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Disclaimer – Warning …. 
  This talk is NOT about how cool machine 
learning is.  
I am sure you are already convinced of that. 
I am NOT going to show any videos of amazing 
applications of ML.  
You will hear a lot about the great applications of 
ML throughout this MLSS.  
 

I wish to focus on understanding the 
principles underlying Machine Learning.  



High level view of 
(Statistical)  Machine Learning 

“The purpose of science is  

to find meaningful simplicity  

in the midst of  

disorderly complexity” 
Herbert Simon 



More concretely 

Ø  Statistical learning is concerned with algorithms that 
detect meaningful regularities in large complex data 
sets. 

Ø   We focus on data that is too complex for humans to 
figure out its meaningful regularities. 

Ø   We consider the task of finding such regularities  from  
     random samples of the data population. 



A typical setting 

Ø  Imagine you want a computer program to help  
   decide which email messages are spam and  
   which are important. 
Ø  Might represent each message by features.  
     (e.g., return address, keywords, spelling, etc.) 

Ø  Train on a sample S of emails, labeled 
according to whether they are/aren’t spam. 

Ø  Goal of algorithm is to produce good prediction  
    rule (program) to classify future emails.  



The concept learning setting 
The learner is given some Training Sample  
 
E.g.,  



The learner’s output – 
a  classification rule 

Given data, some reasonable rules might 
be: 
• Predict SPAM if [unknown AND (sex OR sales)] 
 

• Predict SPAM if [sales + sex – known > 0]. 
• ... 

These kind of tasks are called Classification Prediction  



Some typical classification 
prediction tasks 

Ø   Medical Diagnosis (Patient infoà High/Low 
risk). 

Ø    Sequence-based classifications of proteins. 

Ø    Detection of fraudulent use of credit cards. 

Ø    Stock market prediction (today’s newsà 
tomorrow’s market trend). 



The formal setup  
(for label prediction tasks) 

l Domain set – X 

l Label set  -  Y (often {0,1}) 

l Training data – S=((x1,y1), …(xm, ym)) 

l Learner’s output – h: X è Y 



Data generation  
and measures of success 
Ø An unknown distribution D generates 
    instances (x1, x2, …) independently. 

Ø An unknown function f: X è Y labels them. 

Ø The error of a classifier h is the probability 
(over D) that it will fail, Prx~D [h(x) ≠ f(x)] 

 
 
 



 Empirical Risk Minimization (ERM) 

Given a labeled sample  
                  S=((x1,y1), …(xm, ym)) 
   and some candidate classifier h, 
Define the empirical error of h as  
   LS(h) =|{i : h(xi) ≠ f(xi)}|/m 
(the proportion of sample points on which 
h errs) 
ERM – find h the minimizes LS(h). 



Not so simple – Risk of Overfitting 

l Given any training sample  
       S=((x1,y1), …(xm, ym)) 
l Let, 
         h(x)=yi if x=xi for some i ≤ m 

             and h(x)=0 for any other x. 
l Clearly LS(h) =0. 
l  It is also pretty obvious that in many 

cases this h has high error probability. 



 The missing component –  

l Leaners need of some prior knowledge 



How is learning handled in nature (1)? 
Bait Shyness in rats 



Successful animal learning 

  The Bait Shyness phenomena in rats: 
   When rats encounter poisoned food, 

they learn very fast the causal 
relationship between the taste and smell 
of the food and sickness that follows a 
few hours later. 



How is learning handled in nature (2)?
Pigeon Superstition (Skinner 1948) 



What is the source of difference? 

l  In what way are the rats “smarter” than 
the pigeons? 



Bait shyness and inductive bias 

    Garcia et al (1989) : 
  Replace the stimulus associated with the 

poisonous baits  by making a sound when 
they taste it (rather than having a slightly 
different taste or smell).  

 
How well do the rats pick the relation of 

sickness to bait in this experiment? 
   



Surprisingly (?) 

 The rats fail to detect the 
association! 
 
They do not refrain from eating 
when the same warning sound 
occurs again.  



What about “improved rats”? 

l Why aren’t there rats that will also pay 
attention to the noise when they are 
eating? 

l And to light, and temperature, time-of-
day, and so on? 

l Wouldn’t such “improved rats” survive 
better? 



Second thoughts about our  
improved rats 

l But then every tasting of food will be an 
“outlier” in some respect…. 

l   How will they know which tasting should 
be blamed for the sickness? 



The Basic No Free Lunch  principle 

 
 
No learning is possible without 

applying prior knowledge. 
 
(we will phrase and prove a precise 

statement later) 



First type of prior knowledge – 
Hypothesis classes 

l A hypothesis class H is a set of 
hypotheses. 

l   We re-define the ERM rule by searching 
only inside such a prescribed H. 

l ERMH(S) picks a classifier h in H that 
minimizes the empirical error over 
members of H 



Our first theorem  
Theorem: (Guaranteed success for ERMH) 
   

Let H be a finite class, and assume further 
that the unknown labeling rule, f, is a 
member of H. 
Then for every ε, δ >0,  

if m>(log(|H|) + log(1/δ))/ ε, 
With probability > 1- δ (over the choice of S) 
any ERMH(S) hypothesis has error below ε. 



Proof 
All we need to apply are two basic 
probability rules: 
1)  The probability of the AND of 

independent events is the product of 
their probabilities. 

2)  The “unions bound” – the probability of 
the OR of any events is at most sum of 
their probabilities. 



Not only finite classes 

l The same holds, for example, for  the 
class H of all intervals over the real line. 

(we will see a proof of that in the 
afternoon)�



A formal definition of learnability 

   H is PAC Learnable  if  
   there is a function mH : (0,1)2 è N  
   and a learning algorithm A,  
   such that for every distribution D over X,  
   every ε, δ >0, and every f in H,  
   for samples S of size m>mH(ε, δ)  
   generated by D and labeled by f,  

                  Pr[LD(A(S)) > ε] < δ 



More realistic setups 

Relaxing the realizability assumption. 
We wish to model scenarios in which the 
learner does not have a priori knowledge 
of a class to which the true classifier 
belongs. 
 
Furthermore, often the labels are not fully 
determined by the instance attributes. 



General loss functions 

 Our learning formalism applies well 
beyond counting classification errors. 
Let Z be any domain set. 
and l : H x Z è R quantify the loss of a 
“model” h on an instance z. 
Given a probability distribution P over Z 
Let LP(h) = Exz~P(l (h, z)) 
 



Examples of such losses 

Ø The 0-1 classification loss: 
l (h, (x,y))= 0 if h(x)=y and 1 otherwise. 

 
Ø Regression square  loss: 
   l (h, (x,y)) = (y-h(x))2 

Ø K-means clustering loss: 
    l (c1, …ck), z)= mini (ci –z)2 



Agnostic PAC learnability 

 H is Agnostic PAC Learnable  if  
   there is a function mH : (0,1)2 è N  
   and a learning algorithm A,  
   such that for every distribution P over XxY  
   and every ε, δ >0,  
   for samples S of size m>mH(ε, δ)  
   generated by P,  

     Pr[LP(A(S)) > Inf[h in H] LP(h) + ε] < δ 



Note the different philosophy 

Rather than making an “absolute” 
statement that is guaranteed to hold only 
when certain assumptions are met (like 
realizability), 

   provide a weaker, relative guarantee, 
that is guaranteed to always hold. 



General Empirical loss 

l For any loss l : H x Z è R as above 
   and a finite domain subset S, define the  
   empirical loss w.r.t. S=(z1, …zm) as  
   LS(h) = Σi   l (h, zi)/m 
 



Representative samples 

We say that a sample S is  
ε- representative of a class H w.r.t. a 
distribution P  
 
If for every h in H 
     
         | LS(h) – LP(h)|< ε 



Representative samples and ERM 

Why care about representative samples? 

If S is an ε- representative of a class H 
w.r.t. a distribution P  
   then for every ERMH(S) classifier h, 
      LP(h) < Inf[h’ in H] LP(h’) + 2ε   



 Uniform Convergence Property 

l We say that a class H has the 
 Uniform Convergence Property 
 if there is a function mH : (0,1)2 è N  
 such that for every distribution P over Z  
   and every ε, δ >0,  
   with probability> (1-δ), samples S of size  
   m>mH(ε, δ) generated by P, are  
ε- representative of H w.r.t.  P  
 
 
 



Learning via Uniform Convergence 

Corollary: 

 If a class H has the uniform convergence 
property then it is agnostic PAC learnable, 
and any ERM algorithm is a successful 
PAC learner for it. 



Finite classes enjoy Unif. Conv. 
l Theorem: If H is finite, then it has the 

uniform convergence property. 

l Proof: Hoeffding implies Unif Conv for 
single h’s and then the Union Bound 
handles the full class. 

l Corollary: Finite classes are PAC learnable 
and ERM suffices for that. 



Do we need the restriction to an H? 

l Note that agnostic PAC learning requires  
   only relative-to-H accuracy 
   LD(A(S)) < Inf[h in H] LD(h) + ε 
 

   Why restrict to some H?  
   Can we have a Universal Learner, 

capable of competing with every function? 



For the proof we need 

The Hoeffding inequality: 
Let θ1…….θm be random variables over 
[0,1] with a common expectation µ, then 
 

Pr[ |1/m Σi=1…mθi – µ| > ε] < 2 exp(-2mε2) 
 
We will apply it for θi = l (h, zi) 



The No-Free-Lunch theorem 

 Let A be any learning algorithm over some 
domain set X. 
Let m be < |X|/2, then  
there is a distribution P over X x {0,1} 
and f:X è{0,1} such that  
1)  LP(f)=0 and  
2)  for P- samples S of size m 
 with probability > 1/7,   LP(A(S))> 1/8 



The Bias-Complexity tradeoff 

Corollary: Any class of infinite VC 
dimension is not PAC learnable – we 
cannot learn w.r.t. the universal H. 
 
For every learner LP(A(S)) can be viewed 
as the sum of  
the Approximation error Inf[h in H] LD(h)  
and the Generalization error – the ε 
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