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Causality	



Roadmap	
• informal motivation

• structural causal models

• causal graphical models;

d-separation, Markov conditions, faithfulness

• do-calculus

• causal inference...

– using conditional independences

– using restricted function classes or scores

– using “autonomy” of causal mechanisms: IGCI and invariant condi-

tionals

– using time order

• implications for machine learning: SSL, transfer, confounder removal



Dependence vs. Causation 



Thanks to P. Laskov. 









•  Better to talk of dependence than correlation 
•  Most statisticians would agree that causality does tell us 

something about dependence 
•  But dependence does tell us something about causality 

too:       

“Correlation does not tell us anything about causality” 
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special case: 

Y X Y X 

Common Cause Principle 
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p(X,Y) 

(ii) Z screens X
and Y from each

other (given Z,
X und Y become

independent)

(Reichenbach)

(i) if X and Y are sta-

tistically dependent,

then there exists Z
causally influencing

both;



Notation 

• A,B event

• X, Y, Z random variable

• x value of a random variable

• Pr probability measure

• PX probability distribution of X

• p density

• pX or p(X) density of PX

• p(x) density of PX evaluated at the point x

• always assume the existence of a joint density, w.r.t. a product

measure



Independence 

Two events A and B are called independent if

Pr(A \ B) = Pr(A) · Pr(B).

A1, . . . , An are called independent if for every subset S ⇢ {1, . . . , n}
we have

Pr

 
\

i2S

Ai

!
=

Y

i2S

Pr(Ai).

Note: for n � 3, pairwise independence Pr(Ai\Aj) = Pr(Ai)·Pr(Aj)

for all i, j does not imply independence.



Independence of random variables 
Two real-valued random variables X and Y are called independent,

X ?? Y,

if for every a, b 2 R, the events {X  a} and {Y  b} are indepen-

dent.

Equivalently, in terms of densities: for all x, y,

p(x, y) = p(x)p(y)

Note:

If X ?? Y , then E[XY ] = E[X]E[Y ], and cov[X,Y ] = E[XY ]�E[X]E[Y ] = 0.

The converse is not true: cov[X,Y ] = 0 6) X ?? Y .

However, we have, for large F : (8f, g 2 F : cov[f(X), g(Y )] = 0) ) X ?? Y



Conditional Independence of random variables 

Two real-valued random variables X and Y are called conditionally

independent given Z,

(X ?? Y ) |Z or X ?? Y |Z or (X ?? Y |Z)p

if

p(x, y|z) = p(x|z)p(y|z)
for all x, y, and for all z s.t. p(z) > 0.

Note: it is possible to find X, Y which are conditionally independent

(given Z) but unconditionally dependent, and vice versa.



What is cause and what is effect? 



Autonomous/invariant mechanisms 

• intervention on a: raise the city, find that t changes

• hypothetical intervention on a: still expect that t
changes, since we can think of a physical mechanism

p(t|a) that is independent of p(a)

• we expect that p(t|a) is invariant across, say, di↵er-
ent countries in a similar climate zone



Independence of cause & mechanism 

• the conditional density p(t|a) (viewed as a function of

t and a) provides no information about the marginal

density function p(a)

• this also applies if we only have a single density



Independence of noise terms 

• view the distribution as entailed by a structural causal

model (SCM)

A := NA,

T := fT (A,NT ),

where NT ?? NA

• this allows identification of the causal graph under

suitable restrictions on the functional form of fT



Dependent noises can lead to dependent mechanisms 

A T 

N 

A ?? N

• consider the graph A ! T

• SCM

T = f(A,N)

If N can take d di↵erent values, it could switch between mech-

anisms f 1
(A), . . . , fd

(A)

• if A 6?? N , then N could “select” a mechanism f i
depending on

(the mechanism selected by) A





• a “structural” relation not only explains the observed data, it captures
a structure connecting the variables; related to autonomy and invariance
(Haavelmo 1943, Frisch 1948, ...)

• an equation system becomes structural by virtue of invariance to a do-
main of modifications (Harwich, 1962)

• “Simon’s invariance criterion:” the true causal order is the one that is
invariant under the right sort of intervention (Simon, 1953; Hoover, 2008)

• each parent-child relationship in the network represents a stable and au-
tonomous physical mechanism (Pearl, 2009)

• formalised using algorithmic information theory (Janzing & Schölkopf,
2010)



Definition of a Structural Causal Model 
           (Pearl et al.) 

• directed acyclic graph G with vertices X
1

, . . . , Xn

(following arrows does not lead to loops)

• Semantics: vertices = observables, arrows = direct causation

•Xi := fi(PAi, Ui) , with independent RVs U
1

, . . . , Un that possess a

joint density

• Ui stands for “unexplained” (alternatively “noise” or “exogenous variable”)

• this is also called a (nonlinear) structural equation model



Reichenbach’s Principle and causal sufficiency 

Z 

Y X 

fX fY

fZ

• this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence

can only arise in two vertices that depend (partly) on the same noise

term(s).

2. if we condition on these noise terms, the variables become independent

• Independence of noises is a form of ”causal su�ciency:” if the noises were

dependent, then Reichenbach’s principle would tell us the causal graph is

incomplete



Entailed distribution 

•Xi := fi(PAi, Ui),

with independent U1, . . . , Un.

• Recursively substitute the parent equations to getXi = gi(U1, . . . , Un),

with independent U1, . . . , Un.

• Each Xi is thus a RV and we get a joint distribution of X1, . . . , Xn,

called the observational distribution.

• The distribution and the DAG form a directed graphical model and

any directed graphical model can be written as a functional causal

model.



Entailed distribution 

• A structural causal model entails a joint distribution p(X1, . . . , Xn).

Questions:

(1)What can we say about it?

(2) Can we recover G from p?



Markov conditions (Lauritzen 1996, Pearl 2000) 

Theorem: the following are equivalent:

– Existence of a structural causal model

– Local Causal Markov condition: Xi statistically independent of

non-descendants, given parents (i.e.: every information exchange with its

non-descendants involves its parents)

– Global Causal Markov condition: “d-separation” (characterizes the

set of independences implied by local Markov condition — see below)

– Factorization p(X
1

, . . . , Xn) =
Q

i p (Xi | PAi)

(subject to technical conditions)

p (Xi | PAi) is called a causal conditional or causal Markov kernel.

It corresponds to the structural “equation” Xi := fi(PAi, Ui).

Not every conditional is causal — only those that condition on the

parents in our DAG.



Graphical Causal Inference (Spirtes, Glymour, Scheines, Pearl, ...) 

Question: How can we recoverG from a single p (e.g., from the observational

distribution)?
Answer: by conditional independence testing, infer a class containing
the correct G
(i.e., track how the noise information spreads).

Problems:

•Markov condition states (X ?? Y |Z)G ) (X ?? Y |Z)p, but
we need “faithfulness”: (X ?? Y |Z)G ( (X ?? Y |Z)p
(Sprites, Glamour, Scheines 2001)

Hard to justify for finite data (Uhler, Raskutti, Bühlmann, Yu, 2013).

• if the fi are complex, then conditional independence testing based
on finite samples becomes arbitrarily hard



Interventions and shifts 

•Definition. Replacing X

i

:= f

i

(PA

i

, U

i

) with another assignment

(e.g., X

i

:= const.) is called an intervention on X

i

.

• The entailed distribution is called the interventional distribution.

• This contains as special cases: domain shift distribution and covari-

ate shift distribution (see below).

• A general intervention corresponds to changing some causal con-

ditionals p(X

i

|PA
i

)



Principle of independent mechanisms 
• a precondition for interventions is that the mechanisms in

p(X1, . . . , Xn) =

nY

i=1

p (Xi | PAi)

are independent, hence changing one p (Xi | PAi) does not change the condition-

als p (Xj | PAj) for j 6= i — cf. independence of noise terms

• can help infer causal structures: exploit that the terms in one factorisation are

independent from each other (Janzing & Schölkopf, 2010); exploit that terms remain invari-

ant across domains (Peters et al., 2015; Zhang et al., 2015, Hoover, 1990), i.e., vary some of them

and check if the others remain unchanged

• can help in machine learning: semi-supervised learning (Schölkopf et al., 2012), domain

shift (Zhang et al., 2013), transfer learning (Rojas-Carulla et al., 2015)

Cf. independence of mechanisms (Janzing & Schölkopf, 2010), independence of cause and mechanism

(Janzing et al., 2012), autonomy, (structural) invariance, separability, exogeneity, stability, modular-

ity (Aldrich, 1989; Pearl, 2009)



Independence Principle: 
The causal generative 
process is composed of 
autonomous modules that 
do not inform or 
influence each other. 



The Ambassadors, Hans Holbein d.J. 
 
National Gallery, London 



Counterfactuals 

• David Hume (1711–76): “... we may define a cause to be an object, fol-
lowed by another, and where all the objects similar to the first are followed
by objects similar to the second. Or in other words where, if the first object
had not been, the second never had existed.”

• Jerzy Neyman (1923): consider m plots of land and ⌫ varieties of crop.

Denote Uij the crop yield that would be observed if variety i = 1, . . . , ⌫
were planted in plot j = 1, . . . ,m

For each plot j, we can only experimentally determine one Uij in each
growing season.

The others are called “counterfactuals”.

• this leads to the view of causal inference as a missing data problem — the
“potential outcomes” framework (Rubin, 1974)

• in a functional causal model, a counterfactual corresponds to an interven-
tion while freezing the values of the noise variables



Xi := fi(PAi, Ui) with
independent RVs U1, . . . , Un.

Can we recover G from p?

approach assumptions method intuition

graphical approach

(Pearl, Spirtes, Glymour,

Scheines)

noises jointly

independent;

faithfulness

conditional inde-

pendence testing

(n � 3)

track how the

noises spread

ICM

(Daniušis et al., UAI 2010;

Shajarisales et al., ICML 2015)

noises and fi
independent;

fi learnable

customized tests noises pick up

footprints of the

functions

additive noise model

(Peters, Mooij, Janzing,

Schölkopf, JMLR 2014)

Xi=fi(PAi)+Ui

with learnable fi

regression & un-

conditional inde-

pendence testing

restriction of

function class



Does it make sense to talk about 
causality without mentioning time? 

Does it make sense to talk about 
statistics without mentioning time? 



mechanistic 
model 

Y Y Y 

structural 
causal model 

Y Y Y 

causal 
graphical 
model 

Y Y N 

statistical 
model 

Y N N 

model predict in IID 
setting 

predict under 
changing 
distributions /
interventions 

answer 
counter-
factual 
questions 

Y 

N 

N 

N 

obtain 
physical 
insight 

? 

Y?? 

Y? 

Y 

automatically 
learn from 
data 

A Modeling Taxonomy 

ê 



UAI 2013 

See also Rubenstein, Bongers, Mooij, Schölkopf, 2016 



“imitate the superficial exterior of a process 
or system without having any understanding 
of the underlying substance". 
(source: http://philosophyisfashionable.blogspot.com/) 

 
-  for prediction in the IID setting, imitating the 

exterior of a process is often enough  
     (i.e., can disregard causal structure) 
-  anything else can benefit from causal learning 

“cargo cult” 



Interval 



Recall:

• causal structure formalized by DAG (directed cyclic graph) G with random

variables X1, . . . , Xn as nodes

• Causal Markov Condition states that density p(x1, . . . , xn) then factorizes

into

p(x1, . . . , xn) =
nY

j=1

p(xj |paj),

where paj denotes the values of the parents of Xj

• causal conditionals p(xj |paj) represent causal mechanisms



Pearl’s do-notation

• Motivation: goal of causality is to infer the e↵ect of

interventions

• distribution of Y given that X is set to x:

p(Y |doX = x) or p(Y |do x)

• don’t confuse it with P (Y |x)

• can be computed from p and G



Di↵erence between seeing and doing

p(y|x)

probability that someone gets 100 years old given that we know that he/she

drinks 10 cups of co↵ee per day

p(y|do x)

probability that some randomly chosen person gets 100 years old after he/she

has been forced to drink 10 cups of co↵ee per day



Computing p(X1, . . . , Xn

|do x
i

)

from p(X1, . . . , Xn

) and G

• Start with causal factorization

p(X1, . . . , Xn

) =

nY

j=1

p(X

j

|PA

j

)

• Replace p(X

i

|PA

i

) with �

Xixi

p(X1, . . . , Xn

|do x
i

) :=

Y

j 6=i

p(X

j

|PA

j

)�

Xixi



Computing p(X
k

|do x
i

)

summation over xi yields

p(X1, . . . , Xi�1, Xi+1, . . . , Xn|do xi) =

Y

j 6=i

p(Xj |PAj(xi)) .

• distribution of Xj with j 6= i is given by dropping p(Xi|PAi) and substi-

tuting xi into PAj to get PAj(xi).

• obtain p(Xk|do xi) by marginalization



Examples for p(.|do x) = p(.|x)



Examples for p(.|do x) ⇥= p(.|x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)



Example: controlling for confounding

X 6?? Y partly due to the confounder Z and partly due to X ! Y

• causal factorization

p(X,Y, Z) = p(Z)p(X|Z)p(Y |X,Z)

• replace P (X|Z) with �

Xx

p(Y, Z|do x) = p(Z) �

Xx

p(Y |X,Z)

• marginalize

p(Y |do x) =
X

z

p(z)p(Y |x, z) 6=
X

z

p(z|x)p(Y |x, z) = p(Y |x) .



Identifiability problem

e.g. Tian & Pearl (2002)

• given the causal DAG G and two nodes Xi, Xj

• which nodes need to be observed to compute p(Xi|do xj) ?



Inferring the DAG

• Key postulate: Causal Markov condition

• Essential mathematical concept: d-separation
(describes the conditional independences required by a causal DAG)



d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be blocked by the set Z if

• q contains a chain i⇤ m⇤ j or a fork i⇥ m⇤ j such
that the middle node is in Z, or

• q contains a collider i⇤ m⇥ j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally

(X ⌅⌅ Y |Z)G

if Z blocks every path from a node in X to a node in Y .



� �� �

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both



Example (unblocking of paths)

• path from X to Y is blocked by �

• unblocked by conditioning on Z or W or both



X Y

Z = X or Y

Unblocking by conditioning on common e↵ects

Berkson’s paradox (1946)

Example: X,Y, Z binary

X ?? Y but X 6?? Y |Z

• assume: for politicians there is no correlation between being a good speaker

and being intelligent

• politician is successful if (s)he is a good speaker or intelligent

• among the successful politicians, being intelligent is negatively correlated

with being a good speaker



Asymmetry under inverting arrows

(Reichenbach 1956)

X ⇥⇥ Y X �⇥⇥ Y

X �⇥⇥ Y |Z X ⇥⇥ Y |Z



� �� �

� �

Examples (d-separation)

(X ⇥⇥ Y |ZW )G

(X ⇥⇥ Y |ZUW )G

(X ⇥⇥ Y |V ZUW )G

(X �⇥⇥ Y |V ZU)G



Z 

Y X 
Y X 

Causal inference for time-ordered variables

assume X ⇥⇤⇤ Y and X earlier. Then X � Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it



X1 X2

X3 X4

Causal inference for time-ordered variables

assume X1, . . . , Xn are time-ordered and causally su�cient, i.e., there are no

hidden common causes and density is strictly positive

• start with complete DAG

• remove as many parents as possible:

p 2 PAj can be removed if

Xj ?? p |PAj \ p

(going from potential arrows to true arrows “only” requires

statistical testing)



Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

...
? ? ?

Time series and Granger causality

Does X cause Y and/or Y cause X?

exclude instantaeous e↵ects and common causes

• if

Ypresent 6?? Xpast |Ypast

there must be arrows from X to Y (otherwise d-separation)

• Granger (1969): the past of X helps when predicting Yt from its past

• strength of causal influence often measured by transfer entropy

I(Ypresent;Xpast |Ypast)



Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Zt-2 Zt-1 Zt Zt+1

v v v

Confounded Granger

Hidden common cause Z relates X and Y

due to di↵erent time delays we have

Ypresent 6?? Xpast |Ypast

but
Xpresent ?? Ypast |Xpast

Granger infers X ! Y



Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Why transfer entropy does not

quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

• although the influence is strong

I(Ypresent;Xpast |Ypast) = 0 ,

because the past of Y already determines its present

• quantitatively still wrong for non-deterministic relation

• see paper on definitions of causal strength: Janzing, Balduzzi, Grosse-

Wentrup, Schölkopf, Annals of Statistics 2013



Given:
causally su�cient set of variables X1, . . . , Xn with

• known causal DAG G

• known joint distribution P (X1, . . . , Xn)

X
2

X
1

X
3

Quantifying causal influence for general DAGs

Goal:

construct a measure that quantifies the strength of Xi!Xj

with the following properties:



X Y

Postulate 1: (mutual information)

For this simple DAG we postulate

cX!Y = I(X;Y )

(no other path from X to Y , hence the dependence is caused by the arrow

X ! Y )



Postulate 2: (localility)

causes of causes and e↵ects of e↵ects don’t matter

X Y

here we also postulate cX!Y = I(X;Y )



X

Z

Y

Postulate 3: (strength majorizes conditional dependence,

given the other parents)

cX!Y � I(X;Y |Z)

(without X ! Y the Markov condition would imply I(X;Y |Z) = 0)



X

Z

Y

Why cX!Y = I(X;Y |Z) is a bad idea

X

Z

Y

contains as a limiting case
(weak influence Z ! Y ),

where we postulated cX!Y = I(X;Y ) instead of I(X;Y |Z)



Our approach: “edge deletion”

X

Z

Y              X'  ~ P(X)

• define a new distribution

P

X!Y

(x, y, z) = P (z)P (x|z)
X

x

0

P (y|x0
, z)P (x

0
)

• define causal strength by the ’impact of edge deletion’

c

X!Y

:= D(PkP
X!Y

)

• intuition of edge deletion:

cut the wire between devices and feed the open end with an iid copy of

the original signal

related work:

Ay & Krakauer (2007)



• strength also defined for set of edges

• satisfies all our postulates

• also applicable to time series

• conceptually more reasonable than Granger causality and transfer entropy

Properties of our measure



Inferring the causal DAG without time information

• Setting: given observed n-tuples drawn from p(X1, . . . , Xn), infer G

• Key postulates: Causal Markov condition and causal faithfulness



Causal faithfulness
Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold
true that are implied by the Markov condition, i.e.,

(X ⇤⇤ Y |Z)G � (X ⇤⇤ Y |Z)p

Recall: Markov condition reads

(X ⇤⇤ Y |Z)G ⇥ (X ⇤⇤ Y |Z)p



Y

X

Z

�

�

�

Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = UX

Y = ↵X + UY

Z = �X + �Y + UZ

with independent noise terms UX , UY , UZ

� + ↵� = 0 ) X ?? Z



Y

X

Z =X�Y

(fair coins)

Examples of unfaithful distributions (2)

binary causes with XOR as e↵ect

• for p(X), p(Y ) uniform: X ?? Z, Y ?? Z .
i.e., unfaithful (since X,Z and Y, Z are connected in the graph).

• for p(X), p(Y ) non-uniform: X 6?? Z, Y 6?? Z .
i.e., faithful

unfaithfulness considered unlikely because it only occurs for
non-generic parameter values



Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:

• accept only those DAGs G as causal hypotheses for which

(X ?? Y |Z)G , (X ?? Y |Z)p .

• identifies causal DAG up to Markov equivalence class

(DAGs that imply the same conditional independences)



Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov

equivalent i↵ they have the same skeleton and the same

v-structures.

skeleton: corresponding undirected graph

v-structure: substructure X ! Y  Z with no edge between

X and Z



X Y Z

X Y Z

X Y Z

Markov equivalent DAGs

same skeleton, no v-structure

X �� Z |Y



Markov equivalent DAGs

same skeleton, same v-structure at W

X Y

Z

W

X Y

Z

W



Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:

1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

• graph is acyclic

• all v-structures have been found in 2)



X ?? Y |{Z,W}

. . . but not by conditioning on all other variables!

Construct skeleton

Theorem: X and Y are linked by an edge i↵ there is no set SXY

such that

(X ?? Y |SXY .

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened o↵ by

conditioning on an appropriate set

SXY is called a Sepset for (X,Y )



E�cient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X � Y with X ⇤⇤ Y

2. remove all edges X � Y for which there is a neighbor Z ⇥= Y
of X with X ⇤⇤ Y |Z

3. remove all edges X � Y for which there are two neighbors

Z1, Z2 ⇥= Y of X with X ⇤⇤ Y |Z1, Z2

4. ...



Advantages

• many edges can be removed already for small sets

• testing all sets SXY containing the adjacencies

of X is su�cient

• depending on sparseness, algorithm only requires

independence tests with small conditioning tests

• polynomial for graphs of bounded degree



Find v-structures

• given X � Y � Z with X and Y non-adjacent

• given SXY with X ?? Y |SXY

a priori, there are 4 possible orientations:

X ! Z ! Y
X  Z ! Y
X  Z  Y

9
=

; Z 2 SXY

X ! Z  Y Z 62 SXY

Orientation rule: create v-structure if Z 62 SXY



Direct further edges (Rule 1)

(otherwise we get a new v-structure)



�

�

�

�

�

�

Direct further edges (Rule 2)

(otherwise one gets a cycle)



Direct further edges (Rule 3)

could not be completed

without creating a cycle

or a new v-structure



Direct further edges (Rule 4)

could not be completed
without creating a cycle
or a new v-structure



X Y Z W

U

X Y Z W

U

Examples

(taken from Spirtes et al, 2010)

true DAG

start with fully connected undirected graph



X Y Z W

U

X Y Z W

U

remove all edges X � Y with X ?? Y |;

X ?? W Y ?? W

remove all edges having Sepset of size 1

X ?? Z |Y X ?? U |Y Y ?? U |Z W ?? U |Z



X Y Z W

U

X Y Z W

U

find v-structure

Z 62 SYW

orient further edges (no further v-structure)

edge X � Y remains undirected



Conditional independence tests

• discrete case: contingency tables

• multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)



Improvements

• CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

• FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

• for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh





Equivalence of Markov conditions 
Theorem: the following are equivalent:

– Existence of a structural causal model

– Local Causal Markov condition: Xj statistically independent of non-
descendants, given parents

– Global Causal Markov condition: d-separation

– Factorization p(X1, . . . , Xn) =
Q

j p (Xj | PAj)

(subject to technical conditions)



• Assume Xn is a terminal node, i.e., it has no descendants, then NDn =
{X1, . . . , Xn�1}. Thus the local Markov condition implies

Xn ?? {X1, . . . , Xn�1} |PAn .

• Hence the general decomposition

p(x1, . . . , xn) = p(xn|x1, . . . , xn�1)p(x1, . . . , xn�1)

becomes
p(x1, . . . , xn) = p(xn|pan)p(x1, . . . , xn�1) .

• Induction over n yields

p(x1, . . . , xn) =
nY

j=1

p(xj |paj) .

Local Markov ) factorization (Lauritzen 1996)



Factorization ) global Markov

(Lauritzen 1996)

Need to prove (X ?? Y |Z)G ) (X ?? Y |Z)p.

Assume (X ?? Y |Z)G

• define the smallest subgraph G0
containing X,Y, Z

and all their ancestors

• consider moral graph G0m
(undirected graph containing

the edges of G0
and links between all parents)

• use results that relate factorization of probabilities with

separation in undirected graphs



Global Markov ) local Markov

Know that if Z d-separates X,Y , then X ?? Y |Z.
Need to show that Xj ?? NDj |PAj .

Simply need to show that the parents PAj d-separateXj from its non-descendants
NDj :

All paths connecting Xj and NDj include a P 2 PAj , but never as a collider

·! P  Xj

Hence all paths are chains
·! P ! Xj

or forks
· P ! Xj

Therefore, the parents block every path between Xj and NDj .



X1
X2

X3

X4

X1
X2

X3

X4

G G'

structural causal model ) local Markov condition

(Pearl 2000)

• augmented DAG G0
contains unobserved noise

• local Markov-condition holds for G0
:

(i): the unexplained noise terms Uj are jointly independent, and thus

(unconditionally) independent of their non-descendants

(ii): for the Xj , we have

Xj ?? ND0
j |PA0

j

because Xj is a (deterministic) function of PA0
j .

• local Markov in G0
implies global Markov in G0

• global Markov in G0
implies local Markov in G (proof as previous slide)



factorization ) structural causal model

generate each p(Xj |PAj) in

p(X1, . . . , Xn) =

nY

j=1

p(Xj |PAj)

by a deterministic function:

• define a vector valued noise variable Uj

• each component Uj [paj ] corresponds to a possible value

paj of PAj

• define structural equation

xj = fj(paj , uj) := uj [paj ] .

• let component Uj [paj ] be distributed according to p(Xj |paj).

Note: joint distribution of all Uj [paj ] is irrelevant, only

marginals matter



Y

X

=g(X),        U  chooses g ∈ G   
                  

U

di↵erent point of view

• G denotes set of deterministic mechanisms

• U randomly chooses a mechanism



Y

X

U

= g(X), U chooses g � {ID, NOT, 1, 0}

Example: X, Y binary

the same p(X,Y ) can be induced by di↵erent distributions on G:

• model 1 (no causal link from X to Y )

P (g = 0) = 1/2, P (g = 1) = 1/2

• model 2 (random switching between ID and NOT )

P (g = ID) = 1/2, P (g = NOT ) = 1/2

both induce the uniform distribution for Y , independent of X



INTERVAL 



What’s the cause and what’s the e↵ect?



What’s the cause and what’s the e↵ect?

X (Altitude) ! Y (Temperature)



What’s the cause and what’s the e↵ect?



What’s the cause and what’s the e↵ect?

Y (Solar Radiation) ! X (Temperature)



What’s the cause and what’s the e↵ect?



What’s the cause and what’s the e↵ect?

X (Age) ! Y (Income)



What’s the cause and what’s the e↵ect?
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What’s the cause and what’s the e↵ect?

X (Day in the year) ! Y (Temperature)



Recap: Structural Causal Model 

X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• Xi = fi(ParentsOfi,Noisei), with jointly independent Noise1, . . . ,Noisen.

• entails p(X1, . . . , Xn) with particular conditional independence structure

Assuming Markov condition + faithfulness we can recover an equivalence
class containing the correct graph using conditional independence testing.

Problems:

1. does not work for graphs with only 2 vertices (even with infinite data)

2. if we don’t have infinite data, conditional independence testing can be
arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.



Restricting the Structural Causal Model 

X Y 

N 

• consider the graph X ! Y

• general functional model

Y = f(X,N)

Note: if N can take d di↵erent values, it could switch randomly

between mechanisms f 1
(X), . . . , fd

(X)

• additive noise model

Y = f(X) +N

X ?? N



X Y ? 

Causal Inference with Additive Noise, 2-Variable Case 

answer: generically, there is no model

X = g(Y ) +NX with Y ?? NX

additive noise model (ANM):

Y := f(X) +NY , with X ?? NY

Identifiability: when is there a

backward model of the same form?

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
Peters et al: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
Peters et al.: Detecting the Direction of Causal Time Series. ICML 2009



•  Assume noise of bounded range	

•  Additive noise model implies range of Y around f is constant	

•  For nonlinear f, range of X around backward function non-constant	

Intuition 



Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008) 

Theorem 1 (Identifiability of ANMs) For the purpose of this theorem, let

us call the ANM smooth if NY and X have strictly positive densities pNY and

pX and fY , pNY , and pX are three times di↵erentiable.

Assume that PY |X admits a smooth ANM from X to Y , and there exists a y 2 R
such that

(log pNY )
00
(y � fY (x))f

0
Y (x) 6= 0 (1)

for all but countably many values x. Then, the set of log densities log pX for

which the obtained joint distribution PX,Y admits a smooth ANM from Y to X

is contained in a 3-dimensional a�ne space.

Except for some rare cases, an ANM from X to Y induces a joint

distribution PXY that does not admit an ANM from Y to X



Idea of the proof

If p(x, y) admits an additive noise model

Y = f(X) +NY with X ?? NY

we have

p(x, y) = q(x)r(y � f(x)) .

It then satisfies the di↵erential equation

@

@x

✓
@

2
log p(x, y)/@x

2

@

2
log p(x, y)/@x@y

◆
= 0 .

If it also holds with exchanging x and y, only specific cases remain.



Alternative View (cf. Zhang & Hyvärinen, 2009) 

H di↵erential entropy

I mutual information

NY := Y � f(X), NX := X � g(Y ) residual noises

Lemma: For arbitrary joint distribution of X, Y and functions f ,
g : R ! R, we have:

H(X, Y ) = H(X)+H(NY )�I(NY : X) = H(Y )+H(NX)�I(NX : Y ).

Note: I(NY : 0) = 0 i↵ there is an additive noise model from X to
Y with function f , i.e.,

Y = f(X) +NY with NY ?? X.

Then
H(X) +H(NY )  H(Y ) +H(NX).

Hence, we can infer the causal direction by comparing sum of en-
tropies



Causal Inference Method 

Prefer the causal direction that can better be fit

with an additive noise model.

Implementation:

• Compute a function f as non-linear regression of X on Y

• Compute the residual

NY := Y � f (X)

• check whether NY and X are statistically independent (un-

correlated is not enough)



Experiments 

Relation between altitude (cause) and average temperature (effect) 
of places in Germany 
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Generalization of ANM: post-nonlinear model

Assume
Y = g(f(X) +NY ) with NY ?? X

Then, there is in the “generic” case no such a PNL model from Y to X

Zhang & Hyvärinen, UAI 2009



Side note on multivariate ANMs

For some DAG G with nodes X1, . . . , Xn assume

Xj = fj(PAj) +Nj

where all Nj are independent

• then one can identify the DAG G (except for some rare cases)

• distinguishes even between Markov equivalent DAGs

• avoids conditional independence testing: if all residuals Xj �fj(PAj) are

independent, PX1,...,Xn satisfies the Markov condition w.r.t. G

(addresses two problems with the conditional-independence based approach)

Peters et al, UAI 2011



Inferring conditional independences...

...from unconditional ones

Example: if there are functions f, g such that

X � f(Z) ?? Y � f(Z)

then

X ?? Y |Z.

(condition is su�cient, but not necessary)



Causal inference in brain research

Grosse-Wentrup, Janzing, Siegel, Schölkopf, NeuroImage 2016

Let X,Y be some brain state features and S some randomized experimental

condition (i.e., a parentless node!) Assume

S 6?? X

S 6?? Y

S ?? Y | X

then Markov condition and faithfulness imply

S ! X ! Y

applied to:

X: �-power in the parietal cortex

Y : �-power in the medial prefrontal cortex

S instruction to up- or down-regulate X
(conditional independence verified via regression)



So far, we have employed the presence of noise:

• in deterministic causal relations conditional independences get mostly triv-

ial

• ANM-based inference requires noise

What about the noiseless case?



Inferring deterministic causality Daniusis et al, UAI 2010

• Problem: infer whether Y = f(X) or X = f�1(Y ) is the right causal
model

• Idea: if X ! Y then f and the density pX are chosen independently “by
nature”

• Hence, peaks of pX do not correlate with the slope of f

• Then, peaks of pY correlate with the slope of f�1



Formalization 
Assume that f is a monotonously increasing bijection of [0, 1].

View p

x

and log f

0
as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):

Cov (log f

0
, p

x

) = 0

Note: this is equivalent to

Z 1

0
log f

0
(x)p(x)dx =

Z 1

0
log f

0
(x)dx,

since

Cov (log f

0
, p

x

) = E [ log f

0·p
x

]�E [ log f

0
]E [ p

x

] = E [ log f

0·p
x

]�E [ log f

0
].

Proposition:

Cov (log f

�10
, p

y

) � 0

with equality i↵ f = Id.



Testable implication / inference rule

• If X ! Y then

Z
log |f 0

(x)|p(x)dx 
Z

log |f�10
(y)|p(y)dy

(high density p(y) tends to occur at points with large slope)

• empirical estimator

ˆ

CX!Y :=

1

m

mX

j=1

log

����
yj+1 � yj

xj+1 � xj

���� ⇡
Z

log |f 0
(x)|p(x)dx

• infer X ! Y whenever

ˆ

CX!Y <

ˆ

CY!X .

“information geometric causal inference”



discussion of the ground truth and extensive performance studies for bivariate
causal inference methods:

Mooij et al: Distinguishing Cause from E↵ect Using Observational Data: Meth-
ods and Benchmarks, JMLR 2016

Benchmark dataset with 106 cause-e↵ect pairs

http://webdav.tuebingen.mpg.de/cause-effect/



   Cause-Effect Pairs − Examples 
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IGCI: 
Deterministic 
Method 
 
LINGAM: 
Shimizu et al., 
2006 
 
AN: 
Additive Noise 
Model (nonlinear) 
 
PNL: 
AN with post- 
nonlinearity 
 
GPI: 
Mooij et al., 
2010 
 
 
(source: Mooij et 
al, JMLR 2016) 



Independence of input and mechanism 

Causal structure:

C cause

E e↵ect

N noise

' mechanism

Assumption:

p(C) and p(E|C) are “independent”

Janzing & Schölkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire & Dirkx, 2007



Recall di↵erent aspects of independence

• informational: PC and PE|C don’t contain information about each other

• modularity: PC and PE|C often change independently across datasets

) machine learning should care about the causal direction in prediction tasks



Causal Learning and Anticausal Learning 
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012 

X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Source: http://commons.wikimedia.org/wiki/File:Peptide_syn.png causal mechanism '

• example 1: predict gene from mRNA sequence

• example 2: predict class membership from handwritten digit



Prediction with changing distributions

assume distributions PX and P 0
X di↵er between training and test data

• causal prediction, X = C, Y = E: use the same PY |X also for the test

data because probably PY |X remained the same (even if we knew that it

changed too we would still use PY |X in absence of a better candidate).

“covariate shift”

• anticausal prediction, X = E, Y = C: probably also PY |X has changed

(maybe only PY changed or only PX|Y )



Semi-supervised learning (SSL)

in addition to (x, y)-pairs, SSL uses unlabeled x-values to predict y from x

• causal prediction: PX doesn’t tell us something about PY |X , why should

unlabeled instances help?

(SSL requires more subtle phenomena to work)

• anticausal prediction: PX may contain information about PY |X there-

fore the unlabeled instances help

y=0 y=1 



Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, 2012, cf. Storkey, 2009; Bareinboim & Pearl, 2012 

X Y

NX NY

φ
id

prediction

causal mechanism '

X Y

NX NY

φ
id

prediction

Covariate Shift and Semi-Supervised Learning 

Anticausal learning

p(Y ) and p(X|Y ) independent

hence p(X) and p(Y |X) dependent

1. semi-supervised learning possible

2. p(Y |X) changes with p(X)

Goal: learn X 7! Y , i.e., estimate (properties of) p(Y |X)

Semi-supervised learning: improve estimate by more data from p(X)

Covariate shift: p(X) changes between training and test

Causal assumption: p(C) and mechanism p(E|C) “independent”

Causal learning

p(X) and p(Y |X) independent

1. semi-supervised learning hard
2. p(Y |X) invariant under change in p(X)



Semi-Supervised Learning (Schölkopf et al., ICML 2012) 

•  Known SSL assumptions link p(X) to p(Y|X): 
•  Cluster assumption: points in same cluster of p(X) have 

the same Y 
•  Low density separation assumption: p(Y|X) should cross 

0.5 in an area where p(X) is small 
•  Semi-supervised smoothness assumption: E(Y|X) should be 

smooth where p(X) is large 

•  Next slides: experimental analysis 

 



SSL Book Benchmark Datasets – Chapelle et al. (2006) 
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Supplementary Material for: On Causal and Anticausal Learning

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset

A
n

t
i
c
a

u
s
a

l
/
C

o
n

f
o

u
n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).



UCI Datasets used in SSL benchmark – Guo et al., 2010 
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Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset
A

n
t
i
c
a

u
s
a

l
/
C

o
n

f
o

u
n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).



Datasets, co-regularized LS regression – Brefeld et al., 2006 
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Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal or
Unclear

Categ. Dataset Target variable Remark

A
n

t
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c
a

u
s
a
l
/
C

o
n

f
o

u
n

d
e
d

breastTumor tumor size causing predictors such as inv-nodes and deg-malig
cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood

sugar
cleveland presence of heart disease in the pa-

tient
causing predictors such as chest pain type, resting blood pressure,
and fasting blood sugar

lowbwt birth weight causing the predictor indicating low birth weight
pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and

Albumin
pollution age-adjusted mortality rate per

100,000
causing the predictor number of 1960 SMSA population aged 65
or older

wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity

C
a

u
s
a
l

autoMpg city-cycle fuel consumption in
miles per gallon

caused by predictors such as horsepower and weight

cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
memory, and cache memory

fishcatch fish weight caused by predictors such as fish length and fish width
housing housing values in suburbs of

Boston
caused by predictors such as pupil-teacher ratio and nitric oxides
concentration

machine cpu cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-

tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-

ical linkages

U
n

c
l
e
a

r

auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
stock (target: price of one particular stock); strike (target: strike volume);
triazines (target: activity); veteran (survival in days)



Benchmark Datasets of Chapelle et al. (2006)  

Asterisk = 1-NN, SVM 
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Localizing distribution change Given
data points sampled from P (C,E) and additional points
from P

0(E) 6= P (E), we wish to decide whether P (C) or
P (E|C) has changed. To show that appropriate assump-
tions render this problem solvable, we sketch some rough
ideas. Let E = �(C) + NE , with the same � for both
distributions P (E,C) and P

0(E,C), but the distribution
of the noise NE or the distribution of C changes. Let
P (�(C)) denote the distribution of �(C).4 Then the
distributions of the effect are given by

P (E) = P (�(C)) ⇤ P (NE),

P

0(E) = P

0(�(C)) ⇤ P 0(NE) ,

where either P 0(�(C)) = P (�(C)) or P 0(NE) = P (NE).
In the following situations, for instance, we can decide
which of the cases is true:

1) If the Fourier transform of P (E) contains zeros, then
some of them correspond to zeros in the spectrum of
P (�(C)), the others to zeros of the spectrum of P (NE).
Then we may check which zeros still appear in P

0(E).

2) Suppose P (�(C)) and P

0(�(C)) are indecomposable
and P (NE) and P

0(NE) are zero mean Gaussian; then the
distribution P (E) = P (�(C)) ⇤ P (NE) uniquely deter-
mines P (�(C)) by deconvolving P (E) with the Gaussian
of maximal possible width that still yields a density.

Estimating causal conditionals Given
P

0(E), estimate P

0(E|C) under the assumption that
P (C) remains constant. Assume that P (E,C) and
P

0(E,C) have been generated by the additive noise model
E = �(C) + NE , with the same P (C) and �, while the
distribution of NE has changed. We have

P (E) = P (�(C)) ⇤ P (NE) ,

P

0(E) = P (�(C)) ⇤ P 0(NE) .

Hence, P

0(NE) can be obtained by the deconvolution
P

0(NE) = P (�(C)) ⇤�1
P

0(E) . This way, we can com-
pute the new conditional P 0(E|C).

Conditional ANM Given two data sets generated
by E = �(C) + NE and E

0 = �(C 0) + N

0
E , respec-

tively. We modify the algorithm of Mooij et al. (2009) to
obtain the shared function �, enforcing separate indepen-
dence C ?? NE and C

0 ?? N

0
E .

This can be interpreted as a generalized ANM model, en-
forcing conditional independence in E|i = �(C|i)+NE |i,
where i 2 {1, 2} is an index, and C ?? NE | i.

4Explicitly, it is derived from the distribution of C by
P (�(C) 2 A) = P (C 2 ��1(A)).
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Figure 5. Accuracy of base classifiers (star shape) and different
SSL methods on eight benchmark datasets.

5. Empirical Results
An evaluation of all methods described is beyond the scope
of this paper. We focus on assaying our main prediction
regarding the difficulty of SSL, and provide a toy example
applying Conditional ANM in transfer learning.

Semi-supervised classification We compare the perfor-
mance of SSL algorithms with that of base classifiers using
only labeled data. For many examples X is vector-valued.
We assign each dataset to one of three categories:
1. Anticausal/Confounded: (a) datasets in which at least
one feature Xi is an effect of the class Y to be predicted
(Anticausal) (includes also cyclic causal relations between
Xi and Y ) and (b) datasets in which at least one feature Xi

has an unobserved common cause with the class Y to be
predicted (Confounded). In both (a) and (b) the mechanism
P (Y |Xi) can be dependent on P (Xi). For these datasets,
additional data from P (X) may thus improve prediction.
2. Causal: datasets in which some features are causes of
the class, and there is no feature which (a) is an effect of the
class or (b) has a common cause with the class. If our as-
sumption on independence of cause and mechanism holds,
then SSL should be futile on these datasets.
3. Unclear: datasets which were difficult to be categorized
to one of the aforementioned categories. Some of the rea-
sons for that are incomplete documentation or lack of do-
main knowledge.

In practice, we count a dataset already as causal when we
believe that the dependence between X and Y is mainly

due to X causing Y , although additional confounding ef-
fects may be possible.

We first analyze the results in the benchmark chapter of a



Self-training does not help for causal problems (cf. Guo et al., 2010)  

Relative error decrease = (error(base) –error(self-train)) / error(base) 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR



Co-regularization helps for the anticausal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR



Co-regularization hardly helps for the causal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Causal Inference for Individual Objects (Janzing & Schölkopf, 2010) 

) try to quantify complexity of similarities



Kolmogorov complexity 



Conditional Kolmogorov complexity 

• K(y | x⇤
): length of the shortest program that generates y

from the shortest description of the input x. For simplicity, we

write K(y | x).
• number of bits required for describing y if the shortest descrip-

tion of x is given

• note: x can be generated from its shortest description but not

vice versa because there is no algorithmic way to

find the shortest compression



Algorithmic mutual information (Chaitin, Gacs) 

Information of x about y

• I (x : y) := K(x) +K(y)�K(x, y)

= K(x)�K(x | y) = K(y)�K(y | x)
• Interpretation: number of bits saved when compressing x, y

jointly rather than independently

• Algorithmic independence x ?? y : () I (x : y) = 0



 Conditional algorithmic mutual information 

Information that x has on y (and vice versa) when z is given

• I (x : y | z⇤) := K (x | z⇤) +K (y | z⇤)�K (x, y | z⇤)

• Analogy to statistical mutual information:

I (X : Y |Z) = S (X |Z) + S (Y |Z)� S (X, Y |Z)

• Conditional algor. independence x ?? y | z :() I (x : y | z) = 0



Algorithmic mutual information: example 



Postulate: Local Algorithmic Markov Condition 

Let x1, . . . , xn be observations (formalized as strings). Given its di-

rect causes paj, every xj is conditionally algorithmically independent

of its non-e↵ects ndj

xj ?? ndj | paj



Causal Markov Conditions 

• Recall the (Local) Causal Markov condition:

An observable is statistically independent of its non-descendants, given

parents

• Reformulation:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it



Causal Markov Conditions 

• Generalization:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it

• Algorithmic Causal Markov Condition:

Given all direct causes of an object, its non-e↵ects provide no additional

algorithmic information on it



Equivalence of Algorithmic Markov Conditions 
For n strings x1, . . . , xn the following conditions are equivalent

• Local Markov condition

I (xj : ndj | paj ) = 0

• Global Markov condition:

If R d-separates S and T then I (S : T |R) = 0

• Recursion formula for joint complexity

K(x1, . . . , xn) =

nX

j=1

K(xj | paj)

Janzing & Schölkopf, IEEE Trans. Information Theory, 2010



Algorithmic model of causality 

xj	

uj	

xj	

paj	

=T(paj,uj)	

• for every node xj there exists a program uj that computes xj

from its parents paj

• all uj are jointly independent

• the program uj represents the causal mechanism that generates

the e↵ect from its causes

• uj are the analog of the unobserved noise terms in the statistical

functional model

Theorem: this model implies the algorithmic Markov condition



Generalized independences Steudel, Janzing, Schölkopf (2010)

Given n objects O := {x1, . . . , xn}

Observation: if a function R : 2

O ! R+
0 is submodular, i.e.,

R(S) +R(T ) � R(S [ T ) +R(S \ T ) 8S, T ⇢ O

then

I(A;B |C) := R(A [ C) +R(B [ C)�R(A [B [ C)�R(C) � 0

for all disjoint sets A,B,C ⇢ O

Interpretation: I measures conditional dependence

(replace R with Shannon entropy to obtain usual mutual information)



Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

• local Markov condition

xj ?? ndj |paj

• global Markov condition: d-separation implies independence

• sum rule

R(A) =

X

j2A

R(xj |paj) ,

for every ancestral set A of nodes.

–but can we postulate that the conditions hold w.r.t. to the true DAG?



xj	 uj	

paj	

Generalized structural causal model

Theorem:

• assume there are unobserved objects u1, . . . , un

• assume

R(xj , paj , uj) = R(paj , uj)

(xj contains only information that is already contained in its parents +

noise object)

then x1, . . . , xn satisfy the Markov conditions

) causal Markov condition is justified provided that mechanisms fit to infor-

mation measure



Generalized PC

PC algorithm also works with generalized conditional independence

Examples:

1. R := number of di�erent words in a text

2. R := compression length (e.g. Lempel Ziv is approximately submodular)

3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (di�erent versions of
a paper abstract)



“Independent”= algorithmically independent?

Postulate (Janzing & Schölkopf, 2010, inspired by Lemeire & Dirkx, 2006):

The causal conditionals p(Xj |PAj) are algorithmically independent

• special case: p(X) and p(Y |X) are alg. independent for X ! Y

• abstract version: the mechanism that relates cause and e↵ect is algorith-

mically independent of the cause

• can be used as justification for novel inference rules (e.g., for additive noise

models: Steudel & Janzing 2010)

• excludes many, but not all violations of faithfulness (Lemeire & Janzing,

2012)



A Physical Example 

Particles scattered at an object

• by default, only the outgoing particles contain information about

the object

• time-reversing the scenario requires fine-tuning the incoming beam

• consider incoming and outgoing beams as ‘cause’ and ‘e↵ect’

• ‘cause’ contains no information about the mechanism relating cause

and e↵ect (the object), but ‘e↵ect’ does



Algorithmic independence of initial state and dynamics 

Independence Principle. If s is the initial state of a physical

system and M a map describing the e↵ect of applying the system

dynamics for some fixed time, then s and M are algorithmically inde-

pendent

I(s : M)

+
= 0,

i.e., knowing s does not enable a shorter description of M and vice

versa.



Reproduces the thermodynamic Arrow of Time 

Theorem [non-decrease of entropy]. Let D be a bijective map

on the set of states of a system then I(s : D)

+
= 0 implies

K(D(s))
+
� K(s)

Proof idea: If D(s) admits a shorter description than s, knowing D admits a shorter

description of s: just describe D(s) and then apply D�1
.

•K(s) has been proposed as physical entropy (Zurek, Bennett)

• entropy increase amounts to heat production (irreversible process)

Janzing, Chaves, Schölkopf: Algorithmic independence of initial condition and

dynamical law in thermodynamics and causal inference. New Journal of Physics,

2016



Common root of thermodyn. and causal inference

algorithmic independence of

cause

and

mechanism relating cause and e↵ect

• reproduces arrow of time in physics

• justifies new causal inference rules





Exoplanet Transits 

 
•  earth: annual 84ppm signal for ½ day, visible from 0.5% of all 

directions 

•  many planets found, but nothing quite like earth/sun 

•  both spacecraft and stars vary, leading to changes that are 
sometimes much bigger than the signal 



|  3 months  | 

half-siblings 

mit Hogg, Wang, Foreman-
Mackey, Janzing, Simon-Gabriel, 
Peters, Montet, and Morton. 
ICML 2015 
Astrophysical Journal 2015 
PNAS 2016 



Half-Sibling Regression 

Q N

Y X

unobserved

observed

Idea: remove E[Y |X ] from Y to reconstruct Q.

X ?? Q

X and Y share information

(only) through N

If we try to predict Y from X ,

we only pick up the part due to N

with David Hogg, Dan Foreman-Mackey, DunWang, Dominik Janzing,
Jonas Peters, Carl-Johann Simon-Gabriel (ICML 2015)



Q N

Y X

unobserved

observed

Proposition. Q,N, Y,X random variables, X ?? Q, and f measurable.

Define

• ˆQ := Y � E[Y |X].

Suppose E[Q] = 0 and

• Y = Q+ f(N) (additive noise model)

Then E[(

ˆQ�Q)

2
] = E[Var[f(N)|X]] .

If f(N) can (in principle) be predicted well from X,

then Q can be reconstructed well by

ˆQ.



R 

Proposition. R,N,Q jointly independent.

Suppose

X = g(N) +R

Recovery results if either

(i) magnitude of R goes to 0 (i.e., influence of stars negligible), or

(ii) R is a random vector whose components are jointly independent

(i.e., many independent stars).







Summary

• conventional causal inference algorithms use conditional statistical depen-
dences

• more recent approaches also use other properties of the joint distribution

• non-statistical dependences also tell us something about causal directions


