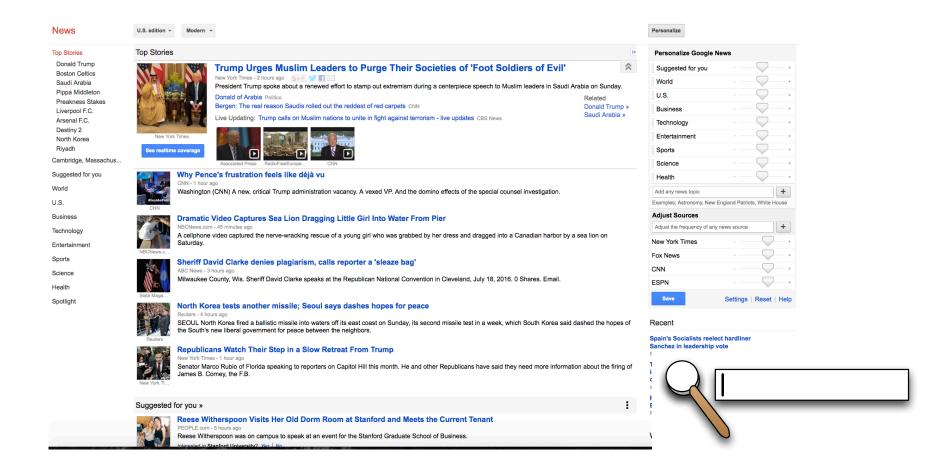


Machine Learning



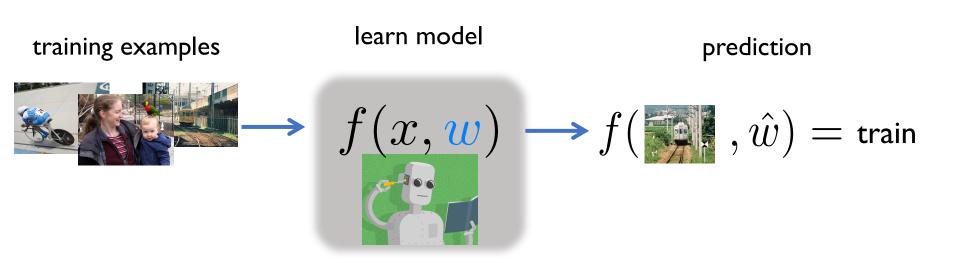
Pliř

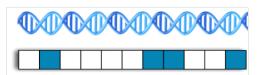
Summarization & Recommendation



F(S) = relevance + diversity or coverage

Machine Learning



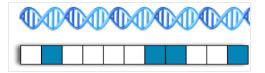


Machine Learning and Set functions

Common formalization: Find a set S that maximizes / minimizes a set function F(S)

- difficult: 2^{100} possible subsets for just 100 items \otimes
- This is large!
 fold a sheet of paper 100x. Height of the final pile:
 2¹⁰⁰x 0.1mm = 13.4 billion light years!

Machine Learning and Set functions



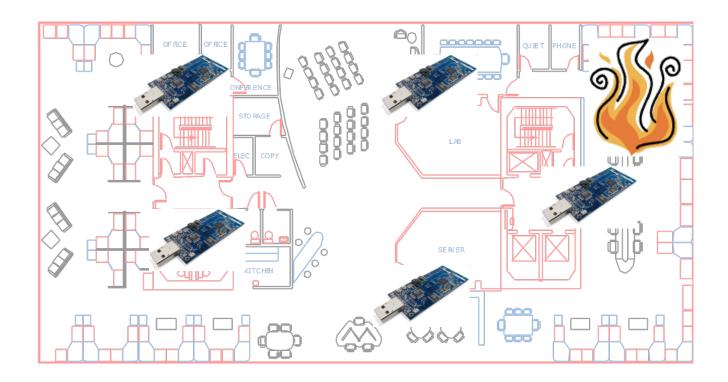
Common formalization: Find a set S that maximizes / minimizes a set function F(S)

- difficult: 2^{100} possible subsets for just 100 items $\, \ensuremath{\mathfrak{S}}$
- Special properties help! ("10cm") Submodularity

• What is submodularity and where does it come up?

- Optimization with submodular functions
- Further connections & directions

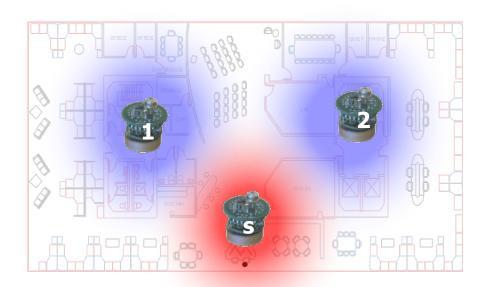
Sensing



 \mathcal{V} = all possible locations F(S) = information gained from locations in S Phir

Marginal gain

- Given set function $\ F: 2^V
 ightarrow \mathbb{R}$
- Marginal gain: $F(s|A) = F(A \cup \{s\}) F(A)$

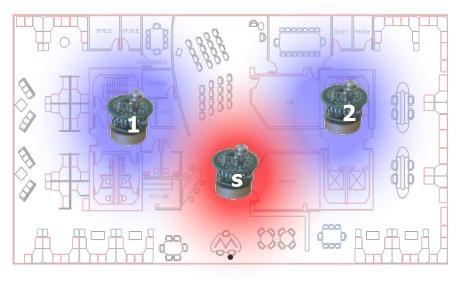


new sensor s

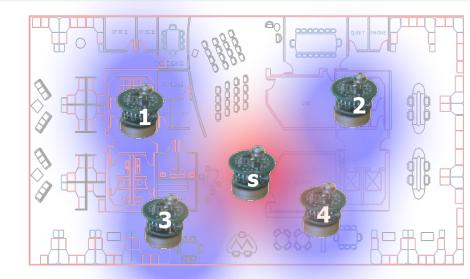
l li î î

Diminishing gains

placement A = {1,2}



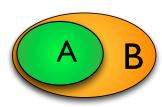
placement B = {1,2,3,4}



Big gain

small gain

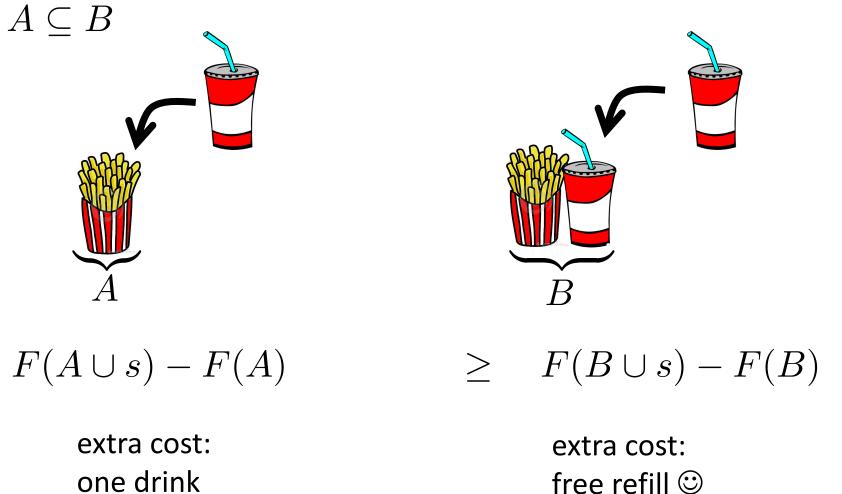
for all $A \subseteq B$ and s not in B



 $F(A \cup s) - F(A) \ge F(B \cup s) - F(B)$

Phir

Diminishing marginal costs

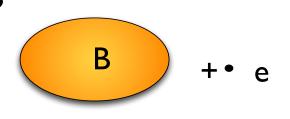


l li î î

one drink

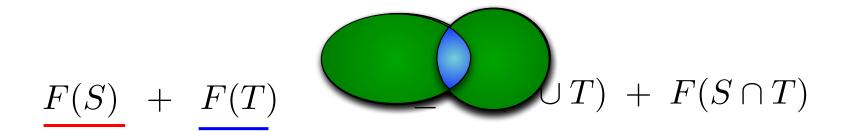
Submodular set functions

- Diminishing gains: for all $A\subseteq B$
- A +• e

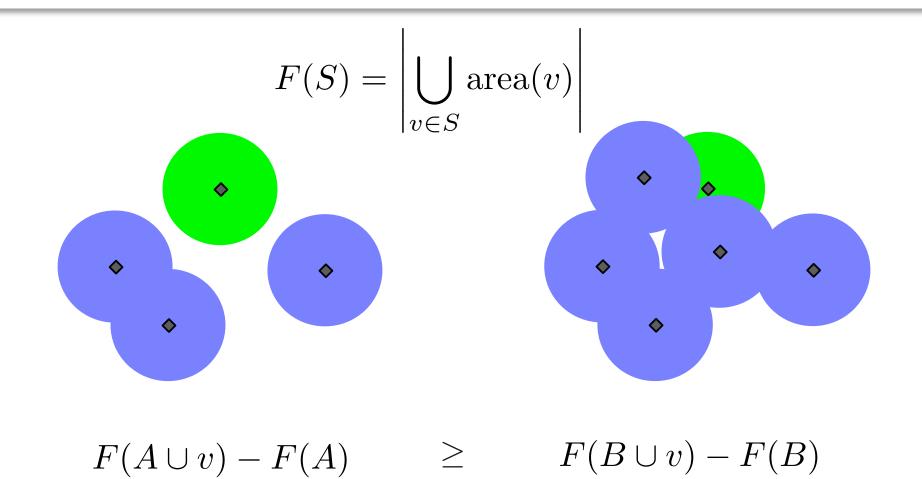


 $F(A \cup e) - F(A) \ge F(B \cup e) - F(B)$

• Union-Intersection: for all $S,\,T\,\subseteq\mathcal{V}$

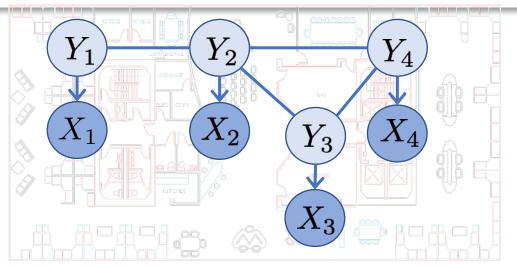


Example: cover



Phir

Example: sensing



• \mathcal{V} = random variables we can possibly observe

• Utility to have sensors in locations A:

$$F(A) = H(\mathbf{Y}) - H(\mathbf{Y} | \mathbf{X}_A) = I(\mathbf{Y}; \mathbf{X}_A)$$

uncertainty about
temperature
before sensing
$$H(\mathbf{Y}) - H(\mathbf{Y} | \mathbf{X}_A) = I(\mathbf{Y}; \mathbf{X}_A)$$

uncertainty about
temperature
after sensing

Example: entropy

X_1, \ldots, X_n discrete random variables $F(S) = H(X_S) =$ joint entropy of variables indexed by S

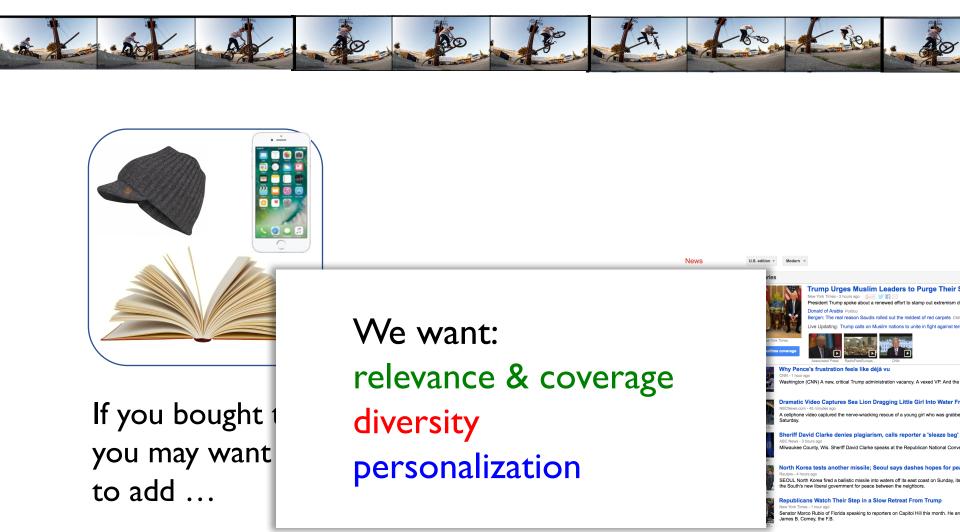
Exercise: meaning of diminishing returns here?

Example: entropy

 X_1, \ldots, X_n discrete random variables $F(S) = H(X_S) =$ joint entropy of variables indexed by S $A \subset B$ $H(X_{A\cup e}) - H(X_A) = H(X_e|X_A)$ $\leq H(X_e|X_B)$ "information never hurts" $= H(X_{B \cup e}) - H(X_B)$

discrete entropy is submodular!

Recommendation & Summarization

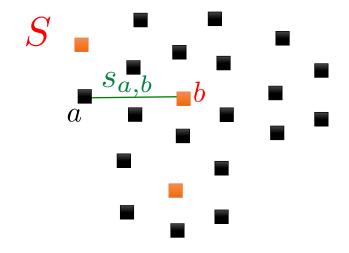


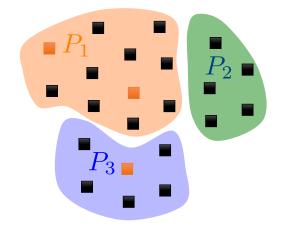
Reese Witherspoon Visits Her Old Dorm Room at Stanford and PEOPLE.com - 5 hours seo Reese Witherspoon was on campus to speak at an event for the Stanford Gradu

What could F(S) be?

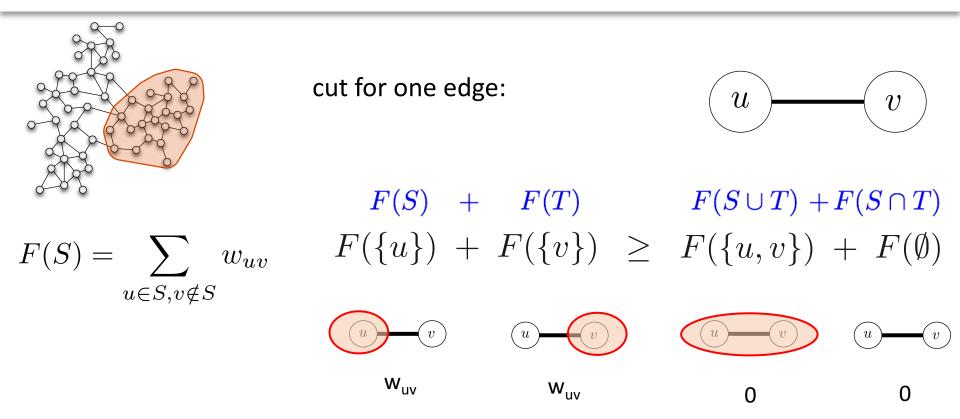
$$F(S) = \sum_{a \in \mathcal{V}} \max_{b \in S} s_{a,b}$$

$$F(S) = \sum_{j} \sqrt{|S \cap P_j|}$$





Example: graph cuts



- cut of one edge is submodular!
- large graph: sum of edges

sum of submodular functions is submodular

Examples of submodular functions

- Discrete entropy
- Mutual information
- Matrix rank (as a function of columns)
- Coverage
- Spread in social networks
- Graph cuts
- ... many others!

Submodular functions (almost) everywhere!

THEORY OF CAPACITIES (1) by Gustave CHOQUET (2)(3).

INTRODUCTION

This work originated from the following 1 significance had been emphasized by M. Brelot

Is the interior Newtonian capacity of an arl subset X of the space R^3 equal to the exte capacity of X?

Submodular Functions, Matroids, and Certain

Polyhedra*

National Bureau of Standards, Washington, D.C.

Ι

The viewpoint of the subject of matroids, and related areas of lattice theory, has always been, in one way or another, abstraction of algebraic dependence or, equivalently, abstraction of the incidence relations in geometric representations of algebra. Often one of the main derived facts is that all bases have the same cardinality. (See Van der Waerden, Section 33.)

Cores of Convex Games¹)

By LLOYD S. SHAPLEY²)

ct: The core of an *n*-person game is the set of feasible outcomes the coalition of players. A convex game is defined as one that is ba paper it is shown that the core of a convex game is not empty estructure. It is further shown that certain other cooperative solu way to the core: The value of a convex game is the center of gravit

Submodular functions and convexity

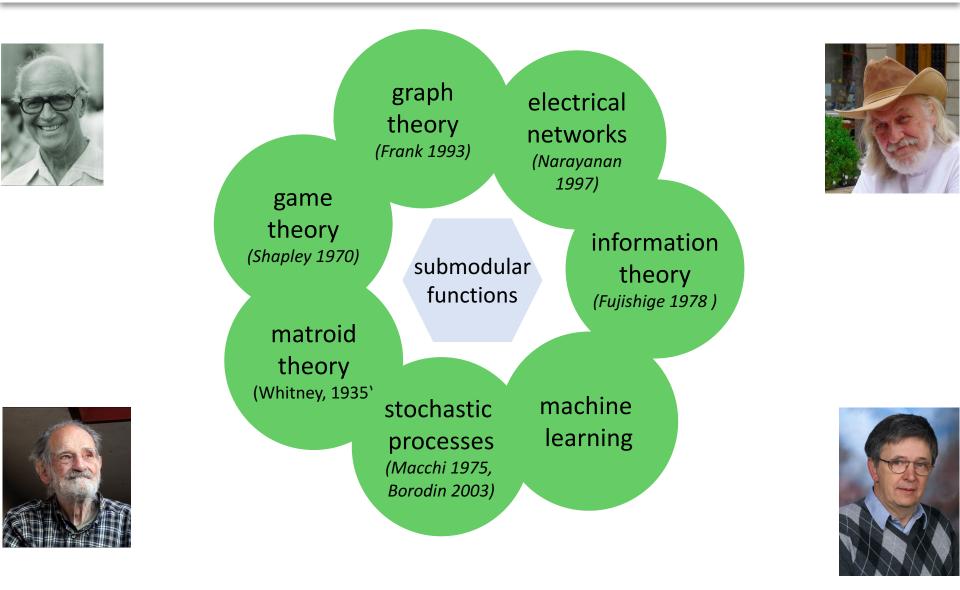
L. Lovász

Eötvös Loránd University, Department of Analysis I, Múzeu Budapest, Hungary

In "continuous" optimization convex functions play a central role. Bes mentary tools like differentiation, various methods for finding the min a convex function constitute the main body of nonlinear optimizat

Submodular functions (almost) everywhere!

Phir



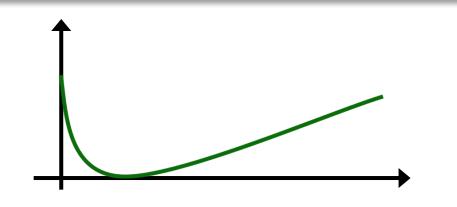
Why are convex functions so important? (Lovász, 1983)

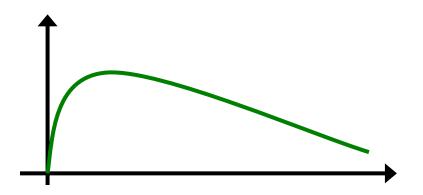
- "occur in many models in economy, engineering and other sciences", "often the only nontrivial property that can be stated in general"
- preserved under many operations and transformations: larger effective range of results
- sufficient structure for a "mathematically beautiful and practically useful theory"
- efficient minimization

"It is less apparent, but we claim and hope to prove to a certain extent, that a similar role is played in discrete optimization by *submodular set-functions*" [...] they share the above four properties.

Submodularity ...

discrete convexity convex relaxation, duality





... or concavity? diminishing "derivative"

Mir

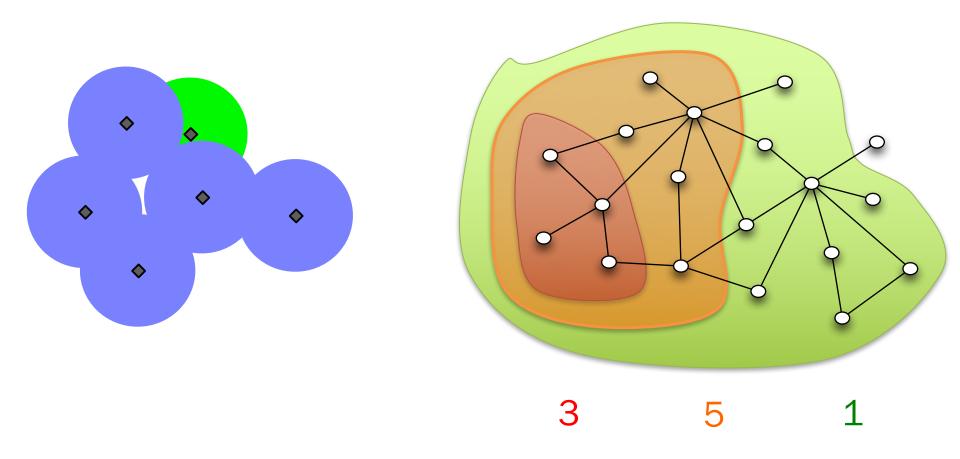
✓ What is submodularity and where does it comes up?

- Optimization with submodular functions
- Further connections & directions

Monotonicity

if $S \subseteq T$ then $F(S) \leq F(T)$

Phir



Maximizing a submodular function?

$$\max_{S} F(S) \text{ s.t. } |S| \le k$$

Plif

NP-hard ⊗

Maximizing a submodular function?

$$\max_{S} F(S) \text{ s.t. } |S| \le k$$

ll i T

greedy algorithm:

$$S_{0} = \emptyset$$

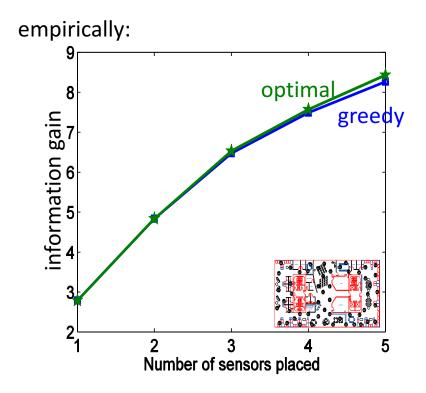
for $i = 0, ..., k-1$
$$e^{*} = \arg \max_{e \in \mathcal{V} \setminus S_{i}} F(S_{i} \cup \{e\})$$

$$S_{i+1} = S_{i} \cup \{e^{*}\}$$

How "good" is S_{k} ?

Phi

How good is greedy?



Theorem (Nemhauser, Wolsey, Fisher 1978): If F is monotone submodular, then Greedy is guaranteed to achieve at least 63% of optimum:

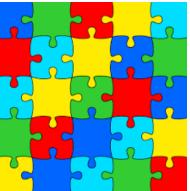
$$F(S_k) \ge \left(1 - \frac{1}{e}\right) F(S^*)$$

Why is this amazing? Does it always work?

Greedy can fail ... without submodularity

·**↓┤★┥╪┊┇┡╘┢**┢┢

But: this never happens with diminishing returns! ©



then $F(S)=100\,.$ Otherwise, F(S)=0

Recap: why does plain greedy work?

1. Submodularity: global information from local information Marginal gain of single item gives information about global value

2. Monotonicity: items can never harm (= reduce F)

Beyond greedy?

- Other constraints?
- Non-monotone functions?
- Large-scale greedy?

Greedy++

li li î

More complex constraints: budget

$$\max F(S) \text{ s.t. } \sum_{e \in S} c(e) \le B$$

- 1. run greedy: $S_{
 m gr}$
- 2. run a modified greedy: $S_{
 m mod}$

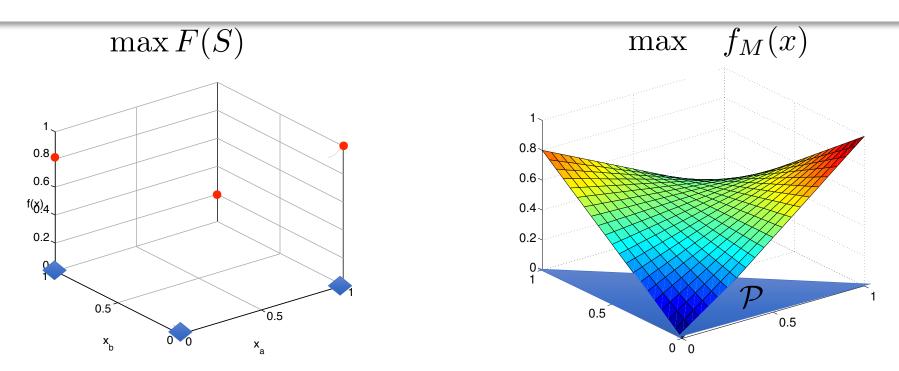
$$e^* = \arg\max_e \frac{F(S_i \cup \{e\}) - F(S_i)}{c(e)}$$

3. pick better of $S_{\rm gr}$, $S_{\rm mod}$ \rightarrow approximation factor: $1 - \frac{1}{2}$

even better but less fast: partial enumeration (Sviridenko, '04) or filtering (Badanidiyuru & Vondrák '14)

(Leskovec-Krause-Guestrin-Faloutsos-VanBriesen-Glance '07)

Relax: Discrete to continuous



Algorithm: "continuous greedy"

- 1. approximately maximize f_M over $\mathcal{P} = \operatorname{conv}(\mathcal{I})$
- 2. round to discrete set

(Vondrák '08; Calinescu-Chekuri-Pal-Vondrák '11; Kulik-Shachnai-Tamir'11)

Beyond greedy? Greedy++

- Other constraints for monotone submodular functions? Variants of greedy still work in many cases ("downward closed" constraints)
- Non-monotone functions?
- Large-scale greedy?

Greedy can fail ...

$$F(A) = \left| \bigcup_{a \in A} \operatorname{area}(a) \right| - \sum_{a \in A} c(a)$$

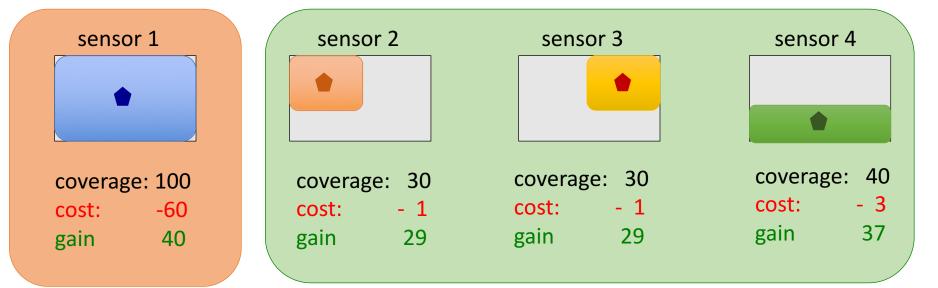
Plif

greedy solution:

F(A) = 40

optimal solution

F(A) = 95



Non-monotone maximization

- Generally inapproximable unless F is nonnegative
- Unconstrained maximization:
 - Local search (Feige-Mirrokni-Vondrák'07)
 - Double greedy: Optimal ½ approximation

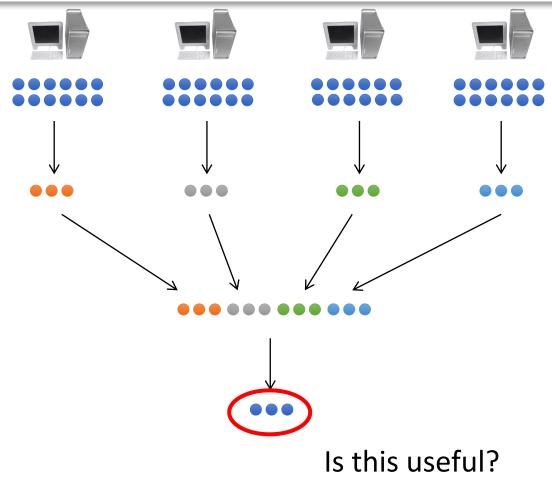
(Buchbinder-Feldman-Naor-Schwartz'12)

- Constrained maximization:
 - Cardinality constraints: randomized greedy (Buchbinder-Feldman-Naor-Schwartz'14)
 - Filtering based algorithms (Mirzasoleiman-Badanidiyuru-Karbasi'16)
 - More general constraints: Continuous local search via multilinear extension (Chekuri—Vondrák-Zenklusen'11)
- Distributed algorithms? yes!
 - divide-and-conquer (de Ponte Barbosa-Ene-Nguyen-Ward '15)
 - concurrency control / Hogwild (Pan-Jegelka-Gonzalez-Bradley-Jordan '14)

Beyond greedy? Greedy++

- Other constraints for monotone submodular functions? Variants of greedy still work in many cases ("downward closed" constraints)
- Non-monotone functions? Monotone greedy can fail, but other types of greedy ('double greedy') & local search work
- Large-scale greedy?

Distributed greedy algorithms



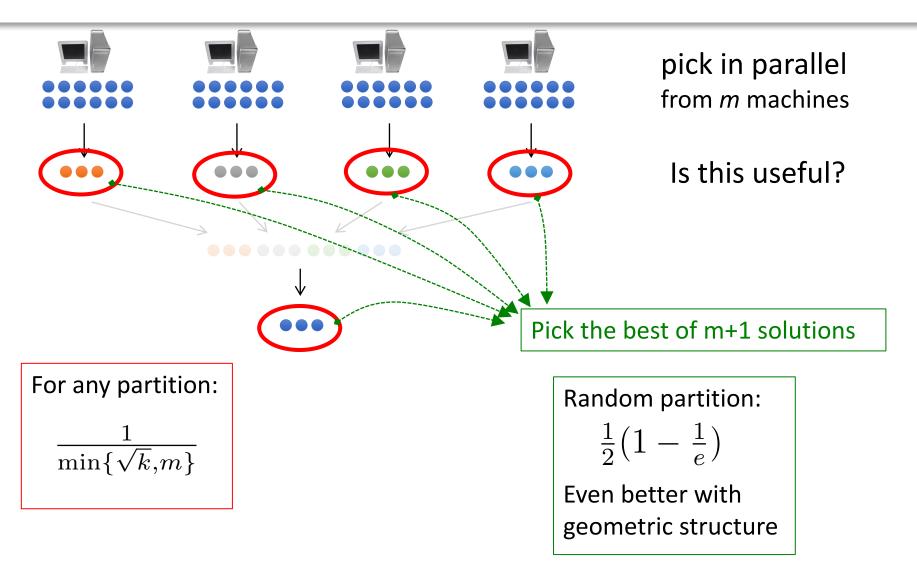
greedy is sequential. pick in parallel??

Plič

pick k elements on each machine.

combine and run greedy again.

Distributed greedy algorithms



(Mirzasoleiman-Karbasi-Sarkar-Krause'13, da Ponte Barbosa-Ene-Nguyen-Ward'15)

Beyond greedy? Greedy++

- Other constraints for monotone submodular functions? Variants of greedy still work in many cases ("downward closed" constraints)
- Non-monotone functions? Monotone greedy can fail, but other types of greedy ('double greedy') & local search work
- Large-scale greedy? Distributed, parallel, streaming versions for many cases

✓ What is submodularity and where does it comes up?

- Optimization with submodular functions
 Maximization: greedy algorithms (diminishing returns)
 - Minimization?
- Further connections & directions

Submodular minimization

$$\min_{S \subseteq \mathcal{V}} F(S)$$
"maximize coherence"
$$\operatorname{Idea: relaxation}$$

$$F(\{b\}) \longrightarrow F(\{a\}) \longrightarrow \min_{x \in \{0,1\}^n} F(x) \longrightarrow \min_{x \in [0,1]^n} f(x)$$

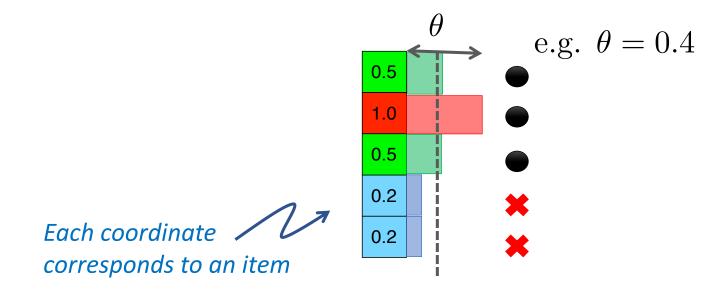
Plii

Lovasz extension

• expectation:
$$f(x) = \mathbb{E}_{\theta}[F(S_{\theta})]$$

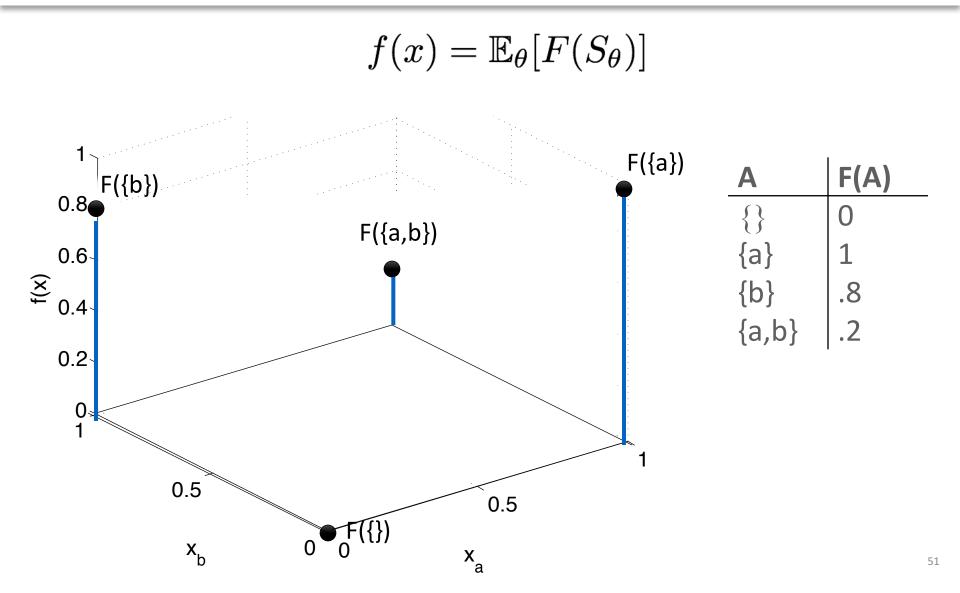
- sample threshold $\theta \in [0,1]$ uniformly

•
$$S_{\theta} = \{e \mid x_e \ge \theta\}$$



luir.

Lovász extension: example



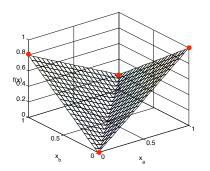
Phir

Submodularity and convexity

$$f(x) = \mathbb{E}_{\theta \sim x}[F(S_{\theta})]$$

if F is submodular, this is equivalent to:

$$f(x) = \max_{y \in \mathcal{B}_F} y^\top x$$



Theorem (*Edmonds* 1971, *Lovász* 1983) Lovász extension is convex \Leftrightarrow *F* is submodular.

Examples of Lovasz extensions

1.
$$F(S) = \min\{|S|, 1\}$$

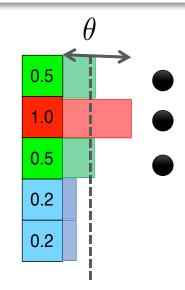
 $f(x) = \max_{i} x_{i}$

2. Cut function: 2 items (nodes)

$$u$$

$$v$$

$$F(S) = \begin{cases} 1 & \text{if } |S| = 1\\ 0 & \text{otherwise} \end{cases}$$



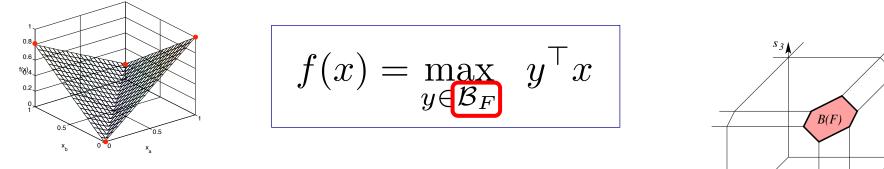
 $f(x) = |x_u - x_v|$

l li î î

Base polytopes

$$f(x) = \mathbb{E}_{\theta \sim x}[F(S_{\theta})]$$

if F is submodular, this is equivalent to:



52

P(F)

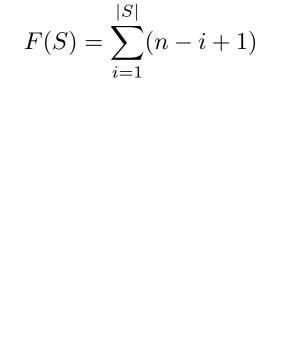
 \mathbf{k}_{s_1}

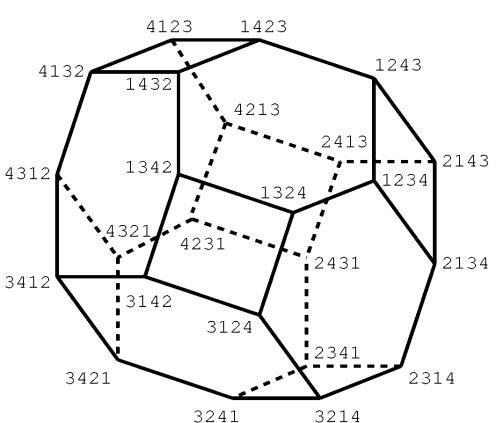
Base polytope: all vectors dominated by F(S)

$$\mathcal{B}_F = \{ y \in \mathbb{R}^n \mid \forall S \subseteq \mathcal{V} \mid \sum_{i \in S} y_i \le F(S) \text{ and } \sum_{i=1}^n y_i = F(\mathcal{V}) \}$$

Examples of base polytopes

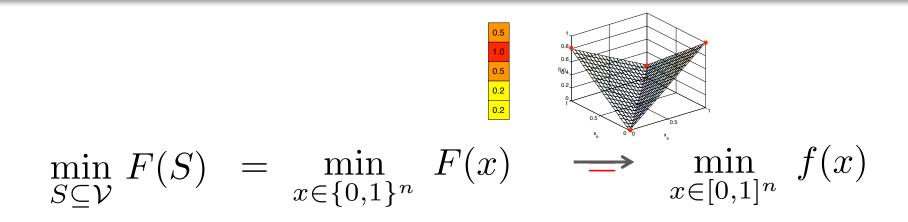
- 1. Probability simplex $F(S) = \min\{|S|, 1\}$
- 2. Permutahedron





Phir

Putting things together



1. relaxation: convex optimization computable subgradients

← many ways to do Step 1

2. relaxation is exact! pick elements with positive coordinates $S^* = \{e \mid x_e^* > 0\}$

→ submodular minimization in polynomial time! (Grötschel, Lovász, Schrijver 1981)

Submodular minimization

convex optimization

- ellipsoid method (Grötschel-Lovasz-Schrijver 81)
- subgradient method ... (..., Chakrabarty-Lee-Sidford-Wong 16)
- minimum-norm point / Fujishige-Wolfe algorithm (different relaxation) (Fujishige-Isotani 11)

combinatorial methods

- first polynomial-time: (Schrijver 00, Iwata-Fleischer-Fujishige-01)
- $O(n^4T + n^5\log M)$ (Iwata 03) $O(n^6 + n^5T)$ (Orlin 09)

Latest:

 $O(n^2 T \log nM + n^3 \log^c nM)$ $O(n^3 T \log^2 n + n^4 \log^c n)$ (Lee-Sidford-Wong 15) Hii

Submodularity and convexity

- convex Lovasz extension
 - easy to compute: greedy algorithm (special polyhedra!)
- submodular minimization via convex optimization: exact
- duality results
- structured sparsity (Bach 10)
- decomposition & parallel algorithms (Komodakis-Paragios-Tziritas 11, Stobbe-Krause 10, Jegelka-Bach-Sra 13, Nishihara-Jegelka-Jordan 14, Ene-Nguyen 15)
- variational inference (Djolonga-Krause 14)

✓What is submodularity and where does it comes up?

✓Optimization with submodular functions

- Maximization: greedy algorithms (discrete concavity) constraints manageable
- Minimization: convex relaxation (discrete convexity) constraints are hard
- Further connections & directions
 - Learning
 - Probability distributions & set functions
 - Integer & continuous functions

Log-supermodular distributions

$P(S) \propto \exp(-F(S))$ $P(S) P(T) \leq P(S \cup T) P(S \cap T)$

Example: ferromagnetic Ising model / Conditional Random Field

"multivariate totally positive of order 2", "affiliated"

Benefits:

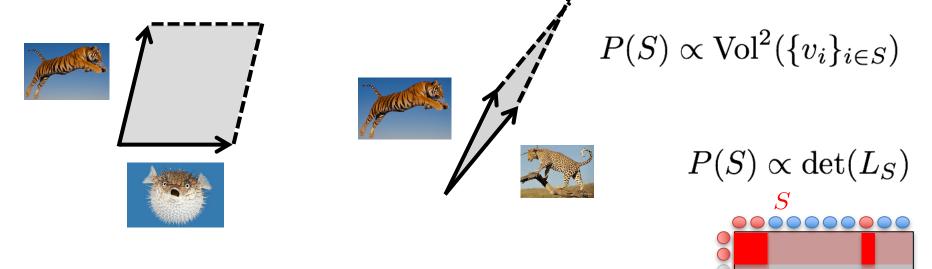
- finding the mode = minimizing a submodular function
- approximating partition function & marginals ...

(Fortuin-Kasteleyn-Ginibre 71, Kolmogorov-Zabih 04, Djolonga-Krause 14, ...)

Log-submodular distributions

$$P(S) \propto \exp(F(S))$$
 $P(S) P(T) \ge P(S \cup T) P(S \cap T)$

Example: Determinantal Point Processes / Volume sampling



S

Sub-family: "Strongly Rayleigh" distributions

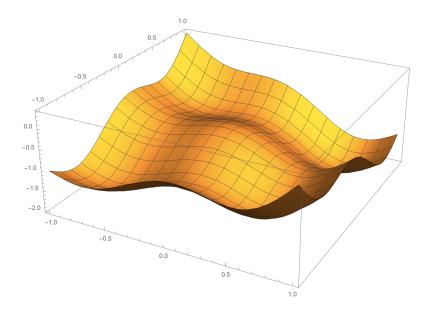
Benefits: sampling (if negative association)

(Macchi 75, Feder-Mihail 82, Borodin 02, Deshpande-Rademacher-Vempala-Wang 06, Borcea-Bränden 09, Borcea-Bränden-Liggett 09, Kulesza-Taskar 12, Anari-Oveis Gharan-Rezaei 16, Li-Jegelka-Sra 16, ...)

Submodularity more generally

Integer and continuous functions

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$



• Many optimization results generalize 😳

(Milgrom-Shannon 94; Topkis 98; Murota 03; Kapralov-Post-Vondrak 10; Soma et al 2014-16; Bach 2015; Ene & Nguyen 2016; Bian-Mirzasoleiman-Buhmann-Krause 16)

Submodularity more generally

• Integer and continuous functions

$$f(x) + f(y) \ge f(x \lor y) + f(x \land y)$$

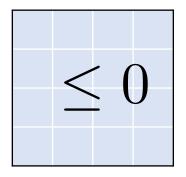
• Equivalent condition for differentiable functions:

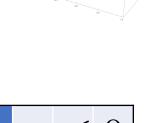
$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) \le 0 \quad \forall i \ne j$$

 ≤ 0

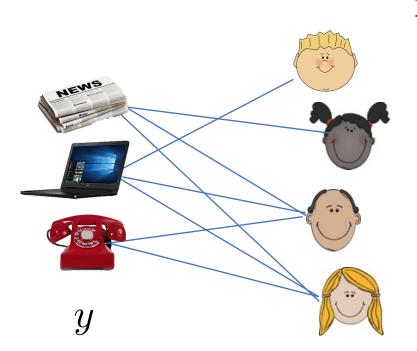
• *subclass:* diminishing returns

$$\frac{\partial^2}{\partial x_i \partial x_j} f(x) \le 0 \quad \forall i, j$$





Application: robust optimization



$$\max_{y} \mathcal{I}(y;\theta) \quad \text{s.t.} \quad \sum_{s} y_{s} \le B$$

infer θ from data. robust optimization?

 $\max_{y} \min_{\theta \in R} \mathcal{I}(y;\theta)$

nonconvex in $\theta \otimes$ But: submodular in $\theta ! \odot$ nonconvex optimization lattice / continuous submodularity many optimization results generalize

probability measures

log-supermodular (⇒positive assoc.) log-submodular (←negative assoc.) sampling, mode, approx. partition function

submodular set functions

convexity: minimization *maximize coherence* **dim. returns (concavity)**: maximization *maximize diversity*

many examples:

- linear/modular functions
- entropy
- mutual information
- rank functions

- coverage
- diffusion in networks
- volume
- graph cut ...