Understanding Machine Learning —
A theory Perspective
(part 3)

Shai Ben-David

University of Waterloo

MLSS at MPI Tubingen, 2017




The fundamental theorem
(qualitative)

Theorem: Given a class H of binary valued
functions the following statements are
equivalent:

a. H has the Uniform Convergence Property
. ERM is an agnostic PAC learner for H
H is agnostic PAC learnable
. His PAC learnable
. VCdim(H) is finite
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Main tool for (e) implies (a)

The Shatter function
For a class H define a function M,;: N =»N
as My(m) =max. |aj=ml{hls:hin H}|

Some basic properties of the shatter function:
1. For every m < VCdim(H), M,(m) =2™
2. For every m >VCdim(H), M (m) < 2™



The Sauer (Shelah, Perles) lemma

For every class H of finite VC-dimension, d,

For every m,

Ny(m)<Z_.4 (m choose i) £ m@



Quantitative version of the

For some constants C,, C,, for every d and every class H
of binary valued functions such that VCdim(H)=d,

1. H has Uniform Convergence property with
C,(d+log(1/6))/e?< muc (g, 6) < C,(d+log(1/8))/€?

2. H is agnostic PAC learnable with
C,(d+log(1/6))/e?< m(g, 6) < C,(d+log(1/6))/e?

3. His PAC learnable with
C,(d+log(1/6))/e < m(g, 6) < C,(d+log(1/6))/e



How to compute VC dimension

As a rule of thumb, the VC dimension of a class

Is often equal to the number of parameters
need to be set to specify a specific h in H.

(think Of Hinit' H Hrectangles' HS" )

intrvals’



* |ssue 1 - finite VC classes may be too
restricted.

* |ssue 2 - computational complexity



Non-Uniform Learn - Definition

A class H is NonUniformly learnable if
There is a function m,,: Hx(0,1)* =» N
and a learning algorithm A,

s.t. for every distribution P over XxY
and every €, 6 >0, for every h in H
for samples S of size m>m,,(h,e, 6)
generated i.i.d.by P,

Pr[L,(A(S)) > Lo(h) + €] < 6



Non-Uni characterization - Statement

Theorem: A class H is NonUniformly learnable if
and only if there exist classes

{H,: nin N} such that:

1. Each H_ has the uniform convergence
property.

And,
2.H=U

nmN



Some NonUni Learnable classes

» The class of all polynomials epi-sets
H=th,: p a polynonial in x}
where, h (x) = 1 if and only if p(x)>O0.

» The class of all (characteristic functions of)
finite subsets of (any) X.

» The class of all finite unions of rectangles.



Some classes are not NUL

If H shatters an infinite set, then H is not (even)
NonUni learnable.

(in particular, the class of ALL functions over any
infinite domain).



Proof of easy direction

Assume H is NonUni learnable,

Define, for every n,
H,=thinH:m,(h, 1/7, 1/8) < n}

Note that each of these classes must have finite
VCdim, and therefore has Uniform Convergence,
and their union covers H.



Hard direction

Step 1: Weight functions.

We define a weight function to be any function
w :N =»[0,1] such that

> w(n)< 1.

Examples: w(n) =1/2n?
orw(n)=1/2"



Rewriting the m function

Given a class H and a representation of H os a
union of H s, each enjoying uniform
convergence, define for any n

£,(m, 8)=min{e: m (g, 6) < m}

(namely, the minimal error that an m-size
sample can guarantee)



Hard direction

The NonUniform generalization (loss) bound

For every weight function w, every prob. Dist P
every 6 and every m, with probability

> (1-6),
ForallhinH

Lp(h) < Ls(h) + ming .0 ym€, (M, w(n) 0)



Hard direction

The bound minimization algorithm -
Structural Risk Minimization (SRM):

Given H, a decomposition of H to H_’s of finite
VCdim each and a weight function w,

On a labeled training sample S of size m,

Find h in H that minimizes the above error
bound:

Ls(h) + ming. i um€n (M, w(n) 0)



The resulting sample complexity function:

m(h,g,8) = m“,. . (€/2, w(n(h)) &)



Applications of SRM

SRM has many applications, usually referred to
as “ERM with regularization”:

Adding to the empirical error a “penalty” on
complex (or otherwise, undesirable) h’s.

Example include

1. Norm of a linear classifier
2. Description length

3. Small margins

4. Low prior likelihood



Description length - definition

A description language for a class H is a function
G: H =»Finite binary strings

Such that the range of G is prefix-free.



Kraft inequality

Any collection T of binary strings that is prefix-free,
satisfies

> 2-lol< 1

oinT
Corollary: For H={h,, h,, ...h ,...},

We can use any description language for
H to define weights w(n) = 2-16(hn)]



Description length bound and
Ocam’s Razor

The resulting SRM algorithm is :
pick h that minimizes

Ls(h) + sart{(|G(h)| +In(1/6))/2m}



