Deep Learning
Unsupervised Learning

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Canadian Institute for Advanced Research

(Carnegie
Mellon

University




Tutorial Roadmap

Part 1: Supervised (Discriminative) Learning: Deep
Networks

Part 2: Unsupervised Learning: Deep Generative
Models

Part 3: Open Research Questions



[ Unsupervised Learning J
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Non-probabilistic Models

> Sparse Coding
> Autoencoders

> Others (e.g. k-means)

Probabilistic (Generative)
Models

K> PixelRNN -

> Helmholtz Machines

\ J
@ \ / Non- N
Tractable Models Non-Tractable Mode-ls i > Generative Adversarial
> Fully observed > Boltzmann Machines Networks
. . 1
Belief Nets » Variational { | » Moment Matching
> NADE Autoencoders ‘ Networks
|
1
I

e e e

—————————————————————————————————————————————————————

K> Many others... /, \

/

Explicit Density p(x) Implicit Density



Tutorial Roadmap

e Basic Building Blocks:
> Sparse Coding

> Autoencoders

e Deep Generative Models

> Restricted Boltzmann Machines
> Deep Boltzmann Machines

» Helmholtz Machines / Variational Autoencoders

e Generative Adversarial Networks
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Sparse Coding

* Sparse coding (Olshausen & Field, 1996). Originally developed
to explain early visual processing in the brain (edge detection).

* Objective: Given a set of input data vectors {x1,xo,...,Xn },
learn a dictionary of bases {®;, @5, ..., ®x }, such that:

K

Xn = E ank¢ka
k=1 ‘\

Sparse: mostly zeros

* Each data vector is represented as a sparse linear combination
of bases.



Sparse Coding

Natural Images Learned bases: “Edges”

New example

g~ 08
X =08% ¢y T O03% Py F05x P,

0,0,..0.8,..,0.3, .., 0.5, ...] = coefficients (feature representation)

+0.5 * o

+ 0.3 %

Slide Credit: Honglak Lee



Sparse Coding: Training
* Input image patches: x;,Xo,....,Xy € RP

* Learn dictionary of bases: ¢, ¢, ..., ¢ € R”

2

K
min X, —Zankqbk +)\YS“ank’

n= k=1 n=1k=1

Reconstruction error Sparsity penalty

* Alternating Optimization:

1. Fix dictionary of bases ¢, ¢, ..., ¢, and solve for
activations a (a standard Lasso problem).
2. Fix activations a, optimize the dictionary of bases (convex

QP problem).



Sparse Coding: Testing Time

* Input: a new image patch x* , and K learned bases ¢, ¢, ..., o5
* Output: sparse representation a of an image patch x*.

a

K
min X*—E ai Py
k=1

E o - 0.3 E b o5+ [

2 K
+ )\Z |ak\
2 k=1

X* =08% ¢y *03% Py F05E P,

0,0,..0.8, ..,0.3, .., 0.5, ..] = coefficients (feature representation)



Image Classification
Evaluated on Caltech101 object category dataset.

Classification

Algorithm
(SVM)
Learned -
Input Image bases Features (coefficients) gy images, 101 classes
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Algorithm Accuracy
Baseline (Fei-Fei et al., 2004) 16%
PCA 37%
Sparse Coding 47%

Slide Credit: Honglak Lee Lee, Battle, Raina, Ng, 2006



Interpreting Sparse Coding

2

N K
min X, —Zank¢k +/\S‘Y\ank!
g k=1 n=1k=1
a Sparse features a
OOOO00OO0] O0000000)
@ “ta) E'anelgcrit ﬁ f(x) Inrgi::?;ar
[OOOOO] Decoding [OOOOO] encoding

* Sparse, over-complete representation a.
* Encoding a = f(x) is implicit and nonlinear function of x.

* Reconstruction (or decoding) x’ = g(a) is linear and explicit.



Autoencoder

Feature Representation

U

]

Feed-forward,
bottom-up

Feed-back, ™\ ~ ™
generative,
top-down Decoder Encoder
N J N J
[ Input Image

1

e Details of what goes insider the encoder and decoder matter!

e Need constraints to avoid learning an identity.



Autoencoder

Binary Features z

Decoder
filters D

Linear
function
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Autoencoder

[ Binary Features z ]  An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,
with K<D.
E Dz } { z=0(Wx) }
@ ﬁ * Given an input x, its
reconstruction is given by:

Input Image x

i(x, W, D) ZPM«ZWWJvFﬂWD

Decqger Encoder

D
=Y Djrze  zp=0 (Z szﬂfz)
k=1 i=1



Autoencoder

[ Binary Features z J * An autoencoder with D inputs,
@ ﬁ D outputs, and K hidden units,

with K<D.
E Dz } { z=0(Wx) }

U ]

Input Image x ]

e We can determine the network parameters W and D by
minimizing the reconstruction error:

E(W,D) = ZHy Xn, W, D) — x,||%.

n=1



Autoencoder

[ Linear Features z ] * If the hidden and output layers

@ ﬁ are linear, it will learn hidden units

that are a linear function of the data
and minimize the squared error.

Wz z=Wx
* The K hidden units will span the

@ ﬁ same space as the first k principal

] components. The weight vectors

Input Image x may not be orthogonal.

e \With nonlinear hidden units, we have a nonlinear
generalization of PCA.



Another Autoencoder Model

[ Binary Features z }

@ ﬁ Encoder

filters W.
T —
Decoder [ G(W Z) } {Z G(WX)} Sigmoid

filters D @ ﬁ function

[ Binary Input x }

* Need additional constraints to avoid learning an identity.

e Relates to Restricted Boltzmann Machines (later).



Predictive Sparse Decomposition

K Binary Features z }

{L1 Sparsity} @ ﬁ Encoder

filters W.
Decoder [ Dz } { £= G(WX) } Sigmoid

filters D @ ﬁ function

[ Real-valued Input x }

At training : Dz — x|I12 £ )\ Wx) — zl|2
ALlaining  min || Dz — x|[3 + Alzli + [lo(Wx) - 2

Decoder Encoder
Kavukcuoglu, Ranzato, Fergus, LeCun, 2009



Stacked Autoencoders

[ Class Labels J
m Z

[ Decoder } [ Encoder }
Ly O]

[ Features

m S
[ Sparsity } [ Decoder } [ Encoder }
r O]

[ Features

m Z

[ Sparsity } [ Decoder} [ Encoder }
v (]

[ Input x




Stacked Autoencoders

[ Class Labels ]
m Z

[ Decoder } [ Encoder }
Ly O]

[ Features

m 7S
[ Sparsity } [ Decoder } [ Encoder }
r ]

Y s

( Features
(Ef Greedy Layer-wise Learning.
S
P 7 T G T C - Y,

[ Input x




Stacked Autoencoders

[ Class Labels J

e Remove decoders and <>

use feed-forward part. [ Encoder }
L]

e Standard, or [ Features

convolutional neural A\

network architecture. [ Encoder }
L]

e Parameters can be [ Features

fine-tuned using N

backpropagation. [ Encoder }
L]

[ Input x




Deep Autoencoders

Decoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining Unrolling Fine-tuning



Deep Autoencoders

» 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract 30-D real-
valued codes for Olivetti face patches.

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.



Information Retrieval

European Community 2-D LSA space

Interbank Markets Monetary/Economic

Disasters and
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* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words.

(Hinton and Salakhutdinov, Science 2006)



Tutorial Roadmap

e Basic Building Blocks:
> Sparse Coding

> Autoencoders

e Deep Generative Models

> Restricted Boltzmann Machines
> Deep Boltzmann Machines

» Helmholtz Machines / Variational Autoencoders

e Generative Adversarial Networks



Fully Observed Models

* Explicitly model conditional probabilities:

n

pmodel(w) — pmodel(xl) Hpmodel(mi ’ L1y... 73373—1)

=2 \
Each conditional can be a
complicated neural network

* A number of successful models, including
.f“’:.}.‘d ngﬂ
o ¥ W)L

Pixel CNN

>  NADE, RNADE (Larochelle, et.al.
20011)

>  Pixel CNN (van den Ord et. al. 2016)

>  Pixel RNN (van den Ord et. al. 2016)




Restricted Boltzmann Machines

Graphical Models: Powerful
framework for representing

dependency structure bpgweq{) —W
’ Z

random variables.
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hidden variables Paijr-wise Unary

D
| Feature Detectors 4
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RBM is a Markov Random Field with:

* Stochastic binary visible variables v € {0,1}".

* Stochastic binary hidden variables h € {0,1}".

* Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.



Learning Features

Observed Data Learned W: “edges”
Subset of 25,000 characters Subset of 1000 features

Sparse
New Image: p( h? = 1jv) (h29 = 1fv) representations

E ()99><i+097><. 082><n

_ Logistic Function: Suitable for
1+eXp( Z)  modeling binary images



RBMs for Real-valued & Count Data

Learned features (out of 10,000)

4 million unlabelled images

REUTERS D
AP Associated Press Learned features: ““topics”
russian clinton computer trade stock
Reuters dataset: russia house system country wall
804,414 unlabeled => moscow | president | product import street
newswire stories yeltsin bill software world point
soviet congress develo econom dow
Bag-of-Words & P Y



Collaborative Filtering

1
Py(v,h) = Z(0) exp (ZWZ’;Uch + bevf + Zajhj)
ik J

ijk

Binary hidden: user preferences

Learned features: ‘genre”’

Fahrenheit 9/11 Independence Day
Bowling for Columbine The Day After Tomorrow
_ o _ The People vs. Larry Flynt Con Air
Multinomial visible: user ratings Canadian Bacon Men in Black Il
] La Dolce Vita Men in Black
Netflix dataset:
480,189 users |:> Friday the 13th Scary Movie
. The Texas Chainsaw Massacre Naked Gun
17’770 mo.vl.es . Children of the Corn Hot Shots!
Over 100 million ratings Child's Play American Pie
The Return of Michael Myers Police Academy

NIETIELLX
State-of-the-art performance
on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)



Different Data Modalities

* Binary/Gaussian/Softmax RBMs: All have binary hidden
variables but use them to model different kinds of data.

hidden variables h ‘OOOO’
N/ , \ . W Yy ¥
Binary o0 O T
@O O
ISESh
Real-valued 1-of-K «—D—

* It is easy to infer the states of the hidden variables:

F




The joint distribution is given by:
PQ(V, h) =

Product of Experts

1

Marginalizing over hidden variables:

Py(v) = Z Py(v,h) = % Hexp(bivi) H 6—1— exp(a; + Z Wijvi))

government
authority
power
empire
federation

clinton bribery
house corruption
president dishonesty
bill corrupt
congress fraud

Silvio Berlusconi

mafia
business
gang
mob
insider

Z(0) exp (Z Wijvih; + Z b;v; + Z a;h;)
ij p -

A Product c:‘ Experts

stock
wall
street
point
dow

n »n

Topics “government”, "corruption”
and “mafia” can combine to give very
high probability to a word “Silvio
Berlusconi”.



Product of Experts

The joint distribution is given by:

1
Py(v,h) = Z(0) exp ( g Wijvihj + E biv; + E ajh;)
ij i J

Marginalizing ¢

iduct of Experts

Fo (V) - Z Replicated /Vij vi)

)

N—

40+ Softmax 50-D
government | clint &\",
authority hou ¢ 30}
power pres '% LDA 50-D
empire bill 'O 20!
federation cony &’

10-
\ , ”corruption”

0.0010.006 0.051 0.4 16 64 256 100 Pne toBivevery
Recall (%) word “Silvio

D o——




Deep Boltzmann Machines

Low-level features:
Edges

®,

LS

VXNV
ﬁ}}g‘%@ Built from unlabeled inputs.

Ya’ ,‘,,A

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2012)



Deep Boltzmann Machines

Learn simpler representations,
then compose more complex ones

Higher-level features:
Combination of edges

e

> Low-level features:
Edges

!

7/1
SNV XV
"\ oNE
,’} "’0’\"0
ollolRe

Image

Built from unlabeled inputs.

Input: Pixels

(Salakhutdinov 2008, Salakhutdinov & Hinton 2009)



Model Formulation

1
Z(0)

Py(v,hD h® h®) = exp [vTW<1>h<1> L hO T WOR® L @ KRG

\ J
Y

Same as RBMs
0 = {W' W2 W3} model parameters

 Dependencies between hidden variables.
* All connections are undirected.

* Bottom-up and Top-down:

P(h? = 1|h', h?) = J(Z Wiihy + Z anjh}n)
k m

7 ™

Top-down Bottom-up

Input

* Hidden variables are dependent even when conditioned on
the input.



Approximate Learning

1
Z(0)

Py(v,hD h® h®) = exp [vTW<1>h<1> L hO T WOR® L @ KRG

(Approximate) Maximum Likelihood:

0log Py(v) T T
oW1 — Epdata [Vhl ] - EP@ [Vhl ]

* Both expectations are intractable!

§(V — Vn) Not factorial any more!




Py(v, h) h®), h(3)) _

O G

Approximate Learning

1
Z(0)

exp [VTw(l)h(l) + h(l)TW(2)h(2) 4 h(Q)TW(g)h(g)]

(Approximate) Maximum Likelihood:

0log Py(v)
oW1l

1T

= Ep,,,.[vh' |- E [h”]

ANAANRY

Data

\

§(V — Vn) Not factorial any more!



Approximate Learning

Py(v,h® h® h®) = _]

T WD L D) @1 L h@) ! 1GIRG)
exp |[v. W'"Vh'" 4+ h W' h'* + h Wh

Z(0)
(Approximate) Maximum Likelihood:
810g Pg A% T
8W1( ) — Epdata [Vhl ) EP@ [Vhl ]
Variational Stochastic
Inference Approximation
X (MCMC-based)
Pdata(va h ) :data (V)
N
Paata (V) = % 6(v — vn)\ Not factorial any more!

n=1



Good Generative Model?

Handwritten Characters



Good Generative Model?

Handwritten Characters

e ac elMan oo
CcEDO B BRERYHG ®
W bR D ETOA

(-

F 5
& %
DR
g F
& W
F 1



Good Generative Model?

Handwritten Characters

Simulated Real Data



Good Generative Model?

Handwritten Characters

Real Data Simulated



Good Generative Model?

Handwritten Characters

e ac elMan oo
CcEDO B BRERYHG ®
W bR D ETOA

(-

F 5
& %
DR
g F
& W
F 1



Handwriting Recognition

MNIST Dataset Optical Character Recognition
60,000 examples of 10 digits 42,152 examples of 26 English letters

Learning Algorithm Error Learning Algorithm Error
Logistic regression 12.0% Logistic regression 22.14%
K-NN 3.09% K-NN 18.92%
Neural Net (platt 2005) 1.53% Neural Net 14.62%
SVM (Decoste et.al. 2002) 1.40% SVM (Larochelle et.al. 2009) 9.70%
Deep Autoencoder 1.40% Deep Autoencoder 10.05%
(Bengio et. al. 2007) (Bengio et. al. 2007)

Deep Belief Net 1.20% Deep Belief Net 9.68%
(Hinton et. al. 2006) (Larochelle et. al. 2009)

DBM 0.95% DBM 8.40%

Permutation-invariant version.



3-D object Recognition

NORB Dataset: 24,000 examples

Pattern
Completion

Learning Algorithm Error '
Logistic regression 22.5%
K-NN (LeCun 2004) 18.92%
SVM (Bengio & LeCun 2007) 11.6%
Deep Belief Net (Nair & Hinton 9.0%
2009)

DBM 7.2%




Data — Collection of Modalities

* Multimedia content on the web -
image + text + audio.

* Product recommelrII!JchI(LrIOn YOU
Goug[e
SYSEEM S, 5_
== :ﬂomoblle
" — rlimtigneh

amazon pacificocean,

bakerbeach, :
seashore, ocean

Touch sensors 7~



Challenges - |

Text _ .

p . Very different input

sunset, pacific ocean, representations

baker beach, seashore,
. ocean ) * Images — real-valued, dense

ﬁ * Text — discrete, sparse

Sparse -

- Difficult to learn

cross-modal features
from low-level
representations.




Challenges - I

Text

pentax, k10d,

pentaxda50200, . . .
kangarooisland, sa, Noisy and missing data

australiansealion

mickikrimmel,
mickipedia,
headshot

< no text>

unseulpixel,
naturey




Challenges - I

Text Text generated by the model

pentax, k10d,
pentaxda50200,
kangarooisland, sa,
australiansealion

beach, sea, surf, strand,
shore, wave, seascape,
sand, ocean, waves

mickikrimmel, portrait, girl, woman, lady,
mickipedia, blonde, pretty, gorgeous,
headshot expression, model

night, notte, traffic, light,
< No text> lights, parking, darkness,

lowlight, nacht, glow
unseulpixel fall, autumn, trees, leaves,
naturey foliage, forest, woods,

branches, path




Multimodal DBM

h (OOO000000000000

Gaussian model
Replicated Softmax

Dense, real-valued OO000 % 8 8 Word
image features OO0000 % 8 8 counts
00000 © 9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Multimodal DBM

©O000000000000
h' ©O0000) (elelel0)0)0)

Gaussian model
Replicated Softmax

Dense, real-valued OO000 % 8 8 Word
image features OO0000 % 8 8 counts
00000 © 9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Multimodal DBM

> (OO000000000000
h? OO0000)
h' ©O0O000 (elelel0)0)0)

Gaussian model
Replicated Softmax

Dense, real-valued OO000 % 8 8 Word
image features OO0000 % 8 8 counts
00000 © 9O O
Vimage Viext

(Srivastava & Salakhutdinov, NIPS 2012, JMLR 2014)



Given

Text Generated from Images

Generated

dog, cat, pet, kitten,

puppy, ginger, tongue,
kitty, dogs, furry

sea, france, boat, mer,
beach, river, bretagne,
plage, brittany

portrait, child, kid,
ritratto, kids, children,
boy, cute, boys, italy

Given

Generated

insect, butterfly, insects,
bug, butterflies,
lepidoptera

graffiti, streetart, stencil,
sticker, urbanart, graff,
sanfrancisco

canada, nature,
sunrise, ontario, fog,
mist, bc, morning



Generating Text from Images

Samples drawn after
every 50 steps of
Gibbs updates

l

Sample at step 0

wool wool

blume blume
closeup closeup
locomotive locomotive
sun sun

delete3 delete3
negative negative
sardegna sardegna
Sphotosaday Sphotosaday
nb nb

T ———



Text Generated from Images

Generated

portrait, women, army, soldier,
mother, postcard, soldiers

obama, barackobama, election,
politics, president, hope, change,
sanfrancisco, convention, rally

water, glass, beer, bottle,
drink, wine, bubbles, splash,
drops, drop




Retrieved

Images from Text

Given

water, red,
sunset

nature, flower,

red, green

blue, green,

colors

yellow,

chocolate, cake



MIR-Flickr Dataset

* 1 million images along with user-assigned tags.

ﬁ
nikon, abigfave,
goldstaraward, d80,
nikond80

sculpture, beauty, d80

stone vegan

-
7_*
anawesomeshot, nikon, green, light, white, yeII.ow, sky, ge_otagg.ed,
theperfectp.ho.tographer, ohotoshop, apple, d70 abstra.ct, lines, bus, rgﬂechon, C|.elo,
flash, damniwishidtakenthat, graphic bilbao, reflejo

spiritofphotography

Huiskes et. al.



Results

e Logistic regression on top-level representation.

» Multimodal Inputs Mean Average Precision
— /

Learning Algorithm (MAP ) Precision@50

Random 0\1_2/4 0.124

LDA [Huiskes et. al.] 0.492 0.754 | ) Labeled

SVM [Huiskes et. al.] 0.475 0.758 ii;(mples

DBM-Labelled 0.526 0.791 y

Deep Belief Net 0.638 0.867 + 1 Million

Autoencoder 0.638 0.875 unlabelled

DBM 0.641 0.873




Helmholtz Machines
* Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995

* Kingma & Welling, 2014
Generative

: 3
Approximate P(h”) Process * Rezende, Mohamed, Daan, 2014

Inference 13
211.3
Q(h3|h2)T w3 PR s Mnih & Gregor, 2014
h” * Bornschein & Bengi
1.2 gio, 2015
20y 1 W2 P(h |h )
i) hl * Tang & Salakhutdinov, 2013
W'l P(x/h')

Input data



Helmholtz Machines vs. DBMs

Helmholtz Machine Deep Boltzmann Machine
_ Generative
Approximate P(h?) Process
Inference b3
Q(h3|h2>T
h2(_)

Q<h2|h1>T
h!( }

Input data



Variational Autoencoders (VAEs)

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

L L—11,L 1
p(x|0) = p(h”[0)p(h™~"|h™,0)- - p(x|h",0)
hl,.. hL “~
; Generative Each t.erm may dejnote a | |
P(h?) Process complicated nonlinear relationship
P(h?h?) « 0 denotes parameters
of VAE.
P(h'[h?) e [ is the number of

stochastic layers.

 Sampling and probability
evaIu_ation is tractable for
each p(h*|htt!) .

P(x|h)

Input data



VAE: Example

* The VAE defines a generative process in terms of ancestral
sampling through a cascade of hidden stochastic layers:

p(x|0) = > p(h*6)p(h'|h? 6)p(x/h',6)

h'l h? S~
This term denotes a one-layer
neural net.
h?2 Stochastic Layer
¢ 9 denotes parameters

l Deterministic of VAE.
Layer

e [, isthe number of

hl Stochastic Layer stochastic layers.
l  Sampling and probability
X evaluation is tractable for

each p(h¢|h%t?).



Variational Bound
* The VAE is trained to maximize the variational lower bound:

X, h X, h
o8 ) = log x| 5| = B |08 | = 269

L(x) = log p(x) — Dkw (¢(h|x))||p(h|x))

* Trading off the data log-likelihood and the KL divergence
from the true posterior.

* Hard to optimize the variational bound
with respect to the recognition network
(high-variance).

* Key idea of Kingma and Welling is to use
reparameterization trick.

Input data



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h™", 0) = N(u(h™",6),2(h"",0))

with mean and covariance computed from the state of the hidden
units at the previous layer.

* Alternatively, we can express this in term of auxiliary variable:
€' ~ N(0,1)
hE (66, hﬁ—l’ H) _ E(he_l, 0)1/2€€ 4+ “(h€—1’ 9)



Reparameterization Trick

* Assume that the recognition distribution is Gaussian:

q(h’[h™", 0) = N(u(h™",6),2(h"",0))

* Or
€' ~ N(0,1)
he (667 he_lv 9) — Z(he_la 9)1/266 + u’(he_la 9)

* The recognition distribution g(h“/h*~1,0) can be expressed in
terms of a deterministic mapping:

h(e,x,0), with €= (e',...,€e")

(N J (N J
Y Y

Deterministic Distribution of €
Encoder does not depend on @




Computing the Gradients

* The gradient w.r.t the parameters: both recognition and

generative:

p(x, h\H)] Autoencoder

q(h|x,0) /

— VQEel,,..,eLNN(OaI) [log q(h(e, X, 9)‘X7 0)]
( )
( )

VolEn~qm|x,0) [108;

p
= et etonon [V" 108 h(e.x,0)[x. 0

—~ N

Gradients can be The mapping h is a deterministic
computed by backprop neural net for fixed €.



Importance Weighted Autoencoders

e Can improve VAE by using following k-sample importance
weighting of the log-likelihood:

1 < p(x, h;)
Li(x) = IE‘:hl,...,hwq(hIX) log A Z q(h;|x)
! i=1 B
— 1 k =
— Eh1,---,hkNQ(h|X) log E Z Wi
i i=1

\ unnormalized
importance weights

where hy,..., h; are sampled
from the recognition network.

Input data

Burda, Grosse, Salakhutdinov, 2015



Generating Images from Captions

FwrF
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* Generative Model: Stochastic Recurrent Network, chained
sequence of Variational Autoencoders, with a single stochastic layer.

* Recognition Model: Deterministic Recurrent Network.

Gregor et. al. 2015 (Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



Motivating Example

* Can we generate images from natural language descriptions?

A stop sign is flying in

blue skies

A herd of elephants is
flying in blue skies

A pale yellow school bus
is flying in blue skies

~-FH~
-

A large commercial airplane
is flying in blue skies

~E=~

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)



Flipping Colors

A yellow school bus parked A red school bus parked in
in the parking lot the parking lot

= e=L39
L= BT -m

A green school bus parked in A blue school bus parked in
the parking lot the parking lot

madE JENES
caETa =ZSEp

(Mansimov, Parisotto, Ba, Salakhutdinov, 2015)




Novel Scene Compositions

A toilet seat sits open in the A toilet seat sits open in the
bathroom grass field

SnER BEOD
ELWLIF OOnD

Ask Google?




(Some) Open Problems

Reasoning, Attention, and Memory
Natural Language Understanding
Deep Reinforcement Learning

Unsupervised Learning / Transfer Learning /
One-Shot Learning



(Some) Open Problems

Reasoning, Attention, and Memory
Natural Language Understanding
Deep Reinforcement Learning

Unsupervised Learning / Transfer Learning /
One-Shot Learning



Who-Did-What Dataset

* Document: “...arrested lllinois governor Rod Blagojevich and his
chief of staff John Harris on corruption charges ... included
Blogojevich allegedly conspiring to sell or trade the senate seat left
vacant by President-elect Barack Obama...”

* Query: President-elect Barack Obama said Tuesday he was not
aware of alleged corruption by X who was arrested on charges of
trying to sell Obama’s senate seat.

 Answer: Rod Blagojevich

Onishi, Wang, Bansal, Gimpel, McAllester, EMNLP, 2016



Recurrent Neural Network

ht — ¢(Uht_1 WXt b)

/NN

Nonlinearity Hidden State at Input at time
previous time step step t




Gated Attention Mechanism

e Use Recurrent Neural Networks (RNNs) to encode a document
and a query:

X visited prague —m

(query)

>  Use element-wise multiplication
to model the interactions
between document and query:

Obama

[xi:diQQi}

met

prague ———»

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)



Multi-hop Architecture

* Reasoning requires several passes over the context

(query)

Obama

met

P(Obamald, q)

(document) - K Layers >

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)



Analysis of Attention

 Context: “...arrested lllinois governor Rod Blagojevich and his chief of staff John
Harris on corruption charges ... included Blogojevich allegedly conspiring to sell
or trade the senate seat left vacant by President-elect Barack Obama...”

 Query: “President-elect Barack Obama said Tuesday he was not aware of
alleged corruption by X who was arrested on charges of trying to sell Obama’s
senate seat.”

 Answer: Rod Blagojevich

Layer 1 Layer 2
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Analysis of Attention

 Context: “...arrested lllinois governor Rod Blagojevich and his chief of staff John
Harris on corruption charges ... included Blogojevich allegedly conspiring to sell
or trade the senate seat left vacant by President-elect Barack Obama...”

 Query: “President-elect Barack Obama said Tuesday he was not aware of
alleged corruption by X who was arrested on charges of trying to sell Obama’s
senate seat.”

 Answer: Rod Blagojevich

Layer 1 Layer 2

Code + Data: https://github.com/bdhingra/ga-reader



Incorporating Prior Knowledge

Mary = got == the == football

g

\ She =—— went = to == the == kitchen

N
\ She == |eft === the == ball =——there
RNN

- Coreference
Hyper/Hyponymy

Dhingra, Yang, Cohen, Salakhutdinov 2017



Incorporating Prior Knowledge

Mary = got == the == football

g

\ She =—— went = to == the == kitchen

— -
\ She == |eft === the === ball == there

RNN
== Coreference
Hyper/Hyponymy
M
€1 ... €E
M
g . gt i+l
. l\\ — Z
Memory as Acyclic Graph : > S b hy
Encoding (MAGE)-RNN . .>I o .L
v, ] ——> L]

Dhingra, Yang, Cohen, Salakhutdinov 2017



Incorporating Prior Knowledge

AT m__———— -~
/ \
N\
/Her plain face broke into\ { Coreference
a huge smile when she Core NLP —>, Dependency Parses
saw Terry. “Terry!” she y
called out. She rushed
to meet him and they N

embraced. “Hon, | want
you to meet an old
friend, Owen McKenna.
Owen, please meet

Emily.” She gave me a
quick nod and turned WordNet | 5 Word relations
\

Qack to X j -

| T

[ Recurrent Neural Network ]

l

Text Representation

Freebase L5, Entity relations

— e o . o o e e e e = - P

~




Neural Story Telling

Sample from the Generative Model
(recurrent neural network):

She was in love with him for the first
time in months, so she had no
intention of escaping.

The sun had risen from the ocean, making her feel more alive than
normal. She is beautiful, but the truth is that | do not know what to

do. The sun was just starting to fade away, leaving people scattered
around the Atlantic Ocean.

(Kiros et al., NIPS 2015)



(Some) Open Problems

Reasoning, Attention, and Memory
Natural Language Understanding
Deep Reinforcement Learning

Unsupervised Learning / Transfer Learning /
One-Shot Learning



Learning Behaviors

Observation

Learning to map sequences of observations to actions,
for a particular goal



Reinforcement Learning with

\_

Learned
External

Memow4}

Memory

Observation / State

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014



Reinforcement Learning with

\_

Learned
External

Memow4}

Memory

>\M Y

\.

Learning 3-D game
without memory

Chaplot, Lample, AAAI 2017

J

Differentiable Neural Computer, Graves et al., Nature, 2016;
Neural Turing Machine, Graves et al., 2014






Deep RL with Memory

\_

Learned
Structured

Memow4}

Observation / State

Parisotto, Salakhutdinov, 2017



Random Maze with Indicator

* Indicator: Either blue or pink

> If blue, find the green block
> If pink, find the red block

* Negative reward if agent does not find correct
block in N steps or goes to wrong block.

Parisotto, Salakhutdinov, 2017



Random Maze with Indicator

Q.+ At+1
A A
AGEELEEELL > M, |S /A XX EEEEEEEE >
\\\\ t \ t+1 S .
~ ~
\\\ Write Write \\\
\\\ \\\
~
S a Read with “a
Attention
O¢ Ot4+1

Parisotto, Salakhutdinov, 2017



Random Maze with Indicator




Building Intelligent Agents

Learned
External
Memong

Knowledge
Base

\_

Observation / State



Building Intelligent Agents

Learned
External

Memor M/%@
\_ Y “\\\\\\\ &

™
Knowledge | _ -~
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Learning from Fewer
Examples, Fewer

Experiences
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Summary

» Efficient learning algorithms for Deep Unsupervised Models

Text & image retrieval / Image Tagging Learning a Category
Object recognition Hierarchy
4. % REUTERS H

=5 AP Associated Press

£Va
QN | oS

Object Detection

mosque, tower,

building, cathedral, Eﬂ

dome, castle

Multimodal Data

MM decoder
VY BN
ik e o e am sunset, pacific ocean, i
\t5iZ mer= === : beach,seashore :

 Deep models improve the current state-of-the art in many
application domains:

» Object recognition and detection, text and image retrieval, handwritten
character and speech recognition, and others.



Thank you



