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Mining for Structure

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.
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* Develop statistical models that can discover underlying structure, semantic
relations, constraints, or invariances from data.

* Robust, adaptive models models that can deal with missing measurements,
nonstationary distributions, multimodal data.

Geological Data




Impact of Deep Learning
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Example: Understanding Images

TAGS:

strangers, coworkers, conventioneers,
attendants, patrons

Nearest Neighbor Sentence:

people taking pictures of a crazy person

Model Samples

* a group of people in a crowded area .
* a group of people are walking and talking .
* a group of people, standing around and talking .



Tutorial Roadmap

Part 1: Supervised (Discriminative) Learning: Deep
Networks

Part 2: Unsupervised Learning: Deep Generative
Models

Part 3: Open Research Questions



Supervised Learning

« Given a set of labeled training examples: {x*), yY'1  we perform
Empirical Risk Minimization:

1
arg min D U 6),5) + A0(6)
T

J

Y
Loss function

where

> f(X(t); 6’) (non-linear) function mapping inputs to outputs,
parameterized by 6 -> Non-convex optimization

> l(f(x(t); 0), y(t)) is the loss function.



Supervised Learning

« Given a set of labeled training examples: {x*), yY'1  we perform
Empirical Risk Minimization:

1
arg min D U 6),5) + A0(6)
T

v J\y]

Loss function Regularizer

where

> f(X(t); 6’) (non-linear) function mapping inputs to outputs,
parameterized by 6 -> Non-convex optimization

> l(f(x(t); 0)7 y(t)) is the loss function.

> Q(Q) is a regularization term.



Supervised Learning

« Given a set of labeled training examples: {x*), yY'1  we perform
Empirical Risk Minimization:

1
arg min D U 6),5) + A0(6)
T

v /\YJ

Loss function Regularizer

* Learning is cast as optimization.

» For classification problems, we would like to minimize classification
error.

> Loss function can sometimes be viewed as a surrogate for what we
want to optimize (e.g. upper bound)



Example: ImageNet Dataset

e 1.2 million (225 x 225) images, 1000 classes

Examples of Hammer
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(Deng et al., Imagenet: a large scale hierarchical image database, CVPR 2009)



AI eXN et l Softmax Output
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* [nput: 225 x 225 image | Layer 7: Full
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e Achieves: 18.2% top-5 error
(Krizhevsky, Sutskever, Hinton, NIPS, 2012)



Important Breakthrough

* Deep Convolutional Nets for Vision (Supervised)

Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks, NIPS, 2012.
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Unsupervised Learning

* Given a set of unlabeled training examples {x(")} :

P(x) = %Zexp [XTWh]

/’
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Generative Adversarial Net
Trained on ImageNet
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Training Samples

(Salimans et. al., 2016)



Boltzmann Machine

Observed Data
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25,000 characters from 50
alphabets around the world.

Simulate a Markov chain
whose stationary distribution
is P(x|y = Sanskrit).




Talk Roadmap
Part 1: Supervised Learning: Deep Networks

e Definition and Training Neural Networks

* Recent Optimization / Regularization Techniques

Part 2: Unsupervised Learning: Learning Deep
Generative Models

Part 3: Open Research Questions



Neural Networks Online Course

e Disclaimer: Some of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural_networks

e Hugo’s class covers

many other topics:
convolutional networks, RESTRICTED BOLTZMANN MACHINE

neural language model,

Click with the mouse or tablet to draw with pen 2
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Feedforward Neural Networks

» Definition of Neural Networks
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Artificial Neuron

e Neuron pre-activation (or input activation):

a(x)=b+> wiz;=b+w'x

e Neuron output activation:

h(x) = gla(x)) = g(b+ ), wiz;)

where
W are the weights (parameters)
b is the bias term
g() is called the activation function



Artificial Neuron

e Output activation of the neuron:

Range is
determined

by g\
( ) Bias only changes

the position of the
riff

(from Pascal Vincent’s slides)



Activation Function

e Sigmoid activation function:

> Squashes the neuron’s 9(a) = sigm(a) = 1—l—exi)(—a)
output between 0 and 1

>  Always positive |

o ;

>  Strictly Increasing 0:5




Activation Function

» Rectified linear (ReLU) activation function:

> Bounded below by 0

(always non-negative) g(a) = reclin(a) = max(0, a)

3.0
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Single Hidden Layer Neural Net

e Hidden layer pre-activation:

a(x) =bM + Wilbx
(ax)i = b + 55, W)

e Hidden layer activation:

h(x) = g(a(x))

e Output layer activation:

f(x) = o (b<2> L w® ThDx

Output activation
function



Multilayer Neural Net

e Consider a network with L hidden layers.

— layer pre-activation for k>0

a®) (x) = b®) + WE Rk (x)

- hidden layer activation

' ' (2)
from 1 to L: w2 - b

h®(x) = g(a®) (x) )

— output layer activation (k=L+1):

h(Z+) (x) = o(a+V (x)) = £(x) (h® (x) = x)



Capacity of Neural Nets

e Consider a single layer neural network

Input

(from Pascal Vincent’s slides)



Capacity of Neural Nets

e Consider a single layer neural network

>x1

(from Pascal Vincent’s slides)



Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Training

e Empirical Risk Minimization:

arg min — Zl x(): 8), y") + XQ(0)

v /\YJ

Loss function Regularizer

e To train a neural net, we need:

> Loss function: [(f(x(!); 8), y®)
> A procedure to compute gradients: Vgl(f(x(t); 0), y<t>)
> Regularizer and its gradient: 2(0),Vo(2(0)



Stochastic Gradient Descend

e Perform updates after seeing each example:
- Initialize: § = {WW bW . WD) pE+)}
- Fort=1:T

- for each training example (X(t),y(t)) N
Training epoch

A = Vol (f(x";0),y") = AVeQ(0) =

0 —0+aA lteration of all examples
/

e To train a neural net, we need:

> Loss function: [(f(x(!); @), y®)
> A procedure to compute gradients: Vgl (f(x(); 0), y*)
> Regularizer and its gradient: 2(0),V$2(0)



Backpropagation Algorithm:
Computational Flow Graph

)

e Forward propagation can be represented
as an acyclic flow graph

e Forward propagation can be implemented
In @ modular way:

> Each box can be an object with an fprop
method, that computes the value of the
box given its children

> Calling the fprop method of each box in
the right order yields forward propagation



Backpropagation Algorithm:
Computational Flow Graph

)

e Each object also has a bprop method

- it computes the gradient of the loss with
respect to each child box.

By calling bprop in the reverse order, we
obtain backpropagation



Weight Decay

1
arg min D Uf(xY;0),y™) + A0(0)
t
L2 regularization:
2
A0) = S, 2,5, (W) = S, w3

L1 regularization:

Q0) =3, 5, 5 (W)

- Only applies to weights, not biases (weigh decay)



Model Selection

 Training Protocol:

- Train your model on the Training Set D31

- For model selection, use Validation Set DVald

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set D't

e Generalization is the behavior of the model on unseen
examples.



Early Stopping

 To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1

' +

0,0 : OO0

number of epochs



Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a
single example):

> the gradient is the average regularized loss for that mini-batch
» can give a more accurate estimate of the gradient

» can leverage matrix/matrix operations, which are more efficient

 Momentum: Can use an exponential average of previous
gradients:
=(t—1)

Vy = Vel(F(x1),y®) + gV,

> can get pass plateaus more quickly, by “gaining momentum”



Learning Distributed Representations

e Deep learning: learning models with multilayer representations

> multilayer (feed-forward) neural networks
>  multilayer graphical model (deep belief network, deep Boltzmann

machine)

e Each layer learns “distributed representation”

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
>  Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster



Inspiration from Visual Cortex

Categorical judgments,

r muscle = 160-220 ms
0-260 ms

[picture from Simon Thorpe]

.
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Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization




Best Practice

e Given a dataset D, pick a model so that:

> You can achieve 0 training error— Overfit on the training set

» Regularize the model (e.g. using Dropout).

e SGD with momentum, batch-normalization, and dropout usually
works very well.



Dropout

e Key idea: Cripple neural network by removing hidden units
stochastically

» each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to L@

(
other units B
W (2) '
> hidden units must be more
generally useful h()(x)

e Could use a different dropout
probability, but 0.5 usually works well

(Srivastava, Hinton, Krizhevsky,
Sutskever, Salakhutdinov, JIMLR 2014)



Dropout

e Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b(K) + WFp(k=1) (x)

> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x))om(¥

>  Output activation (k=L+1)

h(F+D (x) = o(al" ") (x)) = f(x)

(Srivastava, Hinton, Krizhevsky,
Sutskever, Salakhutdinov, JIMLR 2014)



Dropout at Test Time

* At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
>  For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

e Can be combined with unsupervised pre-training

e Beats regular backpropagation on many datasets

 Ensemble: Can be viewed as a geometric average of exponential
number of networks.



Batch Normalization

 Normalizing the inputs will speed up training (Lecun et al. 1998)

» could normalization be useful at the level of the hidden layers?

e Batch normalization is an attempt to do that (loffe and Szegedy, 2015)

> each unit’s pre-activation is normalized (mean subtraction, stddev
division)

» during training, mean and stddev is computed for each minibatch

> backpropagation takes into account the normalization

> at test time, the global mean / stddev is used

(Ioffe and Szegedy, ICML 2015)



Batch Normalization

Input: Values of = over a mini-batch: B = {x1.. . };
Parameters to be learned: v, 3
Output: {y; = BN, s5(z;)}

1 — -
UB — Z; T; // mini-batch mean
1=
1 m
05 — (z; — puB)? // mini-batch variance
i=1
T; Ti — P8 // normalize
- Nemte
: Y; < vZ; + B = BN, g(x;) : // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and 3 are trained)
(Ioffe and Szegedy, ICML 2015)



Batch Normalization

 Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform y; < vx; + 3 could cancel this
effect)

e Use the global mean and stddev at test time.

» removes the stochasticity of the mean and stddev

> requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

»  for early stopping, could use a running average

(Ioffe and Szegedy, ICML 2015)



Optimization Tricks

e SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data

>  Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
» Use RelLU nonlinearity

e Initialize parameters so that each feature across layers has
similar variance. Avoid units in saturation.

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Good training: hidden units
are sparse across samples

samples

hidden unit

[From Marc'Aurelio Ranzato, CVPR 2014 tutorial]



Visualization

e Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

e Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

i .
k|
L

I |

.[l

q

hidden unit



Debugging on Small Dataset

* Next, make sure your model can overfit on a smaller dataset
(~ 500-1000 examples)

e |If not, investigate the following situations:

> Are some of the units saturated, even before the first update?
scale down the initialization of your parameters for these units
properly normalize the inputs

> Is the training error bouncing up and down?

decrease the learning rate

e This does not mean that you have computed gradients correctly:

>  You could still overfit with some of the gradients being wrong



Computer Vision

» Design algorithms that can process visual data to accomplish a given task:

>  For example, object recognition: Given an input image, identify

which object it contains

| 12 pixels

» “sun flower”

| 50 pixels



ConvNets: Examples

e Optical Character Recognition, House Number and Traffic Sign
classification

234
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Ciresan et al. “MCDNN for image classification” CVPR 2012

Wan et al. “Regularization of neural networks using dropconnect” ICML 2013
Goodfellow et al. “Multi-digit nuber recognition from StreetView...” ICLR 2014

Jaderberg et al. “Synthetic data and ANN for natural scene text recognition” arXiv 2014




Architecture

 How can we select the right architecture:

» Manual tuning of features is now replaced with the manual tuning

of architechtures

e Depth
e Width

e Parameter count



How to Choose Architecture

e Many hyper-parameters:

»> Number of layers, number of feature maps

e Cross Validation
e Grid Search (need lots of GPUs)

e Smarter Strategies

» Random search

> Bayesian Optimization



AlexNet

. 8 layers total \ Softmax Output
1

Layer 7: Full
=S
Layer 6: Full
4
* 18.2% top-5 error Layer 5: Conv + Pool
ZAS
Layer 4: Conv
ZER

e Trained on Imagenet
dataset [Deng et al. CVPR’09]

Layer 3: Conv

[From Rob Fergus’ CIFAR 2016 tutorial] [ Input Image }




AlexNet

 Remove top fully connected layer 7

[ Softmax Output ]

e Drop ~16 million parameters T_T

Layer 6 Full

e Only 1.1% drop in performance!

Layer 4 Conv

Layer 3 Conv

[ Layer 5: Conv + Pool

[From Rob Fergus’ CIFAR 2016 tutorial] [ Input Image }




AlexNet

« Let us remove upper feature extractor layers [ SO GUpUL ]

and fully connected: ﬁ

> Layers 3,4,6and 7 )
Layer 6: Full
2R
e Drop ~50 million parameters [ Layer 5: Conv + Pool
Z\

e 33.5 drop in performance!

e Depth of the network is the key.

[From Rob Fergus’ CIFAR 2016 tutorial] [ Input Image }




GooglLeNet
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* 24 layer model that uses so-called inception Convolution
module. Pooling
Other

(Szegedy et al., Going Deep with Convolutions, 2014)



GooglLeNet
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e Width of inception modules ranges from 256 filters (in early modules) to
1024 in top inception modules.

e Can remove fully connected layers on top completely
e Number of parameters is reduced to 5 million

* 6.7% top-5 validation error on Imagnet

(Szegedy et al., Going Deep with Convolutions, 2014)



Residual Networks

Really, really deep convnets do not train well,

E.g. CIFAR10:

20r
5 S
E 10F g 1ok 20-13.}/61'
,Eﬂ 56-layer 2
g 38
S ~—
= 20-layer
O i 2 3 3 5 6 0 2 3 3 5 6
iter. (1e4) iter. (1e4)
H . 1
Key idea: introduce “pass
y method top-1 err. top-5 err.
through” into each layer VGG [41] (LSVRC'14) S
GoogLeNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24.4 7.1
. PReLU-net [13] 21.59 571
Thus Only residual now BN-inception [16] 2199 58
ResNet-34 B 21.84 571
needS tO be |ea rned ResNet-34 C 21.53 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
X ResNet-152 19.38 4.49

A
weight layer

y

relu
\ 4

weight layer

X

(He, Zhang, Ren, Sun, CVPR 2016)

Table 4. Error rates (%) of single-model results on the ImageNet
validation set (except ' reported on the test set).

With ensembling, 3.57% top-5
identity test error on ImageNet

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19
image
pool, /2

3x3 conv, 128

34-layer plain

image

34-layer residual

image

[ 33conv,128 |

7x7 conv, 64, /2

[ 7x7conv,64,/2 |

pool, /2 pool, /2 pool, /2
[ 33conv,256 | 3x3 conv, 64 3x3 conv, 64
v
I 3x3 conv, 256 I 3x3 conv, 64 3x3 conv, 64
[ 33conv,256 | 3x3 conv, 64 3x3 conv, 64
| 3x3 conv, 256 | 3x3 conv, 64 3x3 conv, 64

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3cony, 128,/2 |

3x3 conv, 512

3x3 conv, 128

3x3cony, 128 |

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

3x3 conv, 512

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 512

3x3 conv, 256

3x3conv, 256,/2 |
3x3 conv, 256 I

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

v

v

v

3x3 conv, 256

3x3 conv, 256

[ |
[ |
| 3x3 conv, 512 |
[ |

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

v
pool, /2 3x3 convy, 512, /2 3x3 conv, 512, /2 I
3x3 conv, 512 3x3 conv, 512 _'_."
L 2.
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 conv, 512 3x3 conv, 512
3x3 convy, 512 3x3 conv, 512
\ 4 v
fc 4096 avg pool avg pool
| fc 4096 ] | fc 1000 ] | fc 1000 ]

fc 1000



End of Part 1



