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The	fundamental	theorem	
(qualita6ve)	

Theorem:	Given	a	class	H	of	binary	valued	
func6ons	the	following	statements	are	
equivalent:	
a.  H	has	the	Uniform	Convergence	Property	
b.  ERM	is	an	agnos6c	PAC	learner	for	H	
c.  H	is	agnos6c	PAC	learnable	
d.  H	is	PAC	learnable	
e.  VCdim(H)	is	finite	



Main	tool	for	(e)	implies	(a)	

The	Sha6er	func:on	
For	a	class	H	define	a	func6on	ΠH:	N	èN	
as		ΠH(m)	=	max{A:	|A|=m}|{h|A	:	h	in	H}|		
	

Some	basic	proper6es	of	the	shaVer	func6on:	
1.  For	every	m	≤	VCdim(H),	ΠH(m)	=2m	

2.  For	every	m	>	VCdim(H),	ΠH(m)	<	2m	

	



The	Sauer	(Shelah,	Perles)	lemma	

For	every	class	H	of	finite	VC-dimension,	d,	
		
For	every	m,		
	

									ΠH(m)	≤	Σi=0d		(m	choose	i)	≤	md	

	
	



Quan6ta6ve	version	of	the		
Fundamental	Theorem	

For	some	constants	C1,	C2,	for	every	d	and	every	class	H	
of	binary	valued	func6ons	such	that	VCdim(H)=d,		
1.		H	has	Uniform	Convergence	property	with	
					C1(d+log(1/δ))/ε2	<	muc

H(ε,	δ)	<	C1(d+log(1/δ))/ε2			

	2.	H	is	agnos:c	PAC	learnable	with	
					C1(d+log(1/δ))/ε2	<	mH(ε,	δ)	<	C1(d+log(1/δ))/ε2			

	3.		H	is	PAC	learnable	with	
				C1(d+log(1/δ))/ε	<	mH(ε,	δ)	<	C1(d+log(1/δ))/ε			



How	to	compute	VC	dimension	

As	a	rule	of	thumb,	the	VC	dimension	of	a	class	
Is	ofen	equal	to	the	number	of	parameters	
need	to	be	set	to	specify	a	specific	h	in	H.	
	
(think	of	Hinit,	Hintrvals,	Hrectangles,	HSn		)	



Is	the	story	complete	now?	

•  Issue	1	–	finite	VC	classes	may	be	too	
restricted.	

•  Issue	2	–	computa6onal	complexity	



Non-Uniform	Learn	-	Defini6on	

A	class	H	is	NonUniformly	learnable	if	
		There	is	a	func4on	mH	:	Hx(0,1)2	è	N		
			and	a	learning	algorithm	A,		
			s.t.	for	every	distribu4on	P	over	XxY		
			and	every	ε,	δ	>0,	for	every	h	in	H	
			for	samples	S	of	size	m>mH(h,ε,	δ)		
			generated	i.i.d.by	P,		

					Pr[LP(A(S))	>	LP(h)	+	ε]	<	δ	



Non-Uni	characteriza6on	-	Statement	

Theorem:	A	class	H	is	NonUniformly	learnable	if	
and	only	if	there	exist	classes	
{Hn	:	n	in	N}	such	that:	
	
1.	Each	Hn	has	the	uniform	convergence	
property.		
And,	
2.	H	=	Un	in	N	Hn	
		
	



Some	NonUni	Learnable	classes	

Ø The	class	of	all	polynomials	epi-sets	
				H={hp:	p	a	polynonial	in	x}	
				where,	hp(x)	=	1	if	and	only	if	p(x)>0.	
Ø The	class	of	all	(characteris6c	func6ons	of)	
finite	subsets	of	(any)	X.	

Ø The	class	of	all	finite	unions	of	rectangles.	



Some	classes	are	not	NUL	

If	H	shaVers	an	infinite	set,	then	H	is	not	(even)	
NonUni	learnable.	

(in	par6cular,	the	class	of	ALL	func6ons	over	any	
infinite	domain).	



Proof	of	easy	direc6on	

Assume	H	is	NonUni	learnable,	
	
Define,	for	every	n,		
Hn	=	{h	in	H	:	mH	(h,	1/7,	1/8)	<	n}	
	

Note	that	each	of	these	classes	must	have	finite	
VCdim,	and	therefore	has	Uniform	Convergence,	
and	their	union	covers	H.	



Hard	direc6on	

Step	1:	Weight	func6ons.	
	
We	define	a	weight	func4on	to	be	any	func6on	
w	:N	è[0,1]	such	that		
Σn	w(n)	≤	1.	
	

Examples:		w(n)	=	1/2n2			
																					or	w(n)	=	1/2n	



Rewri6ng	the	m	func6on	

	Given	a	class	H	and	a	representa6on	of	H	os	a	
union	of	Hn’s,	each	enjoying	uniform	
convergence,	define	for	any	n	
	
εn(m,	δ)=min{ε:	mHn(ε,	δ)	<	m}	
	

(namely,	the	minimal	error	that	an	m-size	
sample	can	guarantee)	



Hard	direc6on	

The	NonUniform	generaliza;on	(loss)	bound	

For	every	weight	func6on	w,	every	prob.	Dist	P	
every	δ	and	every	m,	with	probability		
>	(1-δ),	
For	all	h	in	H	
	
LP(h)	≤	LS(h)	+	min{n:	h	in	Hn}εn	(m,	w(n)	δ)	



Hard	direc6on	

The	bound	minimiza6on	algorithm	–	
Structural	Risk	Minimiza6on	(SRM):	
Given	H,	a	decomposi6on	of	H	to	Hn’s	of	finite	
VCdim	each	and	a	weight	func6on	w,	
On	a	labeled	training	sample	S	of	size	m,	
Find	h	in	H	that	minimizes	the	above	error	
bound:		
LS(h)	+	min{n:	h	in	Hn}εn	(m,	w(n)	δ)	
	
	



Hard	direc6on	

The	resul6ng	sample	complexity	func6on:	
	
m(h,ε,δ)	=	muc

Hn(h)	(ε/2,	w(n(h))	δ)	
	



Applica6ons	of	SRM	
SRM	has	many	applica6ons,	usually	referred	to	
as	“ERM	with	regulariza6on”:	
	
Adding	to	the	empirical	error	a	“penalty”	on	
complex	(or	otherwise,	undesirable)	h’s.		
Example	include	
1.  Norm	of	a	linear	classifier	
2.  Descrip6on	length	
3.  Small	margins	
4.  Low	prior	likelihood	
	



Descrip6on	length	-	defini6on	

A	descrip6on	language	for	a	class	H	is	a	func6on	
	
G:	H	èFinite	binary	strings	
	
Such	that	the	range	of	G	is	prefix-free.	



Kraf	inequality	

Any	collec6on	T	of	binary	strings	that	is	prefix-free,	
sa6sfies	
	

Σσ	in	T		2-|σ|	≤	1	
	
Corollary:	For	H={h1,	h2,	…hn,…},	
We	can	use	any	descrip6on	language	for	
H	to	define	weights	w(n)	=	2-|G(hn)|			



Descrip6on	length	bound	and		
Ocam’s	Razor	

	
	
The	resul6ng	SRM	algorithm	is	:	
pick	h	that	minimizes		
	

LS(h)	+	sqrt{(|G(h)|	+	ln(1/δ))/2m}	


