Deep Learning Unsupervised Learning

Russ Salakhutdinov

Machine Learning Department Carnegie Mellon University Canadian Institute for Advanced Research

Carnegie Mellon University

Tutorial Roadmap

Part 1: Supervised (Discriminative) Learning: Deep Networks

Part 2: Unsupervised Learning: Deep Generative Models

Part 3: Open Research Questions

Explicit Density p(x)

Implicit Density

Tutorial Roadmap

- Basic Building Blocks:
 - Sparse Coding
 - Autoencoders
- Deep Generative Models
 - Restricted Boltzmann Machines
 - Deep Boltzmann Machines
 - Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Tutorial Roadmap

- Basic Building Blocks:
 - Sparse Coding
 - Autoencoders
- Deep Generative Models
 - Restricted Boltzmann Machines
 - Deep Boltzmann Machines
 - Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Sparse Coding

• Sparse coding (Olshausen & Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).

• Objective: Given a set of input data vectors $\{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N\}$, learn a dictionary of bases $\{\phi_1, \phi_2, ..., \phi_K\}$, such that:

Sparse: mostly zeros

• Each data vector is represented as a sparse linear combination of bases.

Sparse Coding

[0, 0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation)

Slide Credit: Honglak Lee

Sparse Coding: Training

- Input image patches: $\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N \in \mathbb{R}^D$
- Learn dictionary of bases: $oldsymbol{\phi}_1, oldsymbol{\phi}_2, ..., oldsymbol{\phi}_K \in \mathbb{R}^D$

- Alternating Optimization:
 - 1. Fix dictionary of bases $\phi_1, \phi_2, ..., \phi_K$ and solve for activations **a** (a standard Lasso problem).
 - 2. Fix activations **a**, optimize the dictionary of bases (convex QP problem).

Sparse Coding: Testing Time

- Input: a new image patch x* , and K learned bases $\phi_1, \phi_2, ..., \phi_K$
- Output: sparse representation **a** of an image patch x*.

$$\min_{\mathbf{a}} \left\| \mathbf{x}^* - \sum_{k=1}^K a_k \boldsymbol{\phi}_k \right\|_2^2 + \lambda \sum_{k=1}^K |a_k|$$

[0, 0, ... 0.8, ..., 0.3, ..., 0.5, ...] = coefficients (feature representation)

Image Classification

Evaluated on Caltech101 object category dataset.

Sparse Coding	47%	
PCA	37%	
Baseline (Fei-Fei et al., 2004)	16%	
Algorithm	Accuracy	

Lee, Battle, Raina, Ng, 2006

Slide Credit: Honglak Lee

Interpreting Sparse Coding

- Sparse, over-complete representation a.
- Encoding **a** = f(**x**) is implicit and nonlinear function of **x**.
- Reconstruction (or decoding) **x'** = g(**a**) is linear and explicit.

- Details of what goes insider the encoder and decoder matter!
- Need constraints to avoid learning an identity.

 An autoencoder with D inputs, D outputs, and K hidden units,

• Given an input x, its reconstruction is given by:

• An autoencoder with D inputs, D outputs, and K hidden units, with K<D.

• We can determine the network parameters W and D by minimizing the reconstruction error:

$$E(W,D) = rac{1}{2} \sum_{n=1}^{N} ||y(\mathbf{x}_n, W, D) - \mathbf{x}_n||^2.$$

• If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared error.

• The K hidden units will span the same space as the first k principal components. The weight vectors may not be orthogonal.

• With nonlinear hidden units, we have a nonlinear generalization of PCA.

Another Autoencoder Model

- Need additional constraints to avoid learning an identity.
- Relates to Restricted Boltzmann Machines (later).

Predictive Sparse Decomposition

Stacked Autoencoders

Stacked Autoencoders

Stacked Autoencoders

Deep Autoencoders

Deep Autoencoders

 25x25 – 2000 – 1000 – 500 – 30 autoencoder to extract 30-D realvalued codes for Olivetti face patches.

- **Top**: Random samples from the test dataset.
- Middle: Reconstructions by the 30-dimensional deep autoencoder.
- **Bottom**: Reconstructions by the 30-dimentinoal PCA.

Information Retrieval

- The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into **402,207 training** and **402,207 test)**.
- "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words.

Tutorial Roadmap

- Basic Building Blocks:
 - Sparse Coding
 - Autoencoders
- Deep Generative Models
 - Restricted Boltzmann Machines
 - Deep Boltzmann Machines
 - Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Fully Observed Models

• Explicitly model conditional probabilities:

$$p_{\text{model}}(\boldsymbol{x}) = p_{\text{model}}(x_1) \prod_{i=2}^{n} p_{\text{model}}(x_i \mid x_1, \dots, x_{i-1})$$

Each conditional can be a complicated neural network

- A number of successful models, including
 - NADE, RNADE (Larochelle, et.al.
 20011)
 - Pixel CNN (van den Ord et. al. 2016)
 - > Pixel RNN (van den Ord et. al. 2016)

Pixel CNN

Restricted Boltzmann Machines

RBM is a Markov Random Field with:

- Stochastic binary visible variables $\mathbf{v} \in \{0, 1\}^D$.
- Stochastic binary hidden variables $\mathbf{h} \in \{0, 1\}^F$.
- Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.

Learning Features

RBMs for Real-valued & Count Data

4 million **unlabelled** images

Learned features (out of 10,000)

REUTERS Associated Press

Reuters dataset: 804,414 unlabeled newswire stories **Bag-of-Words**

Learned features: ``topics''

russian	clinton	computer	trade	stock
russia	house	system	country	wall
moscow	president	product	import	street
yeltsin	bill	software	world	point
soviet	congress	develop	economy	dow

Collaborative Filtering

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ijk} W_{ij}^{k} v_{i}^{k} h_{j} + \sum_{ik} b_{i}^{k} v_{i}^{k} + \sum_{j} a_{j} h_{j}\right)$$

Binary hidden: user preferences

Multinomial visible: user ratings

Netflix dataset: 480,189 users 17,770 movies Over 100 million ratings

NETFLIX

Learned features: ``genre''

Fahrenheit 9/11 Bowling for Columbine The People vs. Larry Flynt Canadian Bacon La Dolce Vita Independence Day The Day After Tomorrow Con Air Men in Black II Men in Black

Friday the 13th The Texas Chainsaw Massacre Children of the Corn Child's Play The Return of Michael Myers Scary Movie Naked Gun Hot Shots! American Pie Police Academy

State-of-the-art performance on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)

Different Data Modalities

• Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.

• It is easy to infer the states of the hidden variables:

$$P_{\theta}(\mathbf{h}|\mathbf{v}) = \prod_{j=1}^{F} P_{\theta}(h_j|\mathbf{v}) = \prod_{j=1}^{F} \frac{1}{1 + \exp(-a_j - \sum_{i=1}^{D} W_{ij}v_i)}$$

Product of Experts

The joint distribution is given by:

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j\right)$$

Marginalizing over hidden variables:

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp(b_{i}v_{i}) \prod_{j} \left(1 + \exp(a_{j} + \sum_{i} W_{ij}v_{i}) \right)$$
government | clinton | bribery | mafia | stock | ...

Topics "government", "corruption" and "mafia" can combine to give very high probability to a word "Silvio Berlusconi".

Experts

Product of Experts

The joint distribution is given by:

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ij} W_{ij} v_i h_j + \sum_i b_i v_i + \sum_j a_j h_j\right)$$

Deep Boltzmann Machines

Deep Boltzmann Machines

Learn simpler representations, then compose more complex ones

Model Formulation

$$P_{\theta}(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)} + \mathbf{h}^{(1)}^{\top} W^{(2)} \mathbf{h}^{(2)} + \mathbf{h}^{(2)}^{\top} W^{(3)} \mathbf{h}^{(3)}\right]$$

Input

Same as RBMs

 $\theta = \{W^1, W^2, W^3\}$ model parameters

- Dependencies between hidden variables.
- All connections are undirected.
- Bottom-up and Top-down:

$$P(h_j^2 = 1 | \mathbf{h}^1, \mathbf{h}^3) = \sigma \left(\sum_k W_{kj}^3 h_k^3 + \sum_m W_{mj}^2 h_m^1 \right)$$

Top-down Bottom-up

 Hidden variables are dependent even when conditioned on the input.
Approximate Learning

 $P_{\theta}(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)} + \mathbf{h}^{(1)}^{\top} W^{(2)} \mathbf{h}^{(2)} + \mathbf{h}^{(2)}^{\top} W^{(3)} \mathbf{h}^{(3)}\right]$

(Approximate) Maximum Likelihood:

$$\frac{\partial \log P_{\theta}(\mathbf{v})}{\partial W^{1}} = \mathbb{E}_{P_{data}}[\mathbf{vh^{1}}^{\top}] - \mathbb{E}_{P_{\theta}}[\mathbf{vh^{1}}^{\top}]$$

• Both expectations are intractable!

$$P_{data}(\mathbf{v}, \mathbf{h^1}) = P_{\theta}(\mathbf{h^1}|\mathbf{v}) P_{data}(\mathbf{v})$$

 \mathbf{W}^3

 \mathbf{W}^2

 \mathbf{W}^1

$$P_{data}(\mathbf{v}) = \frac{1}{N} \sum_{n=1} \delta(\mathbf{v} - \mathbf{v_n})$$

 \mathbf{h}^3

 \mathbf{h}^2

 \mathbf{h}^1

 \mathbf{V}

Not factorial any more!

Approximate Learning

 $P_{\theta}(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)} + \mathbf{h}^{(1)^{\top}} W^{(2)} \mathbf{h}^{(2)} + \mathbf{h}^{(2)^{\top}} W^{(3)} \mathbf{h}^{(3)}\right]$

Approximate Learning

 $P_{\theta}(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}) = \frac{1}{\mathcal{Z}(\theta)} \exp \left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)} + \mathbf{h}^{(1)^{\top}} W^{(2)} \mathbf{h}^{(2)} + \mathbf{h}^{(2)^{\top}} W^{(3)} \mathbf{h}^{(3)} \right]$

 \mathbf{h}^3

 \mathbf{h}^2

 \mathbf{h}^1

 \mathbf{V}

(Approximate) Maximum Likelihood:

Handwritten Characters

Handwritten Characters

Handwritten Characters

Simulated

Real Data

Handwritten Characters

Real Data

Simulated

Handwritten Characters

Handwriting Recognition

MNIST Dataset 60,000 examples of 10 digits

Learning Algorithm	Error
Logistic regression	12.0%
K-NN	3.09%
Neural Net (Platt 2005)	1.53%
SVM (Decoste et.al. 2002)	1.40%
Deep Autoencoder (Bengio et. al. 2007)	1.40%
Deep Belief Net (Hinton et. al. 2006)	1.20%
DBM	0.95%

Optical Character Recognition 42,152 examples of 26 English letters

Learning Algorithm	Error
Logistic regression	22.14%
K-NN	18.92%
Neural Net	14.62%
SVM (Larochelle et.al. 2009)	9.70%
Deep Autoencoder (Bengio et. al. 2007)	10.05%
Deep Belief Net (Larochelle et. al. 2009)	9.68%
DBM	8.40%

Permutation-invariant version.

3-D object Recognition

NORB Dataset: 24,000 examples

Learning Algorithm	Error
Logistic regression	22.5%
K-NN (LeCun 2004)	18.92%
SVM (Bengio & LeCun 2007)	11.6%
Deep Belief Net (Nair & Hinton 2009)	9.0%
DBM	7.2%

Pattern Completion

Data – Collection of Modalities

• Multimedia content on the web image + text + audio.

Challenges - I

Challenges - II

Image

Text

pentax, k10d, pentaxda50200, kangarooisland, sa, australiansealion

mickikrimmel, mickipedia, headshot

< no text>

unseulpixel, naturey

Noisy and missing data

Challenges - II

Image

Text

pentax, k10d, pentaxda50200, kangarooisland, sa, australiansealion

mickikrimmel, mickipedia, headshot

< no text>

Text generated by the model

beach, sea, surf, strand, shore, wave, seascape, sand, ocean, waves

portrait, girl, woman, lady, blonde, pretty, gorgeous, expression, model

night, notte, traffic, light, lights, parking, darkness, lowlight, nacht, glow

fall, autumn, trees, leaves, foliage, forest, woods, branches, path

Multimodal DBM

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)

Multimodal DBM

Text Generated from Images

Given

Generated

dog, cat, pet, kitten, puppy, ginger, tongue, kitty, dogs, furry

Given

Generated

insect, butterfly, insects, bug, butterflies, lepidoptera

sea, france, boat, mer, beach, river, bretagne, plage, brittany

graffiti, streetart, stencil, sticker, urbanart, graff, sanfrancisco

portrait, child, kid, ritratto, kids, children, boy, cute, boys, italy

canada, nature, sunrise, ontario, fog, mist, bc, morning

Generating Text from Images

Text Generated from Images

Given

Generated

portrait, women, army, soldier, mother, postcard, soldiers

obama, barackobama, election, politics, president, hope, change, sanfrancisco, convention, rally

water, glass, beer, bottle, drink, wine, bubbles, splash, drops, drop

Images from Text

MIR-Flickr Dataset

• 1 million images along with user-assigned tags.

sculpture, beauty,

stone

d80

nikon, abigfave, goldstaraward, d80, nikond80

food, cupcake, vegan

anawesomeshot, nikon, green, light, theperfectphotographer, flash, damniwishidtakenthat, spiritofphotography

photoshop, apple, d70

white, yellow, abstract, lines, bus, graphic

sky, geotagged, reflection, cielo, bilbao, reflejo

Huiskes et. al.

Results

• Logistic regression on top-level representation.

Helmholtz Machines

• Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

- Kingma & Welling, 2014
- Rezende, Mohamed, Daan, 2014
- Mnih & Gregor, 2014
- Bornschein & Bengio, 2015
- Tang & Salakhutdinov, 2013

Helmholtz Machines vs. DBMs

Helmholtz Machine

Deep Boltzmann Machine

Variational Autoencoders (VAEs)

• The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{h}^{1},...,\mathbf{h}^{L}} p(\mathbf{h}^{L}|\boldsymbol{\theta})p(\mathbf{h}^{L-1}|\mathbf{h}^{L},\boldsymbol{\theta}) \cdots p(\mathbf{x}|\mathbf{h}^{1},\boldsymbol{\theta})$$
Each term may denote a complicated nonlinear relationship
$$P(\mathbf{h}^{3}) \xrightarrow{P(\mathbf{h}^{2}|\mathbf{h}^{3})} P(\mathbf{h}^{2}|\mathbf{h}^{3})$$

$$P(\mathbf{h}^{2}|\mathbf{h}^{3})$$

$$P(\mathbf{h}^{1}|\mathbf{h}^{2})$$

$$P(\mathbf{h}^{1}|\mathbf{h}^{2})$$

$$P(\mathbf{x}|\mathbf{h}^{1})$$

for

VAE: Example

• The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{h}^1, \mathbf{h}^2} p(\mathbf{h}^2|\boldsymbol{\theta}) p(\mathbf{h}^1|\mathbf{h}^2, \boldsymbol{\theta}) p(\mathbf{x}|\mathbf{h}^1, \boldsymbol{\theta})$$

- This term denotes a one-layer neural net.
 - heta denotes parameters of VAE.
 - *L* is the number of **stochastic** layers.
 - Sampling and probability evaluation is tractable for each $p(\mathbf{h}^{\ell}|\mathbf{h}^{\ell+1})$.

Variational Bound

• The VAE is trained to maximize the variational lower bound:

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] \ge \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] = \mathcal{L}(\mathbf{x})$$
$$\mathcal{L}(\mathbf{x}) = \log p(\mathbf{x}) - \mathcal{D}_{\mathrm{KL}} \left(q(\mathbf{h}|\mathbf{x}) \right) || p(\mathbf{h}|\mathbf{x}) \right)$$

• Trading off the data log-likelihood and the KL divergence from the true posterior.

- Hard to optimize the variational bound with respect to the recognition network (high-variance).
- Key idea of Kingma and Welling is to use reparameterization trick.

Reparameterization Trick

• Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1},\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1},\boldsymbol{\theta}),\boldsymbol{\Sigma}(\mathbf{h}^{\ell-1},\boldsymbol{\theta}))$$

with mean and covariance computed from the state of the hidden units at the previous layer.

• Alternatively, we can express this in term of auxiliary variable: $\epsilon^{\ell} \sim \mathcal{N}(\mathbf{0}, I)$ $\mathbf{h}^{\ell} \left(\epsilon^{\ell}, \mathbf{h}^{\ell-1}, \boldsymbol{\theta} \right) = \Sigma(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})^{1/2} \epsilon^{\ell} + \mu(\mathbf{h}^{\ell-1}, \boldsymbol{\theta})$

Reparameterization Trick

• Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1},\boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1},\boldsymbol{\theta}),\boldsymbol{\Sigma}(\mathbf{h}^{\ell-1},\boldsymbol{\theta}))$$

• Or

$$egin{aligned} & m{\epsilon}^\ell \sim \mathcal{N}(m{0},m{I}) \ & \mathbf{h}^\ell \left(m{\epsilon}^\ell, \mathbf{h}^{\ell-1}, m{ heta}
ight) = \mathbf{\Sigma}(\mathbf{h}^{\ell-1},m{ heta})^{1/2} m{\epsilon}^\ell + m{\mu}(\mathbf{h}^{\ell-1},m{ heta}) \end{aligned}$$

• The recognition distribution $q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1}, \boldsymbol{\theta})$ can be expressed in terms of a deterministic mapping:

$$\mathbf{h} \left(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta} \right), \quad \text{with} \quad \boldsymbol{\epsilon} = \left(\boldsymbol{\epsilon}^1, \dots, \boldsymbol{\epsilon}^L \right)$$

Deterministic Encoder Distribution of ϵ does not depend on θ

Computing the Gradients

• The gradient w.r.t the parameters: both recognition and generative:

Autoencoder $\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h} | \mathbf{x}, \boldsymbol{\theta})} \left| \log \frac{p(\mathbf{x}, \mathbf{h} | \boldsymbol{\theta})}{q(\mathbf{h} | \mathbf{x} | \boldsymbol{\theta})} \right|$ $= \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{\epsilon}^{1},...,\boldsymbol{\epsilon}^{L} \sim \mathcal{N}(\mathbf{0},\boldsymbol{I})} \left| \log \frac{p(\mathbf{x},\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\mathbf{x},\boldsymbol{\theta})} \right|$ $= \mathbb{E}_{\boldsymbol{\epsilon}^{1},...,\boldsymbol{\epsilon}^{L} \sim \mathcal{N}(\mathbf{0},\boldsymbol{I})} \left| \nabla_{\boldsymbol{\theta}} \log \frac{p(\mathbf{x},\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\mathbf{x},\boldsymbol{\theta})} \right|$ Gradients can be

computed by backprop

The mapping **h** is a deterministic neural net for fixed $\boldsymbol{\epsilon}$.

Importance Weighted Autoencoders

• Can improve VAE by using following k-sample importance weighting of the log-likelihood:

from the recognition network.

Input data

Burda, Grosse, Salakhutdinov, 2015

Generating Images from Captions

- Generative Model: Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.
- Recognition Model: Deterministic Recurrent Network.

Gregor et. al. 2015

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

Motivating Example

• Can we generate images from natural language descriptions?

A **stop sign** is flying in blue skies

A **herd of elephants** is flying in blue skies

A **pale yellow school bus** is flying in blue skies

A large commercial airplane is flying in blue skies

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

Flipping Colors

A **yellow school bus** parked in the parking lot

A **red school bus** parked in the parking lot

A green school bus parked in the parking lot

A **blue school bus** parked in the parking lot

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)

Novel Scene Compositions

A toilet seat sits open in the bathroom

A toilet seat sits open in the grass field

Ask Google?

(Some) Open Problems

- Reasoning, Attention, and Memory
- Natural Language Understanding
- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

(Some) Open Problems

• Reasoning, Attention, and Memory

• Natural Language Understanding

- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

Who-Did-What Dataset

- Document: "…arrested Illinois governor Rod Blagojevich and his chief of staff John Harris on corruption charges … included
 Blogojevich allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama…"
- **Query**: President-elect Barack Obama said Tuesday he was not aware of alleged corruption by **X** who was arrested on charges of trying to sell Obama's senate seat.
- Answer: Rod Blagojevich

Recurrent Neural Network

 $\mathbf{h}_{\mathbf{t}} = \phi \big(\mathbf{U}\mathbf{h}_{\mathbf{t}-1} + \mathbf{W}\mathbf{x}_{\mathbf{t}} + \mathbf{b} \big)$

Nonlinearity

Hidden State at previous time step

Input at time step t

Gated Attention Mechanism

• Use Recurrent Neural Networks (RNNs) to encode a document and a query:

 Use element-wise multiplication to model the interactions between document and query:

$$x_i = d_i \odot q_i$$

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)

Multi-hop Architecture

• Reasoning requires several passes over the context

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)

Analysis of Attention

- **Context**: "...arrested Illinois governor **Rod Blagojevich** and his chief of staff John Harris on corruption charges ... included **Blogojevich** allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama..."
- **Query**: "President-elect Barack Obama said Tuesday he was not aware of alleged corruption by **X** who was arrested on charges of trying to sell Obama's senate seat."
- Answer: Rod Blagojevich

Analysis of Attention

- **Context**: "...arrested Illinois governor **Rod Blagojevich** and his chief of staff John Harris on corruption charges ... included **Blogojevich** allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama..."
- Query: "President-elect Barack Obama said Tuesday he was not aware of alleged corruption by X who was arrested on charges of trying to sell Obama's senate seat."
- Answer: Rod Blagojevich

Code + Data: https://github.com/bdhingra/ga-reader

Incorporating Prior Knowledge

Dhingra, Yang, Cohen, Salakhutdinov 2017

Incorporating Prior Knowledge

Dhingra, Yang, Cohen, Salakhutdinov 2017

Incorporating Prior Knowledge

Neural Story Telling

Sample from the Generative Model (recurrent neural network):

She was in love with him for the first time in months, so she had no intention of escaping.

The sun had risen from the ocean, making her feel more alive than normal. She is beautiful, but the truth is that I do not know what to do. The sun was just starting to fade away, leaving people scattered around the Atlantic Ocean.

(Some) Open Problems

- Reasoning, Attention, and Memory
- Natural Language Understanding
- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

Learning Behaviors

Learning to map sequences of observations to actions, for a particular goal

Reinforcement Learning with Memory

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014

Reinforcement Learning with Memory

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014

Deep RL with Memory

Parisotto, Salakhutdinov, 2017

Random Maze with Indicator

- Indicator: Either blue or pink
 - If blue, find the green blockIf pink, find the red block
- Negative reward if agent does not find correct block in N steps or goes to wrong block.

Parisotto, Salakhutdinov, 2017

Random Maze with Indicator

Parisotto, Salakhutdinov, 2017

Random Maze with Indicator

Building Intelligent Agents

Building Intelligent Agents

Summary

• Efficient learning algorithms for Deep Unsupervised Models

- Deep models improve the current state-of-the art in many application domains:
 - Object recognition and detection, text and image retrieval, handwritten character and speech recognition, and others.

Thank you