Understanding Machine Learning – A theory Perspective

Shai Ben-David

University of Waterloo

MLSS at MPI Tubingen, 2017

Some infinite classes are learnable

Examples:

Initial segments of the real line.

 The class of singletons over any domain set

Other classes of the same "size" are not learnable

The class of all finite subsets of an infinite domain.

Proof: Note that for possible value for $m=m_H(1/8, 1/8)$ there is a domain subset A_m of double the size for which every possible $F:A_m \rightarrow \{0,1\}$ agrees with some h in H.

A combinatorial characterization of PAC learnable classes

Shattering:

A class H shatters a domain subset A if For every B subset of A There is some h_B in H so that for all x in A $h_B(x)=1$ if and only if x is in B.

• Examples:

The Vapnik Chervonenkis dimension

Given a class of binary valued functions, H, The Vapnik-Chervonenkis dimension of H is

VCdim(H) =sup {|A|: H shatters A}

First connection to PAC learning

Note that our proof of the No Free Lunch Theorem shows, in fact, that:

For any class H, $m_H(1/8, 1/8) > VCdim(H)/2$

Corollary: If VCdim(H) is infinite then H is not PAC learnable.

The fundamental theorem (qualitative)

Theorem: Given a class H of binary valued functions the following statements are equivalent:

- a) H has the Uniform Convergence Property
- b) ERM is an agnostic PAC learner for H
- c) H is agnostic PAC learnable
- d) H is PAC learnable
- e) VCdim(H) is finite

Main tool for (e) implies (a)

The Shatter function

For a class H define a function $\Pi_{H}: \mathbb{N} \rightarrow \mathbb{N}$ as $\Pi_{H}(m) = \max_{\{A: |A|=m\}} |\{h|_{A}: h \text{ in } H\}|$

Some basic properties of the shatter function:

- 1. For every $m \leq VCdim(H)$, $\Pi_H(m) = 2^m$
- 2. For every m > VCdim(H), $\Pi_{H}(m) < 2^{m}$

The Sauer (Shelah, Perles) lemma

For every class H of finite VC-dimension, d,

For every m,

$\Pi_{H}(m) \leq \Sigma_{i=0}^{d} (m \text{ choose } i) \leq m^{d}$

A typical corollary

The number of linear partitions of a set of points in the plain.

Quantitative version of the Fundamental Theorem

- For some constants C_1 , C_2 , for every d and every class H of binary valued functions such that VCdim(H)=d,
- 1. H has Uniform Convergence property with $C_1(d+\log(1/\delta))/\epsilon^2 < m^{uc}_{H}(\epsilon, \delta) < C_1(d+\log(1/\delta))/\epsilon^2$
- 2. H is agnostic PAC learnable with
 - $C_1(d+\log(1/\delta))/\epsilon^2 < m_H(\epsilon,\,\delta) < C_1(d+\log(1/\delta))/\epsilon^2$
- 3. H is PAC learnable with
 - $C_1(d+\log(1/\delta))/\epsilon < m_H(\epsilon,\,\delta) < C_1(d+\log(1/\delta))/\epsilon$