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Some infinite classes are 
learnable 

Examples: 

l  Initial segments of the real line. 

l The class of singletons over any domain 
set 



Other classes of the same “size” 
are not learnable 

l The class of all finite subsets of an 
infinite domain. 

Proof:  Note that for possible value for 
m=mH(1/8,1/8) there is a domain subset 
Am of double the size for which every 
possible F:Am  è {0,1} agrees with some h 
in H. 



A combinatorial characterization 
of PAC learnable classes 

Shattering: 
A class H shatters a domain subset A if 
For every B subset of A 
There is some hB in H so that for all x in A  
hB(x)=1 if and only if x is in B. 
 
l Examples: 



The Vapnik Chervonenkis dimension 

Given a class of binary valued functions, H, 
The Vapnik-Chervonenkis dimension of H is 
 

VCdim(H) =sup {|A|: H shatters A} 

 



First connection to PAC learning 

Note that our proof of the No Free Lunch 
Theorem shows, in fact, that: 
 
For any class H, mH(1/8, 1/8) > VCdim(H)/2 

Corollary: If VCdim(H) is infinite then H is 
not PAC learnable. 



The fundamental theorem 
(qualitative) 

Theorem: Given a class H of binary valued 
functions the following statements are 
equivalent: 
a)  H has the Uniform Convergence Property 
b)  ERM is an agnostic PAC learner for H 
c)  H is agnostic PAC learnable 
d)  H is PAC learnable 
e)  VCdim(H) is finite 



Main tool for (e) implies (a) 

The Shatter function 
For a class H define a function ΠH: N èN 
as  ΠH(m) = max{A: |A|=m}|{h|A : h in H}|  
 

Some basic properties of the shatter 
function: 
1.  For every m ≤ VCdim(H), ΠH(m) =2m 

2.  For every m > VCdim(H), ΠH(m) < 2m 

 



The Sauer (Shelah, Perles) 
lemma 
For every class H of finite VC-dimension, d, 
  
For every m,  
 
         ΠH(m) ≤ Σi=0

d  (m choose i) ≤ md 

 
 



A typical corollary 

The number of linear partitions of a set of 
points in the plain. 



Quantitative version of the  
Fundamental Theorem 

For some constants C1, C2, for every d and every 
class H of binary valued functions such that 
VCdim(H)=d,  
1.  H has Uniform Convergence property with 
     C1(d+log(1/δ))/ε2 < muc

H(ε, δ) < C1(d+log(1/δ))/ε2  

 2. H is agnostic PAC learnable with 
     C1(d+log(1/δ))/ε2 < mH(ε, δ) < C1(d+log(1/δ))/ε2  

 3.  H is PAC learnable with 
    C1(d+log(1/δ))/ε < mH(ε, δ) < C1(d+log(1/δ))/ε  
 


