Deep Learning Unsupervised Learning

Russ Salakhutdinov

Machine Learning Department
Carnegie Mellon University
Canadian Institute for Advanced Research

Tutorial Roadmap

Part 1: Supervised (Discriminative) Learning: Deep Networks

Part 2: Unsupervised Learning: Deep Generative Models

Part 3: Open Research Questions

Unsupervised Learning

Non-probabilistic Models
> Sparse Coding
> Autoencoders
> Others (e.g. k-means)

Tractable Models
> Fully observed
Belief Nets
> NADE
$>$ PixelRNN

Non-Tractable Models
> Boltzmann Machines
> Variational Autoencoders
> Helmholtz Machines
> Many others...
> Generative Adversarial Networks
> Moment Matching Networks

Tutorial Roadmap

- Basic Building Blocks:
> Sparse Coding
> Autoencoders
- Deep Generative Models
> Restricted Boltzmann Machines
> Deep Boltzmann Machines
> Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Tutorial Roadmap

- Basic Building Blocks:
> Sparse Coding
> Autoencoders
- Deep Generative Models
> Restricted Boltzmann Machines
> Deep Boltzmann Machines
> Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Sparse Coding

- Sparse coding (Olshausen \& Field, 1996). Originally developed to explain early visual processing in the brain (edge detection).
- Objective: Given a set of input data vectors $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{N}\right\}$, learn a dictionary of bases $\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{K}\right\}$, such that:

$$
\mathbf{x}_{n}=\sum_{k=1}^{K} a_{n k} \boldsymbol{\phi}_{k}
$$

- Each data vector is represented as a sparse linear combination of bases.

Sparse Coding

Natural Images
Learned bases: "Edges"

New example

$$
x \quad=0.8 * \phi_{36}+0.3 * \boldsymbol{\phi}_{42}+0.5 * \quad \boldsymbol{\phi}_{65}
$$

$[0,0, \ldots \mathbf{0 . 8}, \ldots, 0.3, \ldots, 0.5, \ldots]=$ coefficients (feature representation)
Slide Credit: Honglak Lee

Sparse Coding: Training

- Input image patches: $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{N} \in \mathbb{R}^{D}$
- Learn dictionary of bases: $\phi_{1}, \phi_{2}, \ldots, \phi_{K} \in \mathbb{R}^{D}$

$$
\min _{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^{N} \underbrace{\left\|\mathbf{x}_{n}-\sum_{k=1}^{K} a_{n k} \boldsymbol{\phi}_{k}\right\|_{2}^{2}}_{\text {Reconstruction error }}+\underbrace{\lambda \sum_{n=1}^{N} \sum_{k=1}^{K}\left|a_{n k}\right|}_{\text {Sparsity penalty }}
$$

- Alternating Optimization:

1. Fix dictionary of bases $\phi_{1}, \phi_{2}, \ldots, \phi_{K}$ and solve for activations a (a standard Lasso problem).
2. Fix activations a, optimize the dictionary of bases (convex QP problem).

Sparse Coding: Testing Time

- Input: a new image patch x^{*}, and K learned bases $\phi_{1}, \phi_{2}, \ldots, \phi_{K}$
- Output: sparse representation a of an image patch x^{*}.

$$
\left.\min _{\mathbf{a}}\left\|\mathbf{x}^{*}-\sum_{k=1}^{K} a_{k} \boldsymbol{\phi}_{k}\right\|\right|_{2} ^{2}+\lambda \sum_{k=1}^{K}\left|a_{k}\right|
$$

$[0,0, \ldots .0 .8, \ldots, 0.3, \ldots, 0.5, \ldots]=$ coefficients (feature representation)

Image Classification

Evaluated on Caltech101 object category dataset.

Input Image

Features (coefficients)

Algorithm	Accuracy
Baseline (Fei-Fei et al., 2004)	16%
PCA	37%
Sparse Coding	$\mathbf{4 7 \%}$

Interpreting Sparse Coding

$$
\min _{\mathbf{a}, \boldsymbol{\phi}} \sum_{n=1}^{N}\left\|\mathbf{x}_{n}-\sum_{k=1}^{K} a_{n k} \boldsymbol{\phi}_{k}\right\|_{2}^{2}+\lambda \sum_{n=1}^{N} \sum_{k=1}^{K}\left|a_{n k}\right|
$$

- Sparse, over-complete representation a.
- Encoding $\mathbf{a}=f(\mathbf{x})$ is implicit and nonlinear function of \mathbf{x}.
- Reconstruction (or decoding) $\mathbf{x}^{\prime}=\mathrm{g}(\mathbf{a})$ is linear and explicit.

Autoencoder

- Details of what goes insider the encoder and decoder matter!
- Need constraints to avoid learning an identity.

Autoencoder

Autoencoder

Input Image x

- An autoencoder with D inputs, D outputs, and K hidden units, with $K<D$.
- Given an input x, its reconstruction is given by:
$y_{j}(\mathbf{x}, W, D)=\sum_{k=1}^{K} D_{j k} \sigma\left(\sum_{i=1}^{D} W_{k i} x_{i}\right), \quad j=1, . ., D$.
Decoder
Encoder

$$
y_{j}=\sum_{k=1}^{K} D_{j k} z_{k} \quad z_{k}=\sigma\left(\sum_{i=1}^{D} W_{k i} x_{i}\right)
$$

Autoencoder

- An autoencoder with D inputs, D outputs, and K hidden units, with $\mathrm{K}<\mathrm{D}$.
- We can determine the network parameters W and D by minimizing the reconstruction error:

$$
E(W, D)=\frac{1}{2} \sum_{n=1}^{N}\left\|y\left(\mathbf{x}_{n}, W, D\right)-\mathbf{x}_{n}\right\|^{2} .
$$

Autoencoder

- If the hidden and output layers are linear, it will learn hidden units that are a linear function of the data and minimize the squared error.
- The K hidden units will span the same space as the first k principal components. The weight vectors may not be orthogonal.
- With nonlinear hidden units, we have a nonlinear generalization of PCA.

Another Autoencoder Model

- Need additional constraints to avoid learning an identity.
- Relates to Restricted Boltzmann Machines (later).

Predictive Sparse Decomposition

At training time

$$
\min _{D, W, \mathbf{z}} \underbrace{\|D \mathbf{z}-\mathbf{x}\|_{2}^{2}+\lambda|\mathbf{z}|_{1}}+\underbrace{\|\sigma(W \mathbf{x})-\mathbf{z}\|_{2}^{2}}
$$

Decoder
Encoder
Kavukcuoglu, Ranzato, Fergus, LeCun, 2009

Stacked Autoencoders

Stacked Autoencoders

Stacked Autoencoders

Deep Autoencoders

Deep Autoencoders

- $25 \times 25-2000-1000-500-30$ autoencoder to extract 30-D realvalued codes for Olivetti face patches.

- Top: Random samples from the test dataset.
- Middle: Reconstructions by the 30-dimensional deep autoencoder.
- Bottom: Reconstructions by the 30-dimentinoal PCA.

Information Retrieval

- The Reuters Corpus Volume II contains 804,414 newswire stories (randomly split into 402,207 training and 402,207 test).
- "Bag-of-words" representation: each article is represented as a vector containing the counts of the most frequently used 2000 words.
(Hinton and Salakhutdinov, Science 2006)

Tutorial Roadmap

- Basic Building Blocks:
> Sparse Coding
> Autoencoders
- Deep Generative Models
> Restricted Boltzmann Machines
> Deep Boltzmann Machines
> Helmholtz Machines / Variational Autoencoders
- Generative Adversarial Networks

Fully Observed Models

- Explicitly model conditional probabilities:

$$
p_{\text {model }}(x)=p_{\text {model }}\left(x_{1}\right) \prod_{i=2}^{n} p_{\text {model }}\left(x_{i} \mid x_{1}, \ldots, x_{i-1}\right)
$$

- A number of successful models, including
> NADE, RNADE (Larochelle, et.al.

20011)

> Pixel CNN (van den Ord et. al. 2016)
> Pixel RNN (van den Ord et. al. 2016)

Restricted Boltzmann Machines

Graphical Models: Powerful framework for representing dependency structure between $(\mathrm{n})=$ dependency struct

Unary

RBM is a Markov Random Field with:

- Stochastic binary visible variables $\mathbf{v} \in\{0,1\}^{D}$.
- Stochastic binary hidden variables $\mathbf{h} \in\{0,1\}^{F}$.
- Bipartite connections.

Markov random fields, Boltzmann machines, log-linear models.

Learning Features

Observed Data
Subset of 25,000 characters

New Image: $\quad p\left(h_{7}=1 \mid v\right)$

$$
\begin{aligned}
\sqrt{\square}= & \sigma(0.99 \times \\
& \sigma(x)=\frac{1}{1+\exp (-x)}
\end{aligned}
$$

Logistic Function: Suitable for
modeling binary images modeling binary images

RBMs for Real-valued \& Count Data

4 million unlabelled images
Learned features (out of 10,000)

REUTERS : :

1PAssociated Press

Reuters dataset: 804,414 unlabeled newswire stories

Bag-of-Words

Learned features: "topics"
russian
russia
moscow
yeltsin soviet

clinton	computer	trade	stock
house	system	country	wall
president	product	import	street
bill	software congress develop	world economy	point
dow			

stock
wall
street
point
dow

Collaborative Filtering

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j k} W_{i j}^{k} v_{i}^{k} h_{j}+\sum_{i k} b_{i}^{k} v_{i}^{k}+\sum_{j} a_{j} h_{j}\right)
$$

Binary hidden: user preferences

Multinomial visible: user ratings
Netflix dataset:
480,189 users
17,770 movies
Over 100 million ratings
WETFIDX

Learned features: "genre"

Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt
Canadian Bacon
La Dolce Vita

Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

Scary Movie
Naked Gun
Hot Shots!
American Pie
Police Academy

State-of-the-art performance on the Netflix dataset.
(Salakhutdinov, Mnih, Hinton, ICML 2007)

Different Data Modalities

- Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.

- It is easy to infer the states of the hidden variables:

$$
P_{\theta}(\mathbf{h} \mid \mathbf{v})=\prod_{j=1}^{F} P_{\theta}\left(h_{j} \mid \mathbf{v}\right)=\prod_{j=1}^{F} \frac{1}{1+\exp \left(-a_{j}-\sum_{i=1}^{D} W_{i j} v_{i}\right)}
$$

Product of Experts

The joint distribution is given by:

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j} W_{i j} v_{i} h_{j}+\sum_{i} b_{i} v_{i}+\sum_{j} a_{j} h_{j}\right)
$$

Marginalizing over hidden variables:
Product of Experts

$$
P_{\theta}(\mathbf{v})=\sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp \left(b_{i} v_{i}\right) \prod_{j}\left(1+\exp \left(a_{j}+\sum_{i} W_{i j} v_{i}\right)\right.
$$

Silvio Berlusconi
Topics "government", "corruption" and "mafia" can combine to give very high probability to a word "Silvio Berlusconi".

Product of Experts

The joint distribution is given by:

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j} W_{i j} v_{i} h_{j}+\sum_{i} b_{i} v_{i}+\sum_{j} a_{j} h_{j}\right)
$$

duct of Experts
$\left.W_{i j} v_{i}\right)$

Deep Boltzmann Machines

Deep Boltzmann Machines

Model Formulation

- Hidden variables are dependent even when conditioned on the input.

Approximate Learning

$$
P_{\theta}\left(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}\right)=\frac{1}{\mathcal{Z}(\theta)} \exp \left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)}+\mathbf{h}^{(1)^{\top}} W^{(2)} \mathbf{h}^{(2)}+\mathbf{h}^{(2)^{\top}} W^{(3)} \mathbf{h}^{(3)}\right]
$$

(Approximate) Maximum Likelihood:

$$
\frac{\partial \log P_{\theta}(\mathbf{v})}{\partial W^{1}}=\mathbb{E}_{P_{\text {data }}}\left[\mathbf{v h}^{\mathbf{1}^{\top}}\right]-\mathbb{E}_{P_{\theta}}\left[\mathbf{v h}^{\mathbf{1}^{\top}}\right]
$$

- Both expectations are intractable!

$$
\begin{aligned}
& P_{\text {data }}\left(\mathbf{v}, \mathbf{h}^{\mathbf{1}}\right)=P_{\theta}\left(\mathbf{h}^{\mathbf{1}} \mid \mathbf{v}\right) P_{\text {data }}(\mathbf{v}) \\
& P_{\text {data }}(\mathbf{v})=\frac{1}{N} \sum_{n=1}^{N} \delta\left(\mathbf{v}-\mathbf{v}_{\mathbf{n}}\right) \quad \text { Not factorial any more! }
\end{aligned}
$$

Approximate Learning

$$
P_{\theta}\left(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}\right)=\frac{1}{\mathcal{Z}(\theta)} \exp \left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)}+\mathbf{h}^{(1)^{\top}} W^{(2)} \mathbf{h}^{(2)}+\mathbf{h}^{(2)^{\top}} W^{(3)} \mathbf{h}^{(3)}\right]
$$

(Approximate) Maximum Likelihood:

$$
\frac{\partial \log P_{\theta}(\mathbf{v})}{\partial W^{1}}=\mathbb{E}_{P_{\text {data }}}\left[\mathbf{v h}^{1^{\top}}\right]-\mathbb{E}_{P_{\theta}}\left[\mathbf{v h}^{1^{\top}}\right]
$$

$P_{d a t a}\left(\mathbf{v}, \mathbf{h}^{\mathbf{1}}\right)=P_{\theta}\left(\mathbf{h}^{\mathbf{1}} \mid \mathbf{v}\right) P_{d a t a}(\mathbf{v})$
$P_{\text {data }}(\mathbf{v})=\frac{1}{N} \sum_{n=1}^{N} \delta\left(\mathbf{v}-\mathbf{v}_{\mathbf{n}}\right) \quad$ Not factorial any more!

Approximate Learning

$$
P_{\theta}\left(\mathbf{v}, \mathbf{h}^{(1)}, \mathbf{h}^{(2)}, \mathbf{h}^{(3)}\right)=\frac{1}{\mathcal{Z}(\theta)} \exp \left[\mathbf{v}^{\top} W^{(1)} \mathbf{h}^{(1)}+\mathbf{h}^{(1)^{\top}} W^{(2)} \mathbf{h}^{(2)}+\mathbf{h}^{(2)^{\top}} W^{(3)} \mathbf{h}^{(3)}\right]
$$

(Approximate) Maximum Likelihood:

Variational Inference

$$
P_{d a t a}\left(\mathbf{v}, \mathbf{h}^{\mathbf{1}}\right)=P_{\theta}\left(\mathbf{h}^{\mathbf{1}} \mid \mathbf{v}\right) P_{d a t a}(\mathbf{v})
$$

$$
P_{\text {data }}(\mathbf{v})=\frac{1}{N} \sum_{n=1}^{N} \delta\left(\mathbf{v}-\mathbf{v}_{\mathbf{n}}\right) \quad \text { Not factorial any more! }
$$

Good Generative Model?

Handwritten Characters

Good Generative Model？

Handwritten Characters

 坆个気区

0 मく एภ ¢उ ¢

Good Generative Model?

Handwritten Characters

Simulated

Real Data

Good Generative Model?

Handwritten Characters

Real Data

Simulated

Good Generative Model？

Handwritten Characters

 坆个気区

0 मく एภ ¢उ ¢

Handwriting Recognition

MNIST Dataset 60,000 examples of 10 digits

Learning Algorithm	Error
Logistic regression	12.0%
K-NN	3.09%
Neural Net (Platt 2005)	1.53%
SVM (Decoste et.al. 2002)	1.40%
Deep Autoencoder (Bengio et. al. 2007)	1.40%
Deep Belief Net (Hinton et. al. 2006)	1.20%
DBM	$\mathbf{0 . 9 5 \%}$

Optical Character Recognition
42,152 examples of 26 English letters

Learning Algorithm	Error
Logistic regression	22.14%
K-NN	18.92%
Neural Net	14.62%
SVM (Larochelle et.al. 2009)	9.70%
Deep Autoencoder	10.05%
(Bengio et. al. 2007)	
Deep Belief Net	9.68%
(Larochelle et. al. 2009)	
DBM	$\mathbf{8 . 4 0 \%}$

Permutation-invariant version.

3-D object Recognition

NORB Dataset: 24,000 examples

Pattern Completion

Data - Collection of Modalities

- Multimedia content on the web image + text + audio.
- Product recommeflickrion Google Youtube
systems.

Challenges-I

Text

Very different input representations

- Images - real-valued, dense
- Text - discrete, sparse

Difficult to learn cross-modal features from low-level representations.

Challenges - II

Text
pentax, k10d, pentaxda50200, kangarooisland, sa, australiansealion
mickikrimmel, mickipedia, headshot
< no text>
unseulpixel, naturey

Noisy and missing data

Challenges - II

Text generated by the model

beach, sea, surf, strand, shore, wave, seascape, sand, ocean, waves
portrait, girl, woman, lady, blonde, pretty, gorgeous, expression, model
night, notte, traffic, light, lights, parking, darkness, lowlight, nacht, glow
fall, autumn, trees, leaves, foliage, forest, woods, branches, path

Multimodal DBM

h 00000000000000

Multimodal DBM

00000000000000

$h^{1} 000000$

Multimodal DBM

Text Generated from Images

sea, france, boat, mer, beach, river, bretagne, plage, brittany

dog, cat, pet, kitten, puppy, ginger, tongue, kitty, dogs, furry

graffiti, streetart, stencil, sticker, urbanart, graff, sanfrancisco

canada, nature, sunrise, ontario, fog, mist, bc, morning

Generating Text from Images

Text Generated from Images

Given

obama, barackobama, election, politics, president, hope, change, sanfrancisco, convention, rally
water, glass, beer, bottle, drink, wine, bubbles, splash, drops, drop

Images from Text

Given
water, red, sunset
nature, flower, red, green
blue, green, yellow, colors
chocolate, cake

Retrieved

MIR-Flickr Dataset

- 1 million images along with user-assigned tags.

sculpture, beauty, stone

anawesomeshot, theperfectphotographer, flash, damniwishidtakenthat, spiritofphotography

d80

nikon, green, light, photoshop, apple, d70

nikon, abigfave, goldstaraward, d80, nikond80

white, yellow, abstract, lines, bus, graphic

food, cupcake, vegan

sky, geotagged, reflection, cielo, bilbao, reflejo

Huiskes et. al.

Results

- Logistic regression on top-level representation.
- Multimodal Inputs

Mean Average Precision
\(\left.\begin{array}{|l|c|c|}\hline Learning Algorithm \& MAP \& Precision@50

\hline Random \& 0.124 \& 0.124

\hline LDA [Huiskes et. al.] \& 0.492 \& 0.754

\hline SVM [Huiskes et. al.] \& 0.475 \& 0.758

\hline DBM-Labelled \& 0.526 \& 0.791

\hline Deep Belief Net \& 0.638 \& 0.867

\hline Autoencoder \& 0.638 \& 0.875

\hline DBM \& 0.641 \& 0.873

\hline\end{array}\right\}\)| Labeled |
| :--- |
| 25K |
| examples |
| +1 Million |
| unlabelled |

Helmholtz Machines

- Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995
- Kingma \& Welling, 2014

- Rezende, Mohamed, Daan, 2014
- Mnih \& Gregor, 2014
- Bornschein \& Bengio, 2015
- Tang \& Salakhutdinov, 2013

Helmholtz Machines vs. DBMs

Helmholtz Machine
Deep Boltzmann Machine

Variational Autoencoders (VAEs)

- The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\substack{\mathbf{h}^{1}, \ldots, \mathbf{h}^{L}}} p\left(\mathbf{h}^{L} \mid \boldsymbol{\theta}\right) p\left(\mathbf{h}^{L-1} \mid \mathbf{h}^{L}, \boldsymbol{\theta}\right) \cdots p\left(\mathbf{x} \mid \mathbf{h}^{1}, \boldsymbol{\theta}\right)
$$

- $\boldsymbol{\theta}$ denotes parameters of VAE.
- L is the number of stochastic layers.
- Sampling and probability evaluation is tractable for each $p\left(\mathbf{h}^{\ell} \mid \mathbf{h}^{\ell+1}\right)$.

VAE: Example

- The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$
p(\mathbf{x} \mid \boldsymbol{\theta})=\sum_{\mathbf{h}^{1}, \mathbf{h}^{2}} p\left(\mathbf{h}^{2} \mid \boldsymbol{\theta}\right) p\left(\mathbf{h}^{1} \mid \mathbf{h}^{2}, \boldsymbol{\theta}\right) p\left(\mathbf{x} \mid \mathbf{h}^{1}, \boldsymbol{\theta}\right)
$$

This term denotes a one-layer neural net.

- $\boldsymbol{\theta}$ denotes parameters of VAE.
- L is the number of stochastic layers.
- Sampling and probability evaluation is tractable for each $p\left(\mathbf{h}^{\ell} \mid \mathbf{h}^{\ell+1}\right)$.

Variational Bound

- The VAE is trained to maximize the variational lower bound:

$$
\begin{aligned}
& \log p(\mathbf{x})=\log \mathbb{E}_{q(\mathbf{h} \mid \mathbf{x})}\left[\frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h} \mid \mathbf{x})}\right] \geq \mathbb{E}_{q(\mathbf{h} \mid \mathbf{x})}\left[\log \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h} \mid \mathbf{x})}\right]=\mathcal{L}(\mathbf{x}) \\
& \left.\mathcal{L}(\mathbf{x})=\log p(\mathbf{x})-\mathrm{D}_{\mathrm{KL}}(q(\mathbf{h} \mid \mathbf{x})) \| p(\mathbf{h} \mid \mathbf{x})\right)
\end{aligned}
$$

- Trading off the data log-likelihood and the KL divergence from the true posterior.

Input data

- Hard to optimize the variational bound with respect to the recognition network (high-variance).
- Key idea of Kingma and Welling is to use reparameterization trick.

Reparameterization Trick

- Assume that the recognition distribution is Gaussian:

$$
q\left(\mathbf{h}^{\ell} \mid \mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)=\mathcal{N}\left(\boldsymbol{\mu}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right), \boldsymbol{\Sigma}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)\right)
$$

with mean and covariance computed from the state of the hidden units at the previous layer.

- Alternatively, we can express this in term of auxiliary variable:

$$
\begin{aligned}
& \boldsymbol{\epsilon}^{\ell} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\
& \mathbf{h}^{\ell}\left(\boldsymbol{\epsilon}^{\ell}, \mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)=\boldsymbol{\Sigma}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)^{1 / 2} \boldsymbol{\epsilon}^{\ell}+\boldsymbol{\mu}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)
\end{aligned}
$$

Reparameterization Trick

- Assume that the recognition distribution is Gaussian:

$$
q\left(\mathbf{h}^{\ell} \mid \mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)=\mathcal{N}\left(\boldsymbol{\mu}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right), \boldsymbol{\Sigma}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)\right)
$$

- Or

$$
\begin{aligned}
& \boldsymbol{\epsilon}^{\ell} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I}) \\
& \mathbf{h}^{\ell}\left(\boldsymbol{\epsilon}^{\ell}, \mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)=\boldsymbol{\Sigma}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)^{1 / 2} \boldsymbol{\epsilon}^{\ell}+\boldsymbol{\mu}\left(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)
\end{aligned}
$$

- The recognition distribution $q\left(\mathbf{h}^{\ell} \mid \mathbf{h}^{\ell-1}, \boldsymbol{\theta}\right)$ can be expressed in terms of a deterministic mapping:

Computing the Gradients

- The gradient w.r.t the parameters: both recognition and generative:

$$
\begin{aligned}
& \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h} \mid \mathbf{x}, \boldsymbol{\theta})}\left[\log \frac{p(\mathbf{x}, \mathbf{h} \mid \boldsymbol{\theta})}{q(\mathbf{h} \mid \mathbf{x}, \boldsymbol{\theta})}\right] \\
&=\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{\epsilon}^{1}, \ldots, \boldsymbol{\epsilon}^{L} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})}\left[\log \frac{p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) \mid \boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) \mid \mathbf{x}, \boldsymbol{\theta})}\right] \\
&=\mathbb{E}_{\boldsymbol{\epsilon}^{1}, \ldots, \boldsymbol{\epsilon}^{L} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})}\left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) \mid \boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) \mid \mathbf{x}, \boldsymbol{\theta})}\right]
\end{aligned}
$$

Gradients can be computed by backprop

The mapping \mathbf{h} is a deterministic neural net for fixed $\boldsymbol{\epsilon}$.

Importance Weighted Autoencoders

- Can improve VAE by using following k-sample importance weighting of the log-likelihood:

$$
\begin{aligned}
\mathcal{L}_{k}(\mathbf{x}) & =\mathbb{E}_{\mathbf{h}_{1}, \ldots, \mathbf{h}_{k} \sim q(\mathbf{h} \mid \mathbf{x})}\left[\log \frac{1}{k} \sum_{i=1}^{k} \frac{p\left(\mathbf{x}, \mathbf{h}_{i}\right)}{q\left(\mathbf{h}_{i} \mid \mathbf{x}\right)}\right] \\
& =\mathbb{E}_{\mathbf{h}_{1}, \ldots, \mathbf{h}_{k} \sim q(\mathbf{h} \mid \mathbf{x})}\left[\log \frac{1}{k} \sum_{i=1}^{k} w_{i}\right]
\end{aligned}
$$ from the recognition network.

Input data

Generating Images from Captions

- Generative Model: Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.
- Recognition Model: Deterministic Recurrent Network.

Motivating Example

- Can we generate images from natural language descriptions?

A stop sign is flying in blue skies

A herd of elephants is flying in blue skies

A pale yellow school bus is flying in blue skies

A large commercial airplane is flying in blue skies

Flipping Colors

A yellow school bus parked in the parking lot

A green school bus parked in the parking lot

A red school bus parked in the parking lot

A blue school bus parked in the parking lot

Novel Scene Compositions

A toilet seat sits open in the bathroom

A toilet seat sits open in the grass field

Ask Google?

(Some) Open Problems

- Reasoning, Attention, and Memory
- Natural Language Understanding
- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

(Some) Open Problems

- Reasoning, Attention, and Memory
- Natural Language Understanding
- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

Who-Did-What Dataset

- Document: "...arrested Illinois governor Rod Blagojevich and his chief of staff John Harris on corruption charges ... included Blogojevich allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama..."
- Query: President-elect Barack Obama said Tuesday he was not aware of alleged corruption by \mathbf{X} who was arrested on charges of trying to sell Obama's senate seat.
- Answer: Rod Blagojevich

Recurrent Neural Network

Nonlinearity

Hidden State at previous time step

Input at time step t

Gated Attention Mechanism

- Use Recurrent Neural Networks (RNNs) to encode a document and a query:

> Use element-wise multiplication to model the interactions between document and query:

$$
x_{i}=d_{i} \odot q_{i}
$$

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)

Multi-hop Architecture

- Reasoning requires several passes over the context

(Dhingra, Liu, Yang, Cohen, Salakhutdinov, ACL 2017)

Analysis of Attention

- Context: "...arrested Illinois governor Rod Blagojevich and his chief of staff John Harris on corruption charges ... included Blogojevich allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama..."
- Query: "President-elect Barack Obama said Tuesday he was not aware of alleged corruption by \mathbf{X} who was arrested on charges of trying to sell Obama's senate seat."
- Answer: Rod Blagojevich

Layer 1

Layer 2

Analysis of Attention

- Context: "...arrested Illinois governor Rod Blagojevich and his chief of staff John Harris on corruption charges ... included Blogojevich allegedly conspiring to sell or trade the senate seat left vacant by President-elect Barack Obama..."
- Query: "President-elect Barack Obama said Tuesday he was not aware of alleged corruption by \mathbf{X} who was arrested on charges of trying to sell Obama's senate seat."
- Answer: Rod Blagojevich

Code + Data: https://github.com/bdhingra/ga-reader

Incorporating Prior Knowledge

Mary — got — the — football

—— RNN
—— Coreference
——Hyper/Hyponymy

Incorporating Prior Knowledge

Mary — got — the — football
She — went — to — the - kitchen
She - left — the - ball - there
—— RNN
——oreference

- Hyper/Hyponymy

Memory as Acyclic Graph Encoding (MAGE) - RNN

Dhingra, Yang, Cohen, Salakhutdinov 2017

Incorporating Prior Knowledge

Neural Story Telling

Sample from the Generative Model (recurrent neural network):

She was in love with him for the first time in months, so she had no intention of escaping.

The sun had risen from the ocean, making her feel more alive than normal. She is beautiful, but the truth is that I do not know what to do. The sun was just starting to fade away, leaving people scattered around the Atlantic Ocean.

(Some) Open Problems

- Reasoning, Attention, and Memory
- Natural Language Understanding
- Deep Reinforcement Learning
- Unsupervised Learning / Transfer Learning / One-Shot Learning

Learning Behaviors

Learning to map sequences of observations to actions, for a particular goal

Reinforcement Learning with Memory

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014

Reinforcement Learning with Memory

Differentiable Neural Computer, Graves et al., Nature, 2016; Neural Turing Machine, Graves et al., 2014

$$
0
$$

Deep RL with Memory

Parisotto, Salakhutdinov, 2017

Random Maze with Indicator

- Indicator: Either blue or pink
$>$ If blue, find the green block
$>$ If pink, find the red block
- Negative reward if agent does not find correct block in N steps or goes to wrong block.

Random Maze with Indicator

Random Maze with Indicator

Building Intelligent Agents

Building Intelligent Agents

Summary

- Efficient learning algorithms for Deep Unsupervised Models

Text \& image retrieval / Object recognition

Image Tagging

mosque, tower, building, cathedral, dome, castle

Learning a Category

Object Detection

- Deep models improve the current state-of-the art in many application domains:
> Object recognition and detection, text and image retrieval, handwritten character and speech recognition, and others.

Thank you

