Machine Learning @ Amazon

Ralf Herbrich Amazon

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Machine Learning: Formal Definition

• Labelled Data

 $\{P(y|x,w)\}_{w\in\mathcal{W}} + \{(x_i,y_i)\}_{i=1}^n \mapsto (x\mapsto P(y|x))$

Unlabelled Data

 $\{P(x|z,w)\}_{w\in\mathcal{W}} + \{x_i\}_{i=1}^n \mapsto (x\mapsto P(z|x))$

• Probability is a central concept in Machine Learning!

Why Probability?

1. Mathematics of Uncertainty (Cox' axioms)

Cox Axioms: Probabilities and Beliefs

- Design: System must assign degree of plausability p(A) to each logical statement A.
- Axiom:
 - p(A) is a real number
 - p(A) is independent of Boolean rewrite
 - $p(A|C') > p(A|C) \land p(B|AC') = p(B|AC)$

 $\Rightarrow p(AB|C') \ge P(AB|C)$

P must be a probability measure!

Why Probability?

- 1. Mathematics of Uncertainty (Cox' axioms)
- 2. Variables and Factors map to Memory & CPU

Factor Graphs

- **Definition:** Graphical representation of product structure of a function (Wiberg, 1996)
 - Nodes: = Factors = Variables
 - Edges: Dependencies of factors on variables.
- Semantic:

$$p(\mathbf{x}) = \prod_{f} f\left(\mathbf{x}_{V(f)}\right)$$

• Local variable dependency of factors

 $p(a,b,c) = f_1(a) \cdot f_2(b) \cdot f_3(a,b,c)$

Factor Graphs and Cloud Computing

 $p(\boldsymbol{\theta}|\mathbf{X},\mathbf{Y}) \propto \prod_{i} p(y_{i}|\boldsymbol{\theta},\mathbf{x}_{i}) \cdot \prod_{j} p(\theta_{j})$

Belief Store ("Memory")

Message Passing ("Communicate")

Data Messages ("Compute")

Factor Graphs and MXNet

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Finite Resource: Cost

Economics 101

- Profit = Revenue Cost
- In the long run, a business that generates negative profits is not viable!

Facebook	2015
Annual Revenue	\$17,928,000,000.00*
Daily Revenue	\$49,117,808.22
Number of DAU	1,038,000,000**
Number of Story Candidates	1,500***
Number of Daily Stories	1.557E+12
Maximum Cost per Story Candidate	\$0.0000315

*http://www.statista.com/statistics/277229/facebooks-annual-revenue-and-net-income/

**http://www.statista.com/statistics/346167/facebook-global-dau/

***https://www.facebook.com/business/news/News-Feed-FYI-A-Window-Into-News-

Feed

It's power, stupid!

Some constraints might not be obvious: building new datacenters and **powering** them is non-trivial.

Example: 1 GPU box = 20 CPU boxes (in terms of power consumption)

- Machine Learning in Practise
 - Probabilities
 - Finite Resource

Machine Learning @ Amazon

- Forecasting
- Machine Translation
- Visual Systems
- Conclusions and Challenges

Machine Learning Opportunities @ Amazon

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Demand Forecasting

Example fashion product to illustrate the challenges of forecasting.

Learning and Prediction

Slow Moving Inventory

Typical midsize dataset:

- About 5M items
- About 4.5B item-days
- About 98% zero demand

Sampling Predictions

 $P(z_{it} \mid \theta) \sim$

- 0 or ≥1 ? Binary classification #1
- 1 or ≥2 ? Binary classification #2
- If ≥2: Count regression z-2

In Practice

	x2	x3)		x ₅	
0	0			-0	
		(y) (z)	y _{is} Z ₄	(7) (Z)	

	x2	x3)	X4	x
(), (), (), (), (), (), (), (), (), (),	(7) (9) (9) (9) (9) (9) (9) (9) (9) (9) (9	(7)) (7)) (7)) (7)) (7)) (7)) (7))	90 90 90 70 24	() () () () () () () () () () () () () (

Modelling Out of Stock

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Product Machine Translation (2013 – 2015)

This product page was automatically translated. Was this translation helpful? Yes or No

Price: £12.03 & FREE Delivery in the UK. Details

Only 7 left in stock. Sold by Alle-Spielwaren and Fulfilled by Amazon. Gift-wrap available.

Want it delivered to Germany v by tomorrow, 18 March? Order within 5 hrs 41 mins and choose One-Day Delivery to Germany at checkout. Details

18 new from £7.11

- 10 cm / 4 in.
- This classic series of grasping toys has been perfected by Selecta for over 30 years.

> See more product details

Sockeye

- Sequence-to-sequence Neural Machine Translation package build on MXNet: <u>https://github.com/awslabs/sockeye</u>
- Support both CPU and GPU encoding and decoding
- Training

• Translating

> python -m sockeye.translate --models <model_dir> --use-cpu

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Automated Produce Inspection: The Goal

Current Inspection

	Defect	Decay	Bruising	Bruising	Overripe/Soft
Sample #	Defect Cat.	Serious	Damage	Serious	Serious
1	60	3	10	7	1
2	60	5	5	1	3
3	60	0	10	7	0
4	60	1	15	1	0
Total	240	9	40	16	4
% of Total	100%	4%	17%	7%	2%

New Automated Inspection

Computer Vision

Challenges

- Illumination
- Clutter/Occlusions
- Viewpoint
- Scale
- Intra-class variability

Predicting Longevity

Age Aligned Strawberries (Test Set)

d=54	id=48	id=43
d=23	id=27	id=6
d=27	id=9	id=25
d=23	id=10	id=22
	1000000	
d=15	id=26	id=9
	ALL SALE	
d=28	id=17	id=17

id=10

id=9

id=44

id=6

id=30

id=44

id=25

id=40

id=28

id=36

- Machine Learning in Practise
 - Probabilities
 - Finite Resource
- Machine Learning @ Amazon
 - Forecasting
 - Machine Translation
 - Visual Systems
- Conclusions and Challenges

Conclusions

- Machine Learning "translates" data from the past into accurate predictions about the future!
- In practice, probabilistic models and finite resources matter.
- Machine Learning helps to improve customer experience at Amazon!

Thanks!

