
Implicit generative models:
dual vs. primal approaches

Ilya Tolstikhin
MPI for Intelligent Systems

ilya@tue.mpg.de

Machine Learning Summer School 2017
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The task:

I There exists an unknown distribution PX over the data space X
and we have an i.i.d. sample X1, . . . , Xn from PX .

I Find a model distribution PG over X similar to PX .

We will work with latent variable models PG defined by 2 steps:

1. Sample a code Z from the latent space Z;

2. Map Z to G(Z) ∈ X with a (random) transformation G : Z → X .

pG(x) :=

∫
Z
pG(x|z)pz(z)dx.

All techniques mentioned in this talk share two features:

I While PG has no analytical expression, it is easy to sample from;

I The objective allows for SGD training.



Contents

1. Unsupervised generative modelling and implicit models

2. Distances on probability measures

3. GAN and f -GAN: minimizing f -divergences (dual formulation)

4. WGAN: minimizing the optimal transport (dual formulation)

5. VAE: minimizing the KL-divergence (primal formulation)

6. POT: minimizing the optimal transport (primal formulation)

7. Dual vs. primal: precision vs. recall? Unifying VAE and GAN

Most importantly:

WE NEED AN ADEQUATE WAY TO EVALUATE THE MODELS



How to measure a similarity between PX and PG?

I f-divergences Take any convex f : (0,∞)→ R with f(1) = 0.

Df (P‖Q) :=

∫
X
f

(
p(x)

q(x)

)
q(x)dx

I Integral Probability Metrics

Take any class F of bounded real-valued functions on X .

γF (P,Q) := sup
f∈F

∣∣EP [f(X)]− EQ[f(Y )]
∣∣

I Optimal transport Take any cost c(x, y) : X × X → R+.

Wc(P,Q) := inf
Γ∈P(X∼P,Y∼Q)

E(X,Y )∼Γ[c(X,Y )],

where P(X ∼ P, Y ∼ Q) is a set of all joint distributions of (X,Y )
with marginals P and Q respectively.
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The goal: minimize Df(PX‖PG) with respect to PG

Variational (dual) representation of f -divergences:

Df (P‖Q) = sup
T : X→dom(f∗)

EX∼P [T (X)]− EY∼Q
[
f∗
(
T (Y )

)]
where f∗(x) := supu x · u− f(u) is a convex conjugate of f .

Solving infPG Df (PX‖PG) is equivalent to

inf
G

sup
T

EX∼PX [T (X)]− EZ∼PZ
[
f∗
(
T (G(Z))

)]
(*)

1. Estimate expectations with samples:

≈ inf
G

sup
T

1

N

N∑
i=1

T (Xi)−
1

M

M∑
j=1

f∗
(
T (G(Zj))

)
.

2. Parametrize T = Tω and G = Gθ using any flexible functions
(eg. deep nets) and run SGD on (*).



The goal: minimize Df(PX‖PG) with respect to PG

Variational (dual) representation of f -divergences:

Df (P‖Q) = sup
T : X→dom(f∗)

EX∼P [T (X)]− EY∼Q
[
f∗
(
T (Y )

)]
where f∗(x) := supu x · u− f(u) is a convex conjugate of f .

Solving infPG Df (PX‖PG) is equivalent to

inf
G

sup
T

EX∼PX [T (X)]− EZ∼PZ
[
f∗
(
T (G(Z))

)]
(*)

1. Estimate expectations with samples:

≈ inf
G

sup
T

1

N

N∑
i=1

T (Xi)−
1

M

M∑
j=1

f∗
(
T (G(Zj))

)
.

2. Parametrize T = Tω and G = Gθ using any flexible functions
(eg. deep nets) and run SGD on (*).



Original Generative Adversarial Networks

Variational (dual) representation of f -divergences:

Df (PX‖PG) = sup
T : X→dom(f∗)

EX∼P [T (X)]− EZ∼PZ
[
f∗
(
T (G(Z))

)]
where f∗(x) := supu x · u− f(u) is a convex conjugate of f .

1. Take f(x) = −(x+ 1) log x+1
2 + x log x and f∗(t) = − log

(
2− et

)
.

The domain of f∗ is (−∞, log 2);

2. Take T = gf ◦ Tω, where gf (v) = log 2− log(1 + e−v);

3. Parametrize G = Gθ and Tω with deep nets

Up to additive 2 log 2 term infPG Df (PX‖PG) is equivalent to

inf
Gθ

sup
Tω

EX∼PX log
1

1 + e−Tω(X)
+ EZ∼PZ log

(
1− 1

1 + e−Tω
(
Gθ(Z)

))
Compare to the original GAN objective

inf
Gθ

sup
Tω

EX∼Pd [log Tω(X)] + EZ∼PZ [log
(
1− Tω(Gθ(Z))

)
].



Theory vs. practice: do we know what GANs do?

Variational (dual) representation of f -divergences:

Df (PX‖PG) = sup
T : X→dom(f∗)

EX∼P [T (X)]− EZ∼PZ
[
f∗
(
T (G(Z))

)]
where f∗(x) := supu x · u− f(u) is a convex conjugate of f .

inf
Gθ

sup
Tω

EX∼Pd [log Tω(X)] + EZ∼PZ [log
(
1− Tω(Gθ(Z))

)
].

GANs are not precisely solving infPG JS(PX‖PG), because:

1. GANs replace expectations with sample averages. Uniform lows of
large numbers may not apply, as our function classes are huge;

2. Instead of taking supremum over all possible witness functions T
GANs optimize over classes of DNNs;

3. In practice GANs never optimize Tω “to the end” because of various
computational/numerical reasons.



A possible criticism of f -divergences:

I When PX and PG are supported on disjoint manifolds f -divergences
often max out.

I This leads to numerical instabilities: no useful gradients for G.

I Consider PG′ and PG′′ supported on manifolds M ′ and M ′′.
Suppose d(M ′,MX) < d(M ′,MX), where MX is the true
manifold. f -divergences will often give the same numbers.

Possible solutions:

1. The smoothing: add a noise to both PX and PG before comparing.

2. Use other divergences, including IPMs and the optimal transport.



Minimizing MMD between PX and PG

I Take any reproducing kernel k : X × X → R. Let Bk be a unit ball
of the corresponding RKHS Hk.

I Maximum Mean Discrepancy is the following IPM:

γk(PX , PG) := sup
T∈Bk

|EPX [T (X)]− EPG [T (Y )]| (MMD)

I This optimization problem has a closed form analytical solution.

One can play the adversarial game using (MMD) instead of Df (PX‖PG):

I No need to train the discriminator T ;

I On the other hand, Bk is a rather restricted class;

I One can also train k adversarially, resulting in a stronger objective:

inf
PG

max
k

γk(PX , PG).
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Minimizing the 1-Wasserstein distance

1-Wasserstein distance is defined by

W1(P,Q) := inf
Γ∈P(X∼P,Y∼Q)

E(X,Y )∼Γ[d(X,Y )],

where P(X ∼ P, Y ∼ Q) is a set of all joint distributions of (X,Y ) with
marginals P and Q respectively and (X , d) is a metric space.

Kantorovich-Rubinstein duality:

W1(P,Q) = sup
T∈FL

|EPX [T (X)]− EPG [T (Y )]|, (KR)

where FL are all the bounded 1-Lipschitz functions on (X , d).

WGAN: In order to solve infPGW1(PX , PG) let’s play the adversarial
training card on (KR). Parametrize T = Tω using the weight clipping or
perform the gradient penalization.

Unfortunately, (KR) holds only for the 1-Wasserstein distance.
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VAE: Maximizing the marginal log-likelihood

inf
PG

KL(PX‖PG) ⇔ inf
PG
−EPX [log pG(X)].

Variational upper bound: for any conditional distribution Q(Z|X)

−EPX [log pG(X)] = EPX
[
KL
(
Q(Z|X), PZ

)
− EQ(Z|X)[log pG(X|Z)]

]
− EPX

[
KL
(
Q(Z|X), PG(Z|X)

)]
≤ EPX

[
KL
(
Q(Z|X), PZ

)
− EQ(Z|X)[log pG(X|Z)]

]
.

In particular, if Q is not restricted:

−EPX [log pG(X)] = inf
Q

EPX
[
KL
(
Q(Z|X), PZ

)
− EQ(Z|X)[log pG(X|Z)]

]
Variational Auto-Encoders use the upper bound and

I Latent variable models with any PG(X|Z), eg.N (X;G(Z), σ2 · I)

I Set PZ(Z) = N (Z; 0, I) and Q(Z|X) = N (Z;µ(X),Σ(X))

I Parametrize G = Gθ, µ, and Σ with deep nets. Run SGD.



AVB: reducing the gap in the upper bound

Variational upper bound:

−EPX [log pG(X)] ≤ inf
Q∈Q

EPX
[
KL
(
Q(Z|X), PZ

)
− EQ(Z|X)[log pG(X|Z)]

]
Adversarial Variational Bayes reduces the variational gap by

I Allowing for flexible encoders Qe(Z|X), defined implicitly by
random variables e(X, ε), where ε ∼ Pε;

I Replacing the KL divergence in the objective by the adversarial
approximation (any of the ones discussed above)

I Parametrize e with a deep net. Run SGD.

Downsides of VAE and AVB:

I Literature reports blurry samples. This is caused by the combination
of KL objective and the Gaussian decoder.

I Importantly, PG(X|Z) is trained only for encoded training points,
i.e. for Z ∼ Q(Z|X) and X ∼ PX . But we sample from Z ∼ PZ .



Unregularized Auto-Encoders

Variational upper bound:

−EPX [log pG(X)] ≤ inf
Q∈Q

EPX
[
KL
(
Q(Z|X), PZ

)
− EQ(Z|X)[log pG(X|Z)]

]
I The KL term in the upper bound may be viewed as a regularizer;

I Dropping it results in classical auto-encoders, where the
encoder-decoder pair tries to reconstruct all training images;

I In this case training images X often end up being mapped to
different spots chaotically scattered in the Z space;

I As a result, Z captures no useful representations. Sampling is hard.
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Minimizing the optimal transport
Optimal transport for a cost function c(x, y) : X × X → R+ is

Wc(PX , PG) := inf
Γ∈P(X∼PX ,Y∼PG)

E(X,Y )∼Γ[c(X,Y )],

If PG(Y |Z = z) = δG(z) for all z ∈ Z, where G : Z → X , we have

Wc(PX , PG) = inf
Q : QZ=PZ

EPXEQ(Z|X)

[
c
(
X,G(Z)

)]
,

where QZ is the marginal distribution of Z when X ∼ PX , Z ∼ Q(Z|X).
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Relaxing the constraint

Wc(PX , PG) = inf
Q : QZ=PZ

EPXEQ(Z|X)

[
c
(
X,G(Z)

)]
,

Penalized Optimal Transport replaces the constraint with a penalty:

POT(PX , PG) := inf
Q

EPXEQ(Z|X)

[
c
(
X,G(Z)

)]
+ λ ·D(QZ , PZ)

and uses the adversarial training in the Z space to approximate D.

I For the 2-Wasserstein distance c(X,Y ) = ‖X − Y ‖22 POT recovers
Adversarial Auto-Encoders;

I For the 1-Wasserstein distance c(X,Y ) = ‖X − Y ‖2 POT and
WGAN are solving the same problem from the primal and dual
forms respectively.

I Importantly, unlike VAE, POT does not force Q(Z|X = x) to
intersect for different x, which is known to lead to the blurriness.
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I GANs approach the problem from a dual perspective.

I They are known to produce very sharply looking images.

max
G

EZ∼PZ [T ∗(G(Z))]

I But notoriously hard to train, unstable (although many would
disagree), and sometimes lead to mode collapses.

I GANs come without an encoder.



(Gulrajani et al., 2017) aka Improved WGAN, 32X32 CIFAR-10



(Radford et al., 2015) aka DCGAN, 64X64 LSUN



I VAEs approach the problem from its primal.

I They enjoy a very stable training and often lead to diverse samples.

max
G

EX∼PXEZ∼Q(Z|X)[c
(
X,G(Z)

]
I But the samples look blurry

I VAEs come with encoders.

Various papers are trying to combine a stability and recall of VAEs with
the precision of GANs:

I Choose an adversarially trained cost function c;

I Combine AE costs with the GAN criteria;

I . . .



(Mescheder et al., 2017) aka AVB, CelebA



VAE trained on CIFAR-10, Z of 20 dim.



(Bousquet et al., 2017) aka POT, CIFAR-10, same architecture



(Bousquet et al., 2017) aka POT, CIFAR-10, test reconstruction
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