Causality

Dominik Janzing & Bernhard Schölkopf Max Planck Institute for Intelligent Systems Tübingen, Germany

http://ei.is.tuebingen.mpg.de

Roadmap

- informal motivation
- structural causal models
- causal graphical models; d-separation, Markov conditions, faithfulness
- do-calculus
- causal inference...
 - using conditional independences
 - using restricted function classes or scores
 - using "autonomy" of causal mechanisms: IGCI and invariant conditionals
 - using time order
- implications for machine learning: SSL, transfer, confounder removal

Dependence vs. Causation

Storks Deliver Babies (p= 0.008)

Robert Matthews

Article first published online: 25 DEC 2001 DOI: 10.1111/1467-9639.00013

Teaching Statistics Trust, 2000

TEACHING STATISTICS	
Re Informational Journal for	Teachers
20	
E construire de la cons	
925m	

Issue

Teaching Statistic Volume 22, Issue 38, June 2000 Country

28,750 83,860 30,520	100 300	3.2 7.6	83
	300	7.6	
30 520		7.0	87
50,520	1	9.9	118
111,000	5000	9.0	117
43,100	9	5.1	59
544,000	140	56	774
357,000	3300	78	901
132,000	2500	10	106
41,900	4	15	188
93,000	5000	11	124
301,280	5	57	551
312,680	30,000	mailto:rajm@con	npuserve.com
92,390	1500	10	120
237,500	5000	23	367
504,750	8000	39	439
d 41,290	150	6.7	82
779,450	25,000	56	1576
	111,000 43,100 544,000 357,000 132,000 41,900 93,000 301,280 312,680 92,390 237,500 504,750 d	111,000 5000 43,100 9 544,000 140 357,000 3300 132,000 2500 41,900 4 93,000 5000 301,280 5 312,680 30,000 92,390 1500 237,500 5000 d 41,290 150	111,000 5000 9.0 43,100 9 5.1 544,000 140 56 357,000 3300 78 132,000 2500 10 41,900 4 15 93,000 5000 11 301,280 5 57 312,680 30,000 mailto:rajm@con 92,390 1500 10 237,500 5000 23 504,750 8000 39 d 41,290 150 6.7

Storks

(pairs)

Area

 (km^2)

Humans

 (10^{6})

Birth rate

 $(10^{3}/vr)$

Table 1. Geographic, human and stork data for 17European countries

Welcome Excel Tips Charting Advanced Excel VBA Excel Dashboards Project Mgmt. Formulas Downloads

Amazon's recommendation system - is it crazy?

Posted on January 12th, 2008 in business , Humor , technology , wonder why - 6 comments

We have a saying in *Telugu* that goes like this, "*thaadu vundhi kada ani eddu kontama?*" which means, "just because you have a rope you dont buy a bullock to tie". Amazon's recommendation system must have been coded by someone with a skewed view of reality. How else can you explain this?

amazon.com	Hello. Sign in to get personalized recommeng			
	Your Amazon.com		🞁 Today's Deals 💌	
Shop All Departments 🛛 😒	Search	Electronic	s	~
Electronics	Brows	e Brands	Top Sellers	

See larger image and other views

Share your own customer images

Better Together

Buy this item with <u>HP Pavilion DV2610US 14.1" Entertainment</u> Hewlett-Packard today!

Total List Price: \$1,123.99 Buy Together Today: \$898.31

Other products by Mobi

List Price: \$49.99

Price: \$48.32 You Save: \$1.67 (3) Availability: In Stock.

Want it delivered Tum at checkout. See detail

21 used & new avail

The NEW ENGLAND JOURNAL of MEDICINE

HOME ARTICLES & MULTIMEDIA * ISSUES * SPECIALTIES & TOPICS * FOR AUTHORS * CME >

ORIGINAL ARTICLE

Association of Coffee Drinking with Total and Cause-Specific Mortality

Neal D. Freedman, Ph.D., Yikyung Park, Sc.D., Christian C. Abnet, Ph.D., Albert R. Hollenbeck, Ph.D., and Rashmi Sinha, Ph.D.

N Engl J Med 2012; 366:1891-1904 May 17, 2012

Abstract Article Referen

References Citing Articles (1)

BACKGROUND

Coffee is one of the most widely consumed beverages, but the association between coffee consumption and the risk of death remains unclear.

Full Text of Background...

METHODS

MAX-PLANCK-GESELLSCHAF

We examined the association of coffee drinking with subsequent total and cause-specific mortality among 229,119 men and 173,141 women in the National Institutes of Health–AARP Diet and Health Study who were 50 to 71 years of age at baseline. Participants with cancer, heart disease, and stroke were excluded. Coffee consumption was assessed once at baseline.

We present risk estimates separately for men and women. Multivariate models were adjusted for the following baseline factors: age; body-mass index (BMI); race or ethnic group; level of education; alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars, and time of smoking cessation (<1 year, 1 to <5 years, 5 to <10 years, or ≥10 years before baseline); health status; presence or absence of diabetes; marital status; level of physical activity; total energy intake; consumption of fruits, vegetables, red meat, white meat, and saturated fat; and use of any vitamin supplement (yes vs. no). In addition, risk estimates for death from cancer were adjusted for history of cancer (other than nonmelanoma skin cancer) in a first-degree relative (yes vs. no). For women, status with respect to postmenopausal hormone therapy was also included in multivariate models. Less than 5% of the cohort lacked any single covariate; for each covariate, we work

RESULTS

During 5,148,760 person-years of follow-up between 1995 and 2008, a total of 33,731 men and 18,784 women died. In age-adjusted models, the risk of death was increased among coffee drinkers. However, coffee drinkers were also more likely to smoke, and, after adjustment for tobacco-smoking status and other potential confounders, there was a significant inverse association between coffee consumption and mortality. Adjusted hazard ratios for death among men who drank

CONCLUSIONS

In this large prospective study, coffee consumption was inversely associated with total and cause-specific mortality. Whether this was a causal or associational finding cannot be determined from our data.

Subgroup		Men			Women
All causes of death					
Any coffee					+
Caffeinated		•	•		
Decaffeinated			4		
Cancer					
Any coffee			-		-
Caffeinated					-
Decaffeinated			•		
leart disease					
Any coffee			-		
Caffeinated		-	-		
Decaffeinated			-		
lespiratory disease					
Any coffee			-		
Caffeinated			+		
Decaffeinated			-		
itroke					
Any coffee					
Caffeinated					
Decaffeinated			-		•
njuries and accidents					
Any coffee			+		
Caffeinated			+		
Decaffeinated			•		
Diabetes					
Any coffee			_		•
Caffeinated			+		
Decaffeinated			+		•
nfections					
Any coffee					
Caffeinated			-		
Decaffeinated		•	-		
Other causes of death					
Any coffee					
Caffeinated					
Decaffeinated	_			_	
	0.25	0.50	1.00 1.50	0.25	0.50 1
		Hazard Ratio			Hazard Ratio
	-	Coffee Protective	Coffee a Risk		Coffee Protective
_	_			+	Fullscreen

Subgroup		Interaction		Interaction
All	+			
Years of follow-up	tala bitak Malaka di Jaka	0.30	States and a set	0.07
0 to <4				
4 to <9				
9 to 14				
Age at baseline		0.68		0.97
<60 yr				
60 to <65 yr				
a65 yr				
Smoking status		<0.001		0.002
Never				
Former				
Current				
Diabetes		<0.001		0.04
No	-•			
Yes				
BMI		<0.001		0.10
<18.5	•		•	
18.5 to <25				
25 to <30				
30 to <35				
a35				
No. of alcoholic drinks per day		0.76		0.16
0				
>0 to 1				
>1 to 3			-	
>3			•	
Health status		<0.001		<0.001
Poor to fair				
Good				
Very good to excellent			- -	
Red-meat consumption		0.70		0.69
Low				
High	-			
White-meat consumption		0.23		0.61
Low				
High				
Fruit consumption		0.16		0.64
Low				
High				
Vegetable consumption		0.01		0.48
Low				
High	•			
Supplemental vitamin use		0.25		0.38
No				
Yes	-		-	
Postmenopausal hormone therapy				0.45
No	and a second second second second			
Yes				
0.50	1.00 1.50 Hazard Ratio	0.50	1.00 Hazard Ratio	1.50
Coffe	e Protective Coffee a Risk	Cof	Tee Protective Cof	fee a Risk

Figure 1. Subgroup Analysis of Associations between the

Specific Mortality.

Consumption of 4 or More Cups of Coffee per Day and Total and Cause-

Hazard ratios for death from all causes and from specific causes are for the comparison of men and women who drank 4 or more cups of coffee per day with those who did not drink coffee. Participants were classified as drinking caffeinated or decaffeinated coffee according to whether they reported drinking caffeinated or decaffeinated coffee more than half the time. Risk estimates for other categories of coffee consumption are shown in Tables 2 and 3 in the Supplementary Appendix. Risk estimates were adjusted for the following factors at baseline: age; body-mass index; race or ethnic group; level of education; alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars, and time of smoking cessation (<1 year, 1 to <5 vegre 5 to <10 vegre or 10 vegre

Figure 2. Subgroup Analysis of Associations between the Consumption of 4 or More Cups of Coffee per Day and Total Mortality.

Hazard ratios for death from any cause are for the comparison of men and women who drank 4 or more cups of coffee per day with those who did not drink coffee. The multivariate model was adjusted for the following factors at baseline: age; body-mass index (BMI; the weight in kilograms divided by the square of the height in meters); race or ethnic group; level of education; alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars, and time of smoking cessation (<1 year, 1 to <5 years, 5 to <10 years, or 10 years before baseline); health status; diabetes (yes vs. no); marital status; physical activity; total energy intake; consumption of fruits, vegetables, red meat, white meat, and saturated fat; use or nonuse of vitamin supplements; and, in women, use or nonuse of postmenopausal hormone therapy. Risk estimates for other categories of coffee consumption are shown in Tables 4 and 5 in the Supplementary Appendix, High and low dietary-intake categories are split at the median. Horizontal lines represent 95% confidence intervals. P values for interactions were computed with the use of likelihood-ratio tests comparing Cox proportional-hazards models with and without cross-product terms for each level of baseline stratifying variables, with coffee consumption as an ordinal variable. P values for the years of follow-up were derived from testing the addition of a cross-product

Home |English |Suche |Index |Kontakt |Druckversion

|Universität |Fachbereiche |Studium |Forschung |Weiterbildung |International |Presse

12.12.2007

Deutsches Kinderkrebsregister untersucht Häufigkeit von Krebserkrankungen bei Kindern in der Nähe von Kernkraftwerken

Neue Studie veröffentlicht

Immer wieder wird der Verdacht geäußert, dass Kinder in der Nähe von Kernkraftwerken häufiger an Krebs erkranken. Eine frühere Studie des Kinderkrebsregisters mit Kindern unter 15 Jahren schien darauf hinzudeuten, dass speziell in den ersten Lebensjahren das Leukämie-Risiko in den betreffenden Gegenden erhöht war.

In diesen Tagen erscheinen zwei wissenschaftliche Veröffentlichungen über eine neue Studie des Deutschen Kinderkrebsregisters in Mainz. Das Ergebnis: In Deutschland findet man einen Zusammenhang zwischen der Nähe der Wohnung zu einem Kernkraftwerk und der Häufigkeit, mit der Kinder vor ihrem fünften Geburtstag an Krebs und besonders an Leukämie erkranken. Allerdings erlaubt die Studie keine Aussage darüber, wodurch sich die beobachtete Erhöhung der Anzahl von Kinderkrebsfällen in der Umgebung deutscher Kernkraftwerke erklären lässt. So kommt nach dem heutigen Wissensstand Strahlung, die von Kernkraftwerken im Normalbetrieb ausgeht, als Ursache für die beobachtete Risikoerhöhung nicht in Betracht. Denkbar wäre, dass bis jetzt noch unbekannte Faktoren beteiligt sind oder dass es sich doch um Zufall handelt.

🖂 Kontakt

Dr. Peter Kaatsch (Leiter des Deutschen Kinderkrebsregisters) Dt. Kinderkrebsregister am IMBEI Tel +49 6131 17-3111 E-Mail Homepage

Prof. Dr. Maria Blettner (Direktorin des IMBEI) Institut für Medizinische Biometrie, Epidemiologie und Informatik (IMBEI) Tel +49 6131 17-3252 E-Mail

"Correlation does not tell us anything about causality"

- Better to talk of dependence than correlation
- Most statisticians would agree that causality does tell us something about dependence
- But dependence does tell us something about causality too:

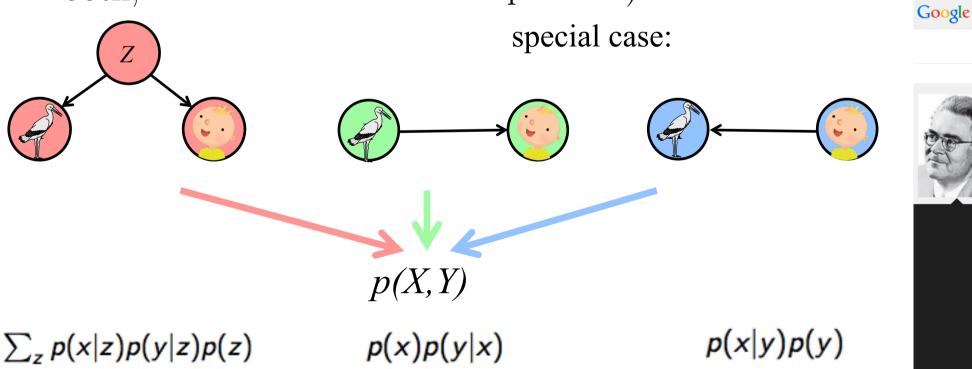
Common Cause Principle

(Reichenbach)

(i) if X and Y are sta- (ii) tistically dependent, then there exists Zcausally influencing both;

 $\begin{array}{ccc} Z & \text{screens} & X \\ \text{and } Y & \text{from each} \\ \text{other} & (\text{given } Z, \\ X & \text{und } Y & \text{become} \\ \text{independent} \end{array}$

by permission of the University of Pittsburgh. All rights reserved.



Notation

- A, B event
- X, Y, Z random variable
- x value of a random variable
- Pr probability measure
- P_X probability distribution of X
- p density
- p_X or p(X) density of P_X
- p(x) density of P_X evaluated at the point x
- always assume the existence of a joint density, w.r.t. a product measure

Independence

Two events A and B are called *independent* if

$$\Pr(A \cap B) = \Pr(A) \cdot \Pr(B).$$

 A_1, \ldots, A_n are called *independent* if for every subset $S \subset \{1, \ldots, n\}$ we have

$$\Pr\left(\bigcap_{i\in S}A_i\right) = \prod_{i\in S}\Pr(A_i).$$

Note: for $n \ge 3$, pairwise independence $\Pr(A_i \cap A_j) = \Pr(A_i) \cdot \Pr(A_j)$ for all i, j does not imply independence.

Independence of random variables

Two real-valued random variables X and Y are called *independent*,

$X \perp\!\!\!\perp Y,$

if for every $a, b \in \mathbb{R}$, the events $\{X \leq a\}$ and $\{Y \leq b\}$ are independent.

Equivalently, in terms of densities: for all x, y,

$$p(x,y) = p(x)p(y)$$

Note:

If $X \perp Y$, then E[XY] = E[X]E[Y], and $\operatorname{cov}[X, Y] = E[XY] - E[X]E[Y] = 0$. The converse is not true: $\operatorname{cov}[X, Y] = 0 \neq X \perp Y$.

However, we have, for large \mathcal{F} : $(\forall f, g \in \mathcal{F} : \operatorname{cov}[f(X), g(Y)] = 0) \Rightarrow X \perp Y$

Conditional Independence of random variables

Two real-valued random variables X and Y are called *conditionally* independent given Z,

$$(X \perp\!\!\!\perp Y) \mid Z \text{ or } X \perp\!\!\!\perp Y \mid Z \text{ or } (X \perp\!\!\!\perp Y \mid\!\! Z)_p$$

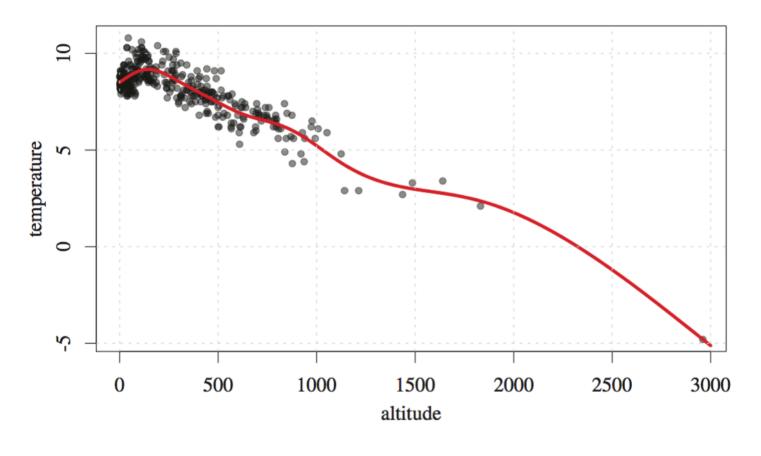
if

$$p(x, y|z) = p(x|z)p(y|z)$$

for all x, y, and for all z s.t. p(z) > 0.

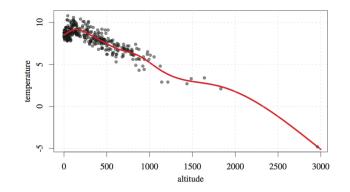
Note: it is possible to find X, Y which are conditionally independent (given Z) but unconditionally dependent, and vice versa.

What is cause and what is effect?



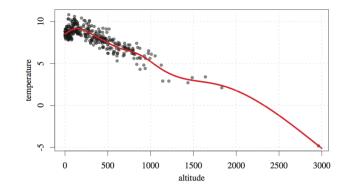
p(a,t) = p(a t) p(t)	$T \rightarrow A$
$= p(t a) \ p(a)$	$A \rightarrow T$

Autonomous/invariant mechanisms



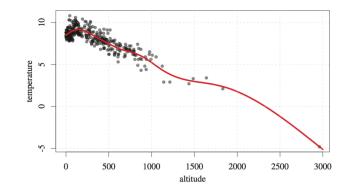
- intervention on a: raise the city, find that t changes
- hypothetical intervention on a: still expect that t changes, since we can think of a physical mechanism p(t|a) that is independent of p(a)
- we expect that p(t|a) is invariant across, say, different countries in a similar climate zone

Independence of cause & mechanism



- the conditional density p(t|a) (viewed as a function of t and a) provides no information about the marginal density function p(a)
- this also applies if we only have a single density

Independence of noise terms



• view the distribution as entailed by a structural causal model (SCM)

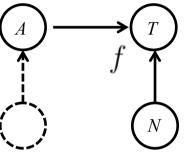
 $A := N_A,$ $T := f_T(A, N_T),$

where $N_T \perp N_A$

• this allows identification of the causal graph under suitable restrictions on the functional form of f_T

Dependent noises can lead to dependent mechanisms

• consider the graph $A \to T$



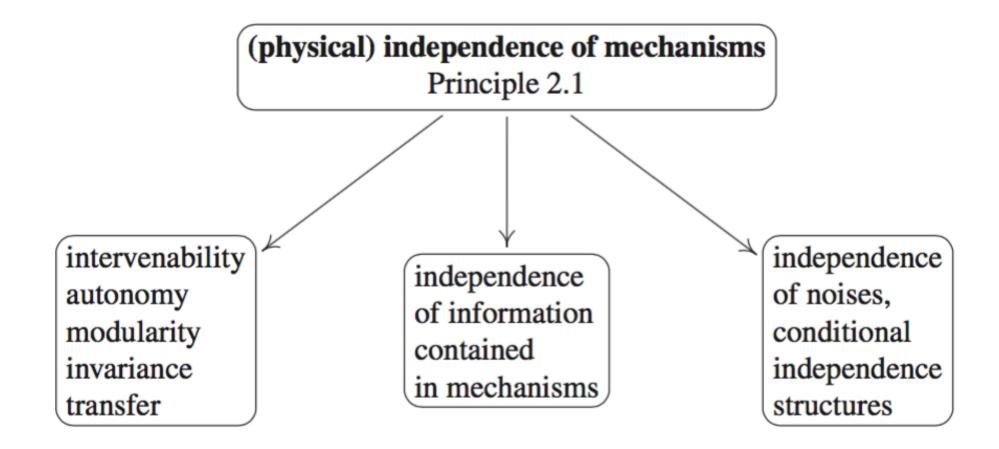
• SCM

$$T = f(A, N)$$

 $A \perp \!\!\!\perp N$

If N can take d different values, it could switch between mechanisms $f^1(A), \ldots, f^d(A)$

• if $A \not\perp N$, then N could "select" a mechanism f^i depending on (the mechanism selected by) A



Principle 2.1 (Independent Mechanisms) The causal generative process of a system's variables is composed of autonomous modules that do not inform or influence each other.

In the probabilistic case, this means that the conditional distribution of each variable given its causes (i.e., its mechanism) does not inform or influence the other conditional distributions. In case we have only two variables, this reduces to an independence between the cause distribution and the mechanism producing the effect distribution.

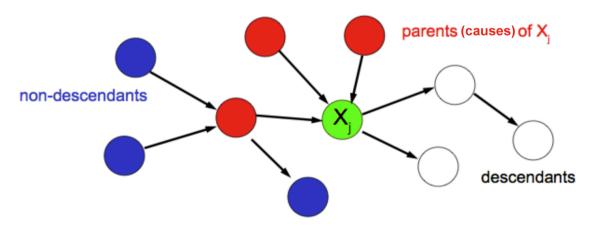
- a "structural" relation not only explains the observed data, it captures a structure connecting the variables; related to autonomy and invariance (Haavelmo 1943, Frisch 1948, ...)
- an equation system becomes **structural** by virtue of invariance to a domain of modifications (Harwich, 1962)
- "Simon's invariance criterion:" the true causal order is the one that is invariant under the right sort of intervention (Simon, 1953; Hoover, 2008)
- each parent-child relationship in the network represents a stable and autonomous physical mechanism (Pearl, 2009)

formalised using algorithmic information theory (Janzing & Schölkopf, 2010)

Definition of a Structural Causal Model

(Pearl et al.)

- directed acyclic graph G with vertices X_1, \ldots, X_n (following arrows does not lead to loops)
- Semantics: vertices = observables, arrows = direct causation
- $X_i := f_i(\text{PA}_i, U_i)$, with independent RVs U_1, \ldots, U_n that possess a joint density
- U_i stands for "unexplained" (alternatively "noise" or "exogenous variable")
- this is also called a (nonlinear) structural equation model



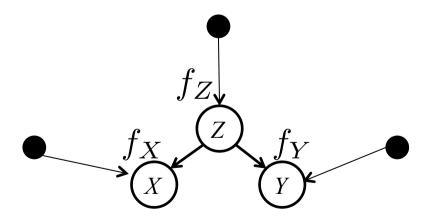
Reichenbach's Principle and causal sufficiency

• this model can be shown to satisfy Reichenbach's principle:

1. functions of independent variables are independent, hence dependence can only arise in two vertices that depend (partly) on the same noise term(s).

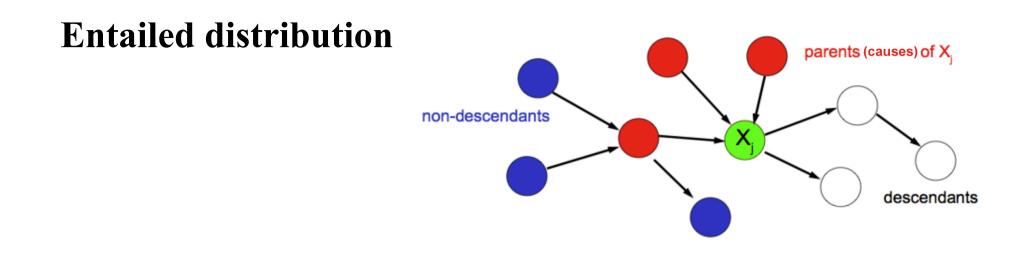
2. if we condition on these noise terms, the variables become independent

• Independence of noises is a form of "causal sufficiency:" if the noises were dependent, then Reichenbach's principle would tell us the causal graph is incomplete



• $X_i := f_i(\text{PA}_i, U_i)$, with independent U_1, \ldots, U_n .

- Recursively substitute the parent equations to get $X_i = g_i(U_1, \ldots, U_n)$, with independent U_1, \ldots, U_n .
- Each X_i is thus a RV and we get a joint distribution of X_1, \ldots, X_n , called the *observational distribution*.
- The distribution and the DAG form a *directed graphical model* and any directed graphical model can be written as a functional causal model.



• A structural causal model entails a joint distribution $p(X_1, \ldots, X_n)$. Questions:

(1) What can we say about it?
(2) Can we recover G from p?

Markov conditions (Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

- Existence of a structural causal model
- Local Causal Markov condition: X_i statistically independent of non-descendants, given parents (i.e.: every information exchange with its non-descendants involves its parents)
- Global Causal Markov condition: "d-separation" (characterizes the set of independences implied by local Markov condition see below)
- Factorization $p(X_1, \ldots, X_n) = \prod_i p(X_i | PA_i)$

(subject to technical conditions)

 $p(X_i | \text{PA}_i)$ is called a *causal conditional* or *causal Markov kernel*. It corresponds to the structural "equation" $X_i := f_i(\text{PA}_i, U_i)$.

Not every conditional is causal — only those that condition on the parents in our DAG.

Graphical Causal Inference (Spirtes, Glymour, Scheines, Pearl, ...)

Question: How can we recover G from a single p (e.g., from the observational distribution)?

Answer: by conditional independence testing, infer a class containing the correct G

(i.e., track how the noise information spreads). non-descendants

Problems:

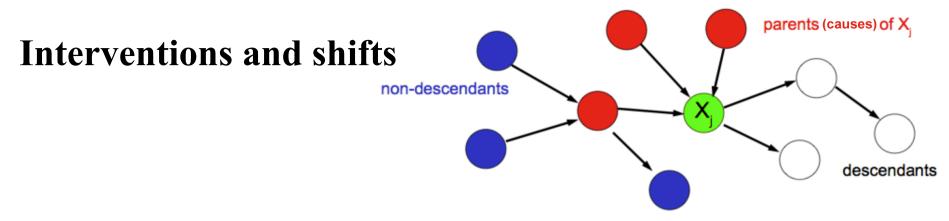
• Markov condition states $(X \perp \!\!\!\perp Y \mid \!\!\!Z)_G \implies (X \perp \!\!\!\perp Y \mid \!\!\!Z)_p$, but we need "faithfulness": $(X \perp \!\!\!\perp Y \mid \!\!\!Z)_G \iff (X \perp \!\!\!\perp Y \mid \!\!\!Z)_p$

descendants

(Sprites, Glamour, Scheines 2001)

Hard to justify for finite data (Uhler, Raskutti, Bühlmann, Yu, 2013).

• if the f_i are complex, then conditional independence testing based on finite samples becomes arbitrarily hard



- **Definition.** Replacing $X_i := f_i(\text{PA}_i, U_i)$ with another assignment (e.g., $X_i := const.$) is called an *intervention* on X_i .
- The entailed distribution is called the *interventional distribution*.
- This contains as special cases: domain shift distribution and covariate shift distribution (see below).
- A general intervention corresponds to changing some causal conditionals $p(X_i | PA_i)$

Principle of *independent mechanisms*

• a precondition for interventions is that the mechanisms in

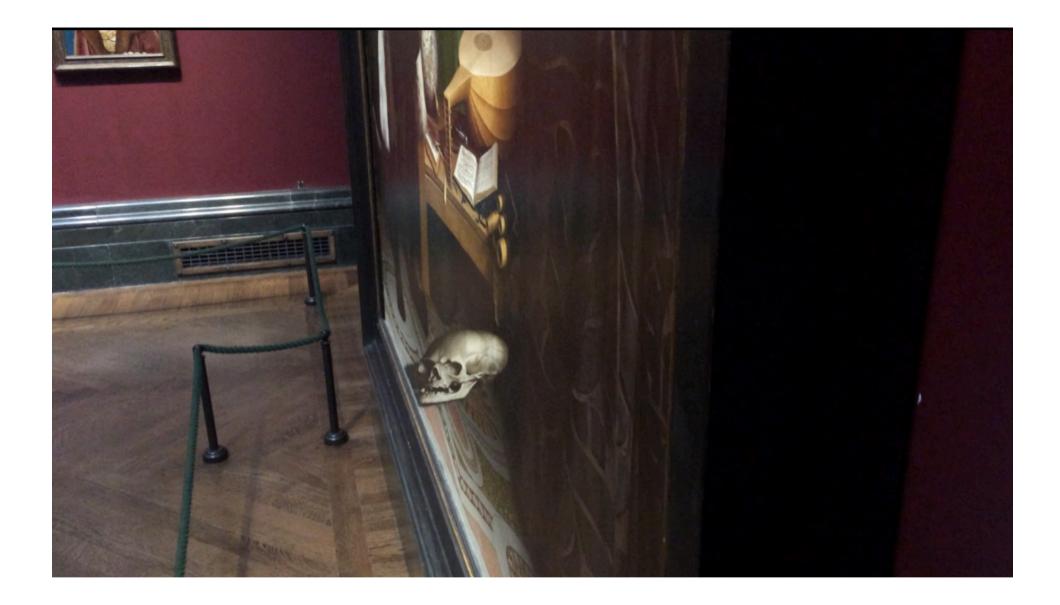
$$p(X_1,\ldots,X_n) = \prod_{i=1}^n p(X_i \mid \mathsf{PA}_i)$$

are independent, hence changing one $p(X_i | PA_i)$ does not change the conditionals $p(X_j | PA_j)$ for $j \neq i - cf$. independence of noise terms

- can help infer causal structures: exploit that the terms in one factorisation are independent from each other (*Janzing & Schölkopf, 2010*); exploit that terms remain invariant across domains (*Peters et al., 2015; Zhang et al., 2015, Hoover, 1990*), i.e., vary some of them and check if the others remain unchanged
- can help in machine learning: semi-supervised learning (Schölkopf et al., 2012), domain shift (Zhang et al., 2013), transfer learning (Rojas-Carulla et al., 2015)

Cf. independence of mechanisms (Janzing & Schölkopf, 2010), independence of cause and mechanism (Janzing et al., 2012), autonomy, (structural) invariance, separability, exogeneity, stability, modularity (Aldrich, 1989; Pearl, 2009)

Independence Principle: The causal generative process is composed of autonomous modules that do not inform or influence each other.



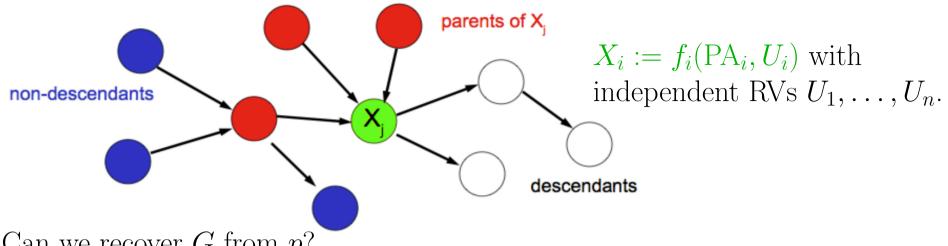
Counterfactuals

- David Hume (1711–76): "... we may define a cause to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second. Or in other words where, if the first object had not been, the second never had existed."
- Jerzy Neyman (1923): consider m plots of land and ν varieties of crop. Denote U_{ij} the crop yield that *would be* observed if variety $i = 1, \ldots, \nu$ were planted in plot $j = 1, \ldots, m$

For each plot j, we can only experimentally determine one U_{ij} in each growing season.

The others are called "counterfactuals".

• this leads to the view of causal inference as a missing data problem — the "potential outcomes" framework (Rubin, 1974)



Can we recover G from p?

approach	assumptions	method	intuition
graphical approach	noises jointly	conditional inde-	track how the
(Pearl, Spirtes, Glymour,	independent;	pendence testing	noises spread
Scheines)	faithfulness	$(n \ge 3)$	
ICM	noises and f_i	customized tests	noises pick up
(Daniušis et al., UAI 2010;	independent;		footprints of the
Shajarisales et al., ICML 2015)	f_i learnable		functions
additive noise model	$X_i = f_i(\mathrm{PA}_i) + U_i$	regression & un-	restriction of
(Peters, Mooij, Janzing,	with learnable f_i	conditional inde-	function class
Schölkopf, JMLR 2014)		pendence testing	

Does it make sense to talk about causality without mentioning time?

Does it make sense to talk about statistics without mentioning time?

A Modeling Taxonomy

model	predict in IID setting	predict under changing distributions / interventions	answer counter- factual questions	obtain physical insight	automatically learn from data
mechanistic model	Y	Y	Y	Y	?
structural causal model	Y	Y	Y	N	Y??
causal graphical model	Y	Y	N	N	Y?
statistical model	Y	N	N	N	Y

From Ordinary Differential Equations to Structural Causal Models: the deterministic case

Joris M. Mooij Institute for Computing and Information Sciences Radboud University Nijmegen The Netherlands

Abstract

We show how, and under which conditions, the equilibrium states of a first-order Ordinary Differential Equation (ODE) system can be described with a deterministic Structural Causal Model (SCM). Our exposition sheds more light on the concept of causality as expressed within the framework of Structural Causal Models, especially for cyclic models.

Dominik Janzing Max Planck Institute for Intelligent Systems Tübingen, Germany Bernhard Schölkopf Max Planck Institute for Intelligent Systems Tübingen, Germany

algorithms (starting from different assumptions) have been proposed for inferring cyclic causal models from observational data (Richardson, 1996; Lacerda et al., 2008; Schmidt and Murphy, 2009; Itani et al., 2010; Mooij et al., 2011).

The most straightforward extension to the cyclic case seems to be offered by the structural causal model framework. Indeed, the formalism stays intact when one simply drops the acyclicity constraint. However, the question then arises how to interpret cyclic structural equations. One option is to assume an under-

UAI 2013

See also Rubenstein, Bongers, Mooij, Schölkopf, 2016

"imitate the superficial exterior of a process or system without having any understanding of the underlying substance".

(source: http://philosophyisfashionable.blogspot.com/)

"cargo cult"

- for prediction in the IID setting, imitating the exterior of a process is often enough (i.e., can disregard causal structure)
- anything else can benefit from causal learning

Interval

Recall:

- causal structure formalized by DAG (directed cyclic graph) G with random variables X_1, \ldots, X_n as nodes
- Causal Markov Condition states that density $p(x_1, \ldots, x_n)$ then factorizes into

$$p(x_1,\ldots,x_n) = \prod_{j=1}^n p(x_j|pa_j),$$

where pa_j denotes the values of the parents of X_j

• causal conditionals $p(x_j | pa_j)$ represent causal mechanisms

Pearl's do-notation

- Motivation: goal of causality is to infer the effect of interventions
- distribution of Y given that X is set to x:

p(Y|do X = x) or p(Y|do x)

- don't confuse it with P(Y|x)
- $\bullet\,$ can be computed from p and G

Difference between seeing and doing

p(y|x)

probability that someone gets 100 years old given that we know that he/she drinks 10 cups of coffee per day

p(y|dox)

probability that some randomly chosen person gets 100 years old after he/she has been forced to drink 10 cups of coffee per day

Computing
$$p(X_1, \ldots, X_n | do x_i)$$

from $p(X_1,\ldots,X_n)$ and G

• Start with causal factorization

$$p(X_1,\ldots,X_n) = \prod_{j=1}^n p(X_j|PA_j)$$

• Replace $p(X_i|PA_i)$ with $\delta_{X_ix_i}$

$$p(X_1, \dots, X_n | do x_i) := \prod_{j \neq i} p(X_j | PA_j) \delta_{X_i x_i}$$

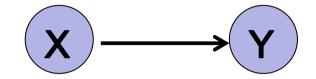
Computing
$$p(X_k | do x_i)$$

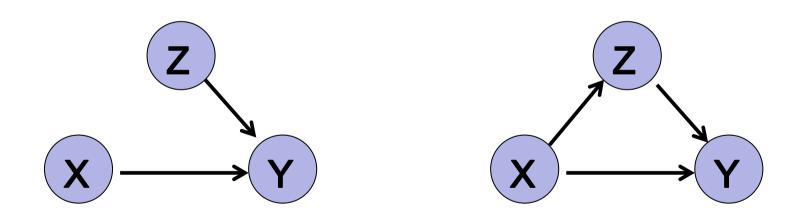
summation over x_i yields

$$p(X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_n | do x_i) = \prod_{j \neq i} p(X_j | PA_j(x_i)).$$

- distribution of X_j with $j \neq i$ is given by dropping $p(X_i | PA_i)$ and substituting x_i into PA_j to get $PA_j(x_i)$.
- obtain $p(X_k | do x_i)$ by marginalization

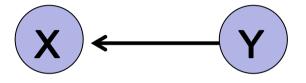
Examples for p(.|do x) = p(.|x)



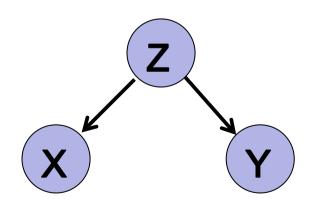


Examples for $p(.|do x) \neq p(.|x)$

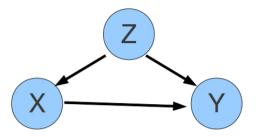
•
$$p(Y|dox) = P(Y) \neq P(Y|x)$$



• $p(Y|dox) = P(Y) \neq P(Y|x)$



Example: controlling for confounding



 $X \not\perp Y$ partly due to the confounder Z and partly due to $X \to Y$

• causal factorization

$$p(X, Y, Z) = p(Z)p(X|Z)p(Y|X, Z)$$

• replace P(X|Z) with δ_{Xx}

$$p(Y, Z | do x) = p(Z) \ \delta_{Xx} \ p(Y | X, Z)$$

• marginalize

$$p(Y|do x) = \sum_{z} p(z)p(Y|x, z) \neq \sum_{z} p(z|x)p(Y|x, z) = p(Y|x).$$

Identifiability problem

e.g. Tian & Pearl (2002)

• given the causal DAG G and two nodes X_i, X_j

• which nodes need to be observed to compute $p(X_i | do x_j)$?

Inferring the DAG

• Key postulate: Causal Markov condition

• Essential mathematical concept: d-separation (describes the conditional independences required by a causal DAG)

d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be **blocked** by the set Z if

- q contains a chain $i \to m \to j$ or a fork $i \leftarrow m \to j$ such that the middle node is in Z, or
- q contains a *collider* $i \to m \leftarrow j$ such that the middle node is not in Z and such that no descendant of m is in Z.

Z is said to **d-separate** X and Y in the DAG G, formally

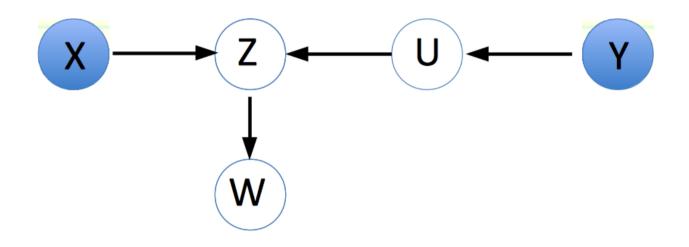
$$(X \perp\!\!\!\perp Y \mid\!\! Z)_G$$

if Z blocks every path from a node in X to a node in Y.

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both

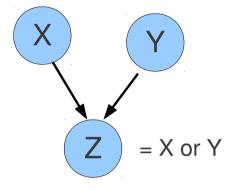
Example (unblocking of paths)



- path from X to Y is blocked by \emptyset
- unblocked by conditioning on Z or W or both

Unblocking by conditioning on common effects

Berkson's paradox (1946) Example: X, Y, Z binary

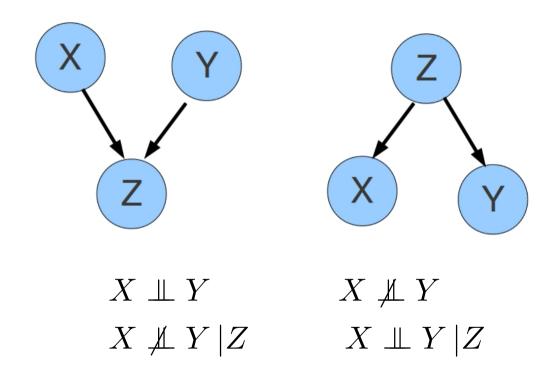


 $X \perp\!\!\!\perp Y \quad \text{but} \quad X \not\perp\!\!\!\perp Y \mid \!\! Z$

- assume: for politicians there is no correlation between being a good speaker and being intelligent
- politician is successful if (s)he is a good speaker or intelligent
- among the successful politicians, being intelligent is negatively correlated with being a good speaker

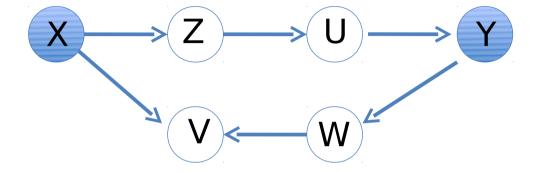
Asymmetry under inverting arrows

(Reichenbach 1956)



$(X \not\perp Y | VZU)_G$

 $(X \perp \!\!\!\perp Y \mid \! ZW)_G$ $(X \perp \!\!\!\perp Y \mid \! ZUW)_G$ $(X \perp \!\!\!\perp Y \mid \! VZUW)_G$



Examples (d-separation)

Causal inference for time-ordered variables

assume $X \not\perp Y$ and X earlier. Then $X \leftarrow Y$ excluded, but still two options:

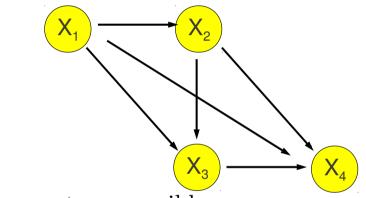
Example (Fukumizu 2007): barometer falls before it rains, but it does not cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not solve it

Causal inference for time-ordered variables

assume X_1, \ldots, X_n are time-ordered and **causally sufficient**, i.e., there are no hidden common causes and density is strictly positive

• start with complete DAG



• remove as many parents as possible:

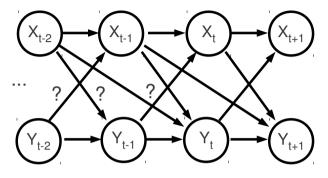
 $p \in PA_j$ can be removed if

$$X_j \perp p | PA_j \setminus p$$

(going from potential arrows to true arrows "only" requires statistical testing)

Time series and Granger causality

Does X cause Y and/or Y cause X?



exclude instantaeous effects and common causes

• if

$$Y_{present} \not\perp X_{past} | Y_{past}$$

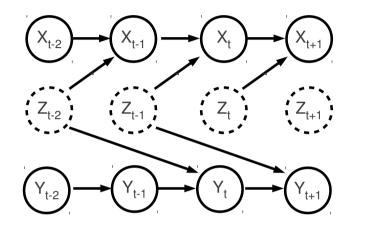
there must be arrows from X to Y (otherwise d-separation)

- Granger (1969): the past of X helps when predicting Y_t from its past
- strength of causal influence often measured by transfer entropy

$$I(Y_{present}; X_{past} | Y_{past})$$

Confounded Granger

Hidden common cause Z relates X and Y



due to different time delays we have

 $Y_{present} \not \perp X_{past} \mid Y_{past}$

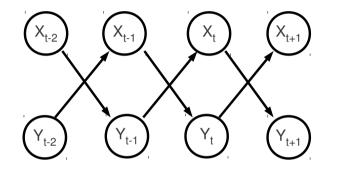
but

 $X_{present} \perp Y_{past} | X_{past}$

Granger infers $X \to Y$

Why transfer entropy does not quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y



• although the influence is strong

 $I(Y_{present}; X_{past} | Y_{past}) = 0,$

because the past of Y already determines its present

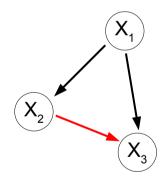
- quantitatively still wrong for non-deterministic relation
- see paper on definitions of causal strength: Janzing, Balduzzi, Grosse-Wentrup, Schölkopf, Annals of Statistics 2013

Quantifying causal influence for general DAGs

Given:

causally sufficient set of variables X_1, \ldots, X_n with

- known causal DAG ${\cal G}$
- known joint distribution $P(X_1, \ldots, X_n)$



Goal:

construct a measure that quantifies the strength of $X_i \rightarrow X_j$ with the following properties:

Postulate 1: (mutual information)

For this simple DAG we postulate

$$c_{X \to Y} = I(X;Y)$$

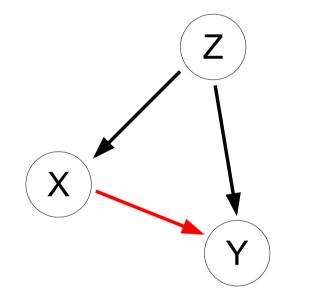
(no other path from X to Y, hence the dependence is caused by the arrow $X \to Y$)

Postulate 2: (localility)

causes of causes and effects of effects don't matter

here we also postulate $c_{X \to Y} = I(X;Y)$

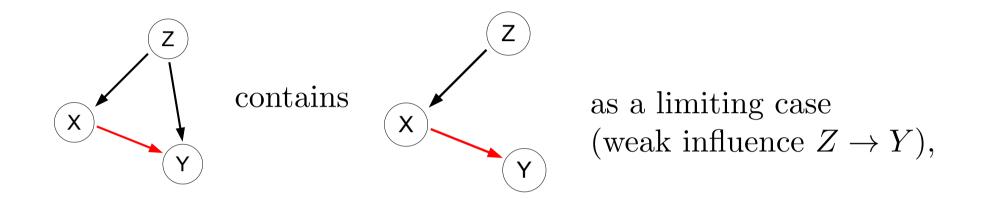
Postulate 3: (strength majorizes conditional dependence, given the other parents)



$$c_{X \to Y} \ge I(X; Y \mid Z)$$

(without $X \to Y$ the Markov condition would imply I(X; Y | Z) = 0)

Why $c_{X \to Y} = I(X; Y | Z)$ is a bad idea



where we postulated $c_{X \to Y} = I(X; Y)$ instead of I(X; Y | Z)

Our approach: "edge deletion"

• define a new distribution

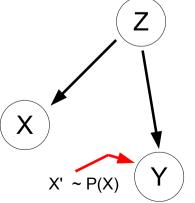
$$P_{X \to Y}(x, y, z) = P(z)P(x|z)\sum_{x'} P(y|x', z)P(x')$$

• define causal strength by the 'impact of edge deletion'

$$c_{X \to Y} := D(P \| P_{X \to Y})$$

• intuition of edge deletion:

cut the wire between devices and feed the open end with an iid copy of the original signal



related work: Ay & Krakauer (2007)

Properties of our measure

- strength also defined for set of edges
- satisfies all our postulates
- also applicable to time series
- conceptually more reasonable than Granger causality and transfer entropy

Inferring the causal DAG without time information

- Setting: given observed *n*-tuples drawn from $p(X_1, \ldots, X_n)$, infer G
- Key postulates: Causal Markov condition and causal faithfulness

Causal faithfulness

Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold true that are implied by the Markov condition, i.e.,

$$(X \perp\!\!\!\perp Y \mid\!\! Z)_G \quad \Leftarrow \quad (X \perp\!\!\!\perp Y \mid\!\! Z)_p$$

Recall: Markov condition reads

$$(X \perp\!\!\!\perp Y \mid\!\! Z)_G \quad \Rightarrow \quad (X \perp\!\!\!\perp Y \mid\!\! Z)_p$$

Examples of unfaithful distributions (1)

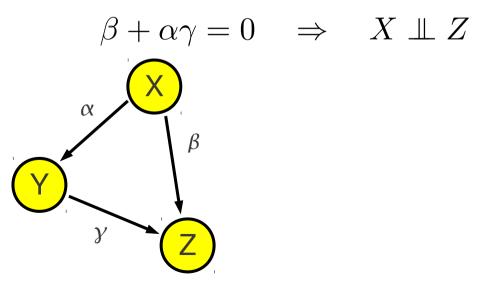
Cancellation of direct and indirect influence in linear models

$$X = U_X$$

$$Y = \alpha X + U_Y$$

$$Z = \beta X + \gamma Y + U_Z$$

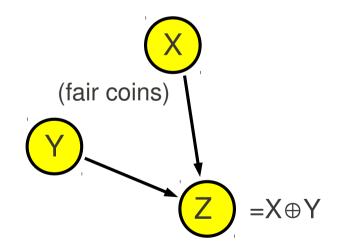
with independent noise terms U_X, U_Y, U_Z



Examples of unfaithful distributions (2)

binary causes with XOR as effect

- for p(X), p(Y) uniform: $X \perp Z, Y \perp Z$. i.e., unfaithful (since X, Z and Y, Z are connected in the graph).
- for p(X), p(Y) non-uniform: $X \not\perp Z, Y \not\perp Z$. i.e., faithful



unfaithfulness considered unlikely because it only occurs for non-generic parameter values

Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:

 $\bullet\,$ accept only those DAGs G as causal hypotheses for which

 $(X \perp\!\!\!\perp Y \mid\!\! Z)_G \quad \Leftrightarrow \quad (X \perp\!\!\!\perp Y \mid\!\! Z)_p.$

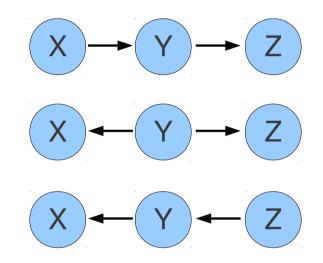
• identifies causal DAG up to Markov equivalence class (DAGs that imply the same conditional independences)

Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov equivalent iff they have the same skeleton and the same v-structures.

skeleton: corresponding undirected graph **v-structure:** substructure $X \to Y \leftarrow Z$ with no edge between X and Z

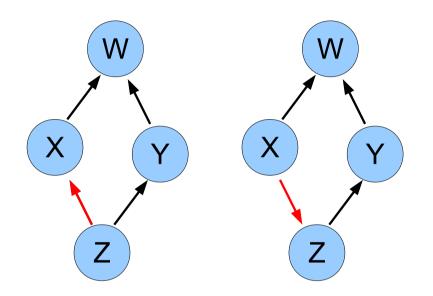
Markov equivalent DAGs



same skeleton, no v-structure

$X \perp\!\!\!\perp Z \mid\!\! Y$

Markov equivalent DAGs



same skeleton, same v-structure at W

Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:

- 1. Construct skeleton
- 2. Find v-structures
- 3. direct further edges that follow from
 - graph is acyclic
 - all v-structures have been found in 2)

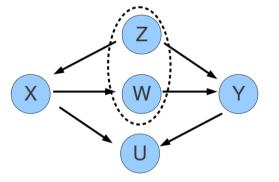
Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set S_{XY} such that

 $(X \perp\!\!\!\perp Y \mid S_{XY}.$

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened off by conditioning on an appropriate set



 $X \perp\!\!\!\perp Y \mid \!\! \{Z, W\}$

... but not by conditioning on all other variables!

 S_{XY} is called a Sepset for (X, Y)

Efficient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

- 1. remove all edges X Y with $X \perp Y$
- 2. remove all edges X Y for which there is a neighbor $Z \neq Y$ of X with $X \perp Y | Z$
- 3. remove all edges X Y for which there are two neighbors $Z_1, Z_2 \neq Y$ of X with $X \perp Y \mid Z_1, Z_2$

4. ...

Advantages

- many edges can be removed already for small sets
- testing all sets S_{XY} containing the adjacencies of X is sufficient
- depending on sparseness, algorithm only requires independence tests with small conditioning tests
- polynomial for graphs of bounded degree

Find v-structures

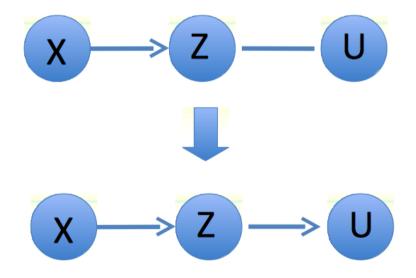
- given X Y Z with X and Y non-adjacent
- given S_{XY} with $X \perp Y | S_{XY}$

a priori, there are 4 possible orientations:

$$\left.\begin{array}{c}
X \to Z \to Y \\
X \leftarrow Z \to Y \\
X \leftarrow Z \leftarrow Y
\end{array}\right\} \qquad \qquad Z \in S_{XY} \\
Z \notin S_{XY}$$

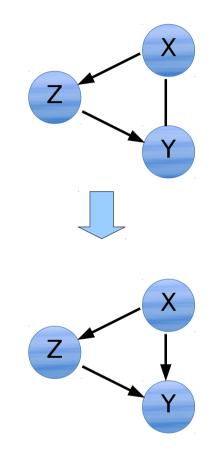
Orientation rule: create v-structure if $Z \notin S_{XY}$

Direct further edges (Rule 1)



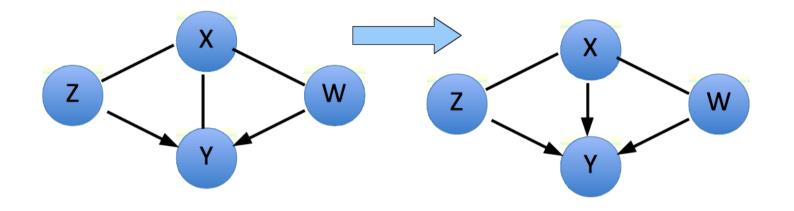
(otherwise we get a new v-structure)

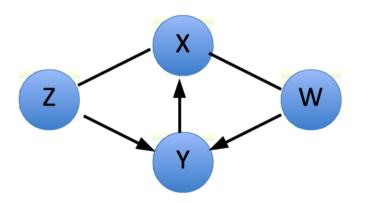
Direct further edges (Rule 2)



(otherwise one gets a cycle)

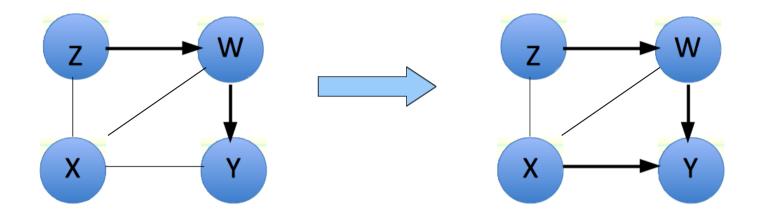
Direct further edges (Rule 3)

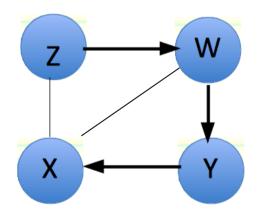




could not be completed without creating a cycle or a new v-structure

Direct further edges (Rule 4)

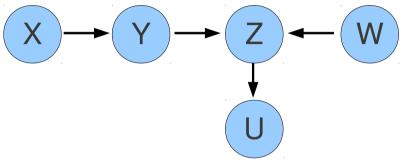




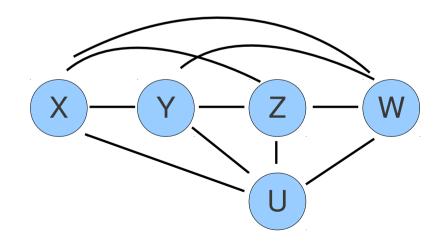
could not be completed without creating a cycle or a new v-structure

Examples

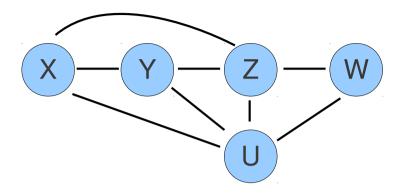
(taken from Spirtes et al, 2010) true DAG



start with fully connected undirected graph

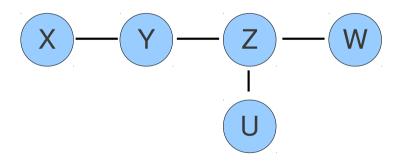


remove all edges X - Y with $X \perp Y | \emptyset$



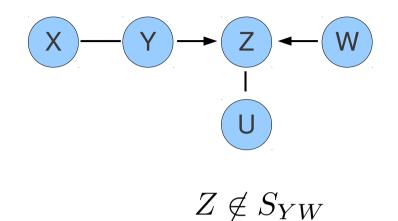
$X \perp\!\!\!\perp W \quad Y \perp\!\!\!\!\perp W$

remove all edges having Sepset of size 1

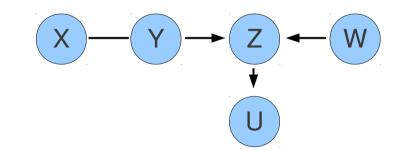


 $X \perp\!\!\!\!\perp Z \mid\!\! Y \quad X \perp\!\!\!\!\perp U \mid\!\! Y \quad Y \perp\!\!\!\!\perp U \mid\!\! Z \quad W \perp\!\!\!\!\perp U \mid\!\! Z$

find v-structure



orient further edges (no further v-structure)



edge X - Y remains undirected

Conditional independence tests

- discrete case: contingency tables
- multi-variate gaussian case: covariance matrix

non-Gaussian continuous case: challenging, recent progress via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)

Improvements

• CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995) uses weaker form of faithfulness

• FCI (fast causal inference) by Spirtes, Glymour, Scheines (1993) and Spirtes, Meek, Richardson (1999) infers causal links in the presence of latent common causes

• for implementations of the algorithms see homepage of the TETRAD project at Carnegie Mellon University Pittsburgh

Bayesian approach e.g. Cooper, Heckerman, Meek (1997), Stegle, Janzing, Zhang, Schölkopf (2010)

idea:

- define prior over possible DAGs
- the conditionals $p(X_j|PA_j)$ are free parameters in the factorization

$$p(X_1,\ldots,X_n) = \prod_{j=1}^n p(X_j|PA_j)$$

- define priors on the parameter space of each DAG
- $\bullet\,$ compute posterior probabilities of DAGs

implicit preference of faithful DAGs

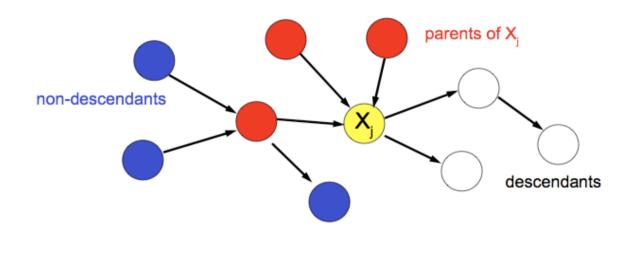
Note: whether Markov equivalent DAGs obtain the same posterior probability depends on the prior

Equivalence of Markov conditions

Theorem: the following are equivalent:

- Existence of a structural causal model
- Local Causal Markov condition: X_j statistically independent of nondescendants, given parents
- Global Causal Markov condition: d-separation
- Factorization $p(X_1, \ldots, X_n) = \prod_j p(X_j \mid PA_j)$

(subject to technical conditions)



Local Markov \Rightarrow factorization (Lauritzen 1996)

• Assume X_n is a terminal node, i.e., it has no descendants, then $ND_n = \{X_1, \ldots, X_{n-1}\}$. Thus the local Markov condition implies

$$X_n \perp\!\!\!\perp \{X_1, \ldots, X_{n-1}\} \mid PA_n.$$

• Hence the general decomposition

$$p(x_1, \ldots, x_n) = p(x_n | x_1, \ldots, x_{n-1}) p(x_1, \ldots, x_{n-1})$$

becomes

$$p(x_1,\ldots,x_n)=p(x_n|pa_n)p(x_1,\ldots,x_{n-1}).$$

• Induction over n yields

$$p(x_1,\ldots,x_n) = \prod_{j=1}^n p(x_j|pa_j).$$

$Factorization \Rightarrow global \ Markov$

(Lauritzen 1996)

Need to prove $(X \perp\!\!\!\perp Y \mid\!\! Z)_G \Rightarrow (X \perp\!\!\!\perp Y \mid\!\! Z)_p$.

- define the smallest subgraph G' containing X, Y, Zand all their ancestors
- consider moral graph G'^m (undirected graph containing the edges of G' and links between all parents)
- use results that relate factorization of probabilities with separation in undirected graphs

Global Markov \Rightarrow local Markov

Know that if Z d-separates X, Y, then $X \perp Y | Z$. Need to show that $X_j \perp ND_j | PA_j$.

Simply need to show that the parents PA_j d-separate X_j from its non-descendants ND_j :

All paths connecting X_j and ND_j include a $P \in PA_j$, but never as a collider

$$\cdot \to P \leftarrow X_j$$

Hence all paths are chains

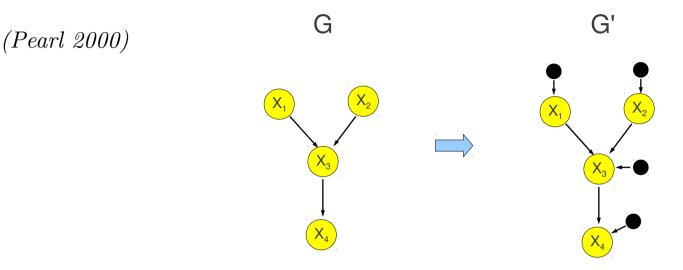
$$\cdot \to P \to X_j$$

or forks

$$\cdot \leftarrow P \to X_j$$

Therefore, the parents block every path between X_j and ND_j .

structural causal model \Rightarrow local Markov condition



- augmented DAG G' contains unobserved noise
- local Markov-condition holds for G':
 - (i): the unexplained noise terms U_j are jointly independent, and thus (unconditionally) independent of their non-descendants

(ii): for the X_j , we have

$$X_j \perp ND'_j | PA'_j |$$

because X_j is a (deterministic) function of PA'_j .

- local Markov in G' implies global Markov in G'
- global Markov in G' implies local Markov in G (proof as previous slide)

$factorization \Rightarrow structural \ causal \ model$

generate each $p(X_j|PA_j)$ in

$$p(X_1, \dots, X_n) = \prod_{j=1}^n p(X_j | PA_j)$$

by a deterministic function:

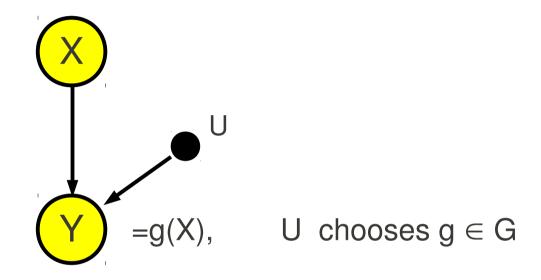
- define a vector valued noise variable U_j
- each component $U_j[pa_j]$ corresponds to a possible value pa_j of PA_j
- define structural equation

$$x_j = f_j(pa_j, u_j) := u_j[pa_j].$$

• let component $U_j[pa_j]$ be distributed according to $p(X_j|pa_j)$.

Note: joint distribution of all $U_j[pa_j]$ is irrelevant, only marginals matter

different point of view



- $\bullet~G$ denotes set of deterministic mechanisms
- U randomly chooses a mechanism

Example:
$$X, Y$$
 binary
 X
 U
 U
 $Y = g(X), U$ chooses $g \in \{ID, NOT, 1, 0\}$

the same p(X, Y) can be induced by different distributions on G:

• model 1 (no causal link from X to Y)

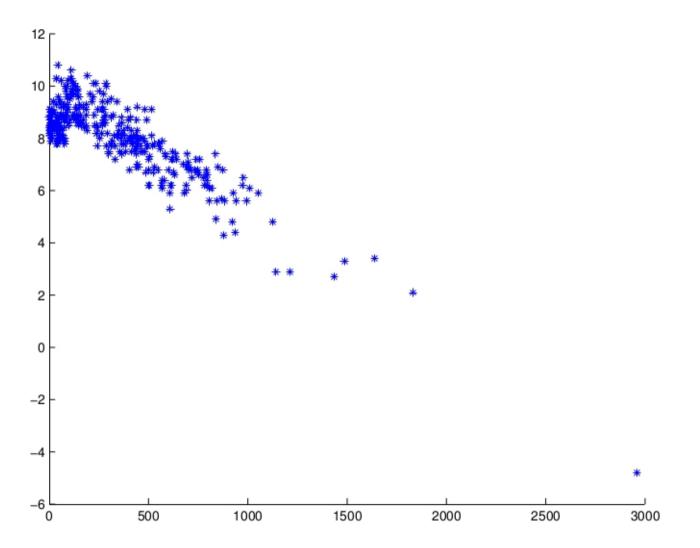
$$P(g=0) = 1/2, \quad P(g=1) = 1/2$$

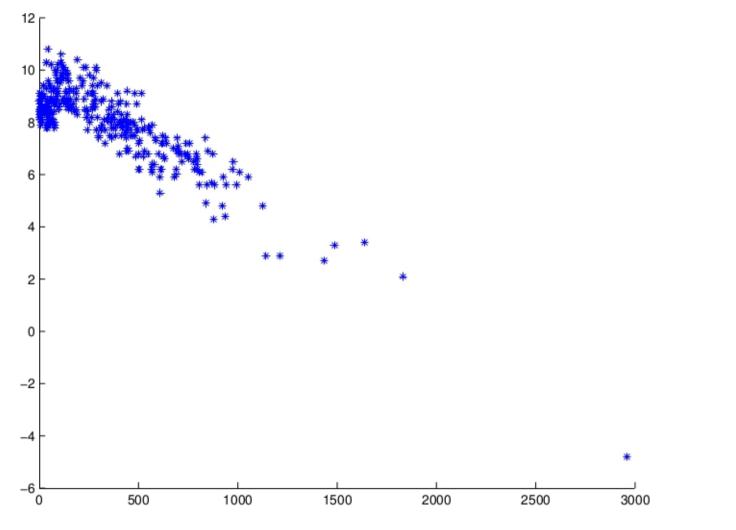
• model 2 (random switching between ID and NOT)

$$P(g = ID) = 1/2, \quad P(g = NOT) = 1/2$$

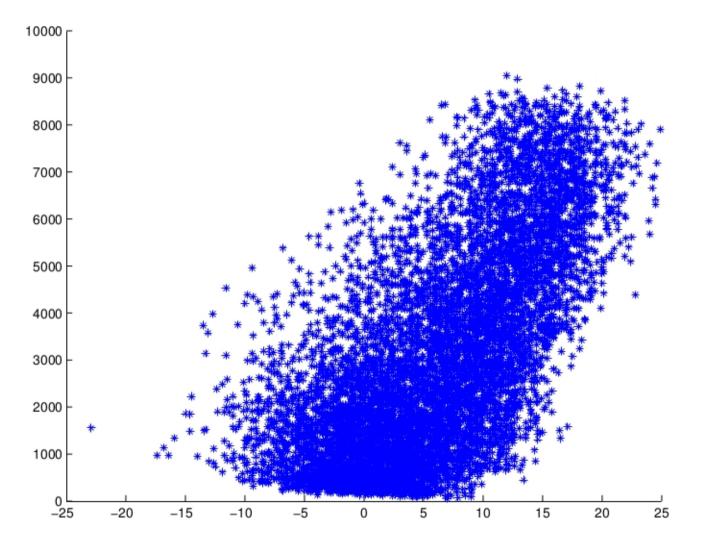
both induce the uniform distribution for
$$Y$$
, *independent* of X

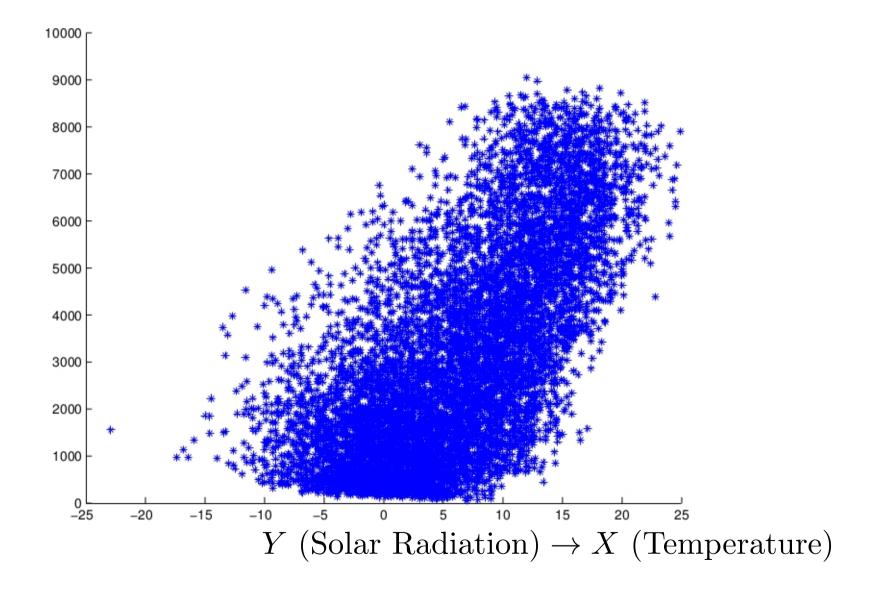
INTERVAL

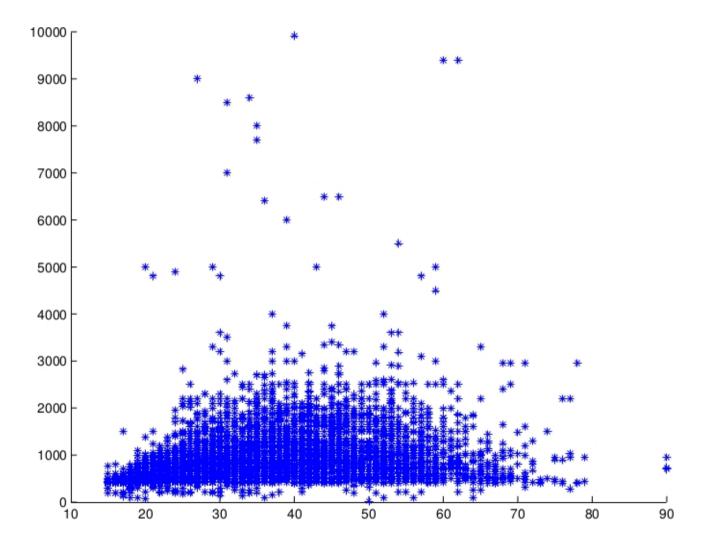


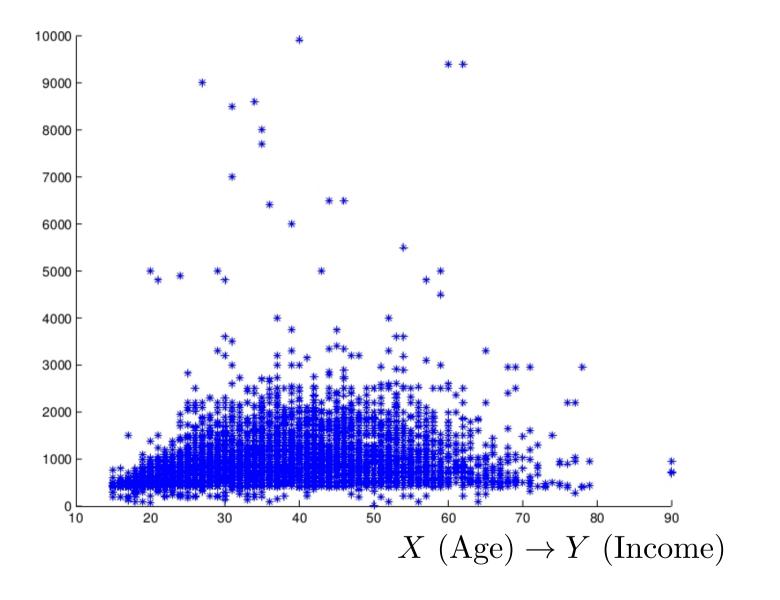


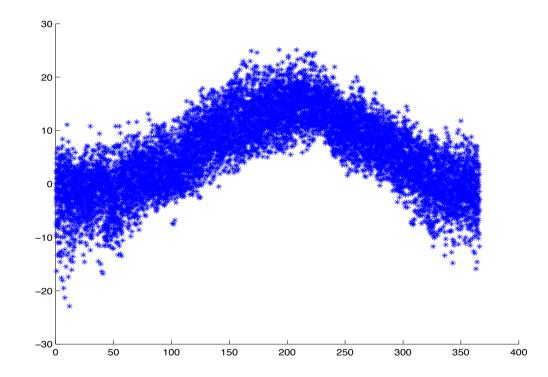
X (Altitude) $\rightarrow Y$ (Temperature)

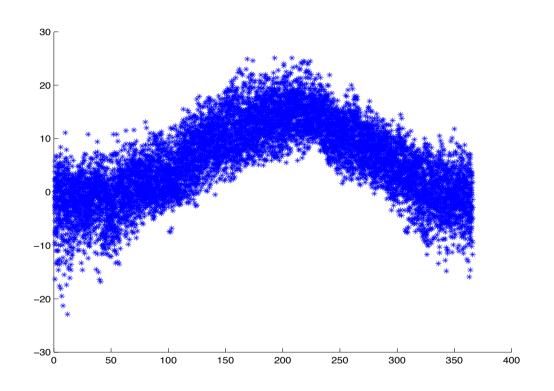








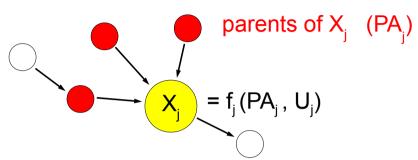




X (Day in the year) $\rightarrow Y$ (Temperature)

Recap: Structural Causal Model

• $X_i = f_i(\text{ParentsOf}_i, \text{Noise}_i)$, with jointly independent $\text{Noise}_1, \ldots, \text{Noise}_n$.



• entails $p(X_1, \ldots, X_n)$ with particular conditional independence structure Assuming Markov condition + faithfulness we can recover an equivalence class containing the correct graph using conditional independence testing.

Problems:

1. does not work for graphs with only 2 vertices (even with infinite data)

2. if we don't have infinite data, conditional independence testing can be arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.

Restricting the Structural Causal Model

- consider the graph $X \to Y$
- general functional model

$$\begin{array}{c} X \longrightarrow Y \\ \uparrow \\ \uparrow \\ N \end{array}$$

$$X \perp \!\!\!\perp N$$

$$Y = f(X, N)$$

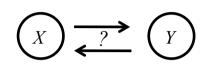
Note: if N can take d different values, it could switch randomly between mechanisms $f^1(X), \ldots, f^d(X)$

• additive noise model

$$Y = f(X) + N$$

Causal Inference with Additive Noise, 2-Variable Case

additive noise model (ANM): $Y := f(X) + N_Y$, with $X \perp N_Y$



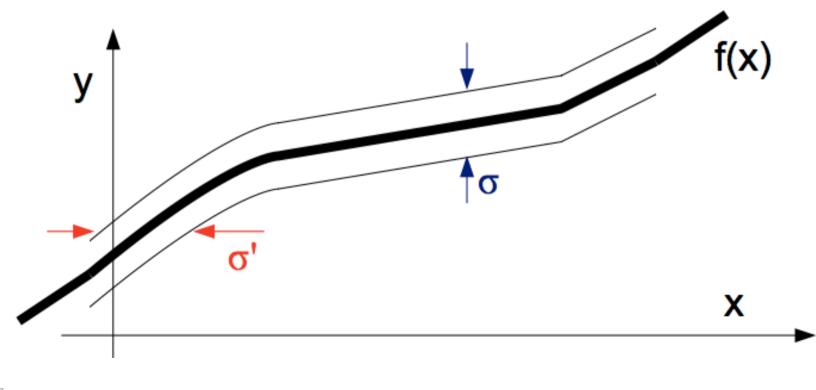
Identifiability: when is there a backward model of the same form?

answer: generically, there is no model $X = g(Y) + N_X$ with $Y \perp N_X$

Hoyer et al.: Nonlinear causal discovery with additive noise models. *NIPS* 21, 2009 Peters et al: Causal Discovery with Continuous Additive Noise Models, JMLR 2014 Peters et al.: Detecting the Direction of Causal Time Series. *ICML* 2009

Intuition

- Assume noise of bounded range
- Additive noise model implies range of Y around f is constant
- For nonlinear *f*, range of *X* around backward function non-constant



Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008)

Theorem 1 (Identifiability of ANMs) For the purpose of this theorem, let us call the ANM smooth if N_Y and X have strictly positive densities p_{N_Y} and p_X and f_Y, p_{N_Y} , and p_X are three times differentiable.

Assume that $P_{Y|X}$ admits a smooth ANM from X to Y, and there exists a $y \in \mathbb{R}$ such that

$$(\log p_{N_Y})''(y - f_Y(x))f'_Y(x) \neq 0 \tag{1}$$

for all but countably many values x. Then, the set of log densities $\log p_X$ for which the obtained joint distribution $P_{X,Y}$ admits a smooth ANM from Y to X is contained in a 3-dimensional affine space.

Except for some rare cases, an ANM from X to Y induces a joint distribution P_{XY} that does not admit an ANM from Y to X

Idea of the proof

If p(x, y) admits an additive noise model

$$Y = f(X) + N_Y$$
 with $X \perp N_Y$

we have

$$p(x, y) = q(x)r(y - f(x)).$$

It then satisfies the differential equation

$$\frac{\partial}{\partial x} \left(\frac{\partial^2 \log p(x,y) / \partial x^2}{\partial^2 \log p(x,y) / \partial x \partial y} \right) = 0.$$

If it also holds with exchanging x and y, only specific cases remain.

Alternative View (cf. Zhang & Hyvärinen, 2009)

H differential entropy *I* mutual information $N_Y := Y - f(X), \quad N_X := X - g(Y)$ residual noises

Lemma: For arbitrary joint distribution of X, Y and functions f, $g : \mathbf{R} \to \mathbf{R}$, we have:

$$H(X,Y) = H(X) + H(N_Y) - I(N_Y : X) = H(Y) + H(N_X) - I(N_X : Y).$$

Note: $I(N_Y : 0) = 0$ iff there is an additive noise model from X to Y with function f, i.e.,

$$Y = f(X) + N_Y$$
 with $N_Y \perp X$.

Then

$$H(X) + H(N_Y) \le H(Y) + H(N_X).$$

Hence, we can infer the causal direction by comparing sum of entropies

Causal Inference Method

Prefer the causal direction that can better be fit with an additive noise model.

Implementation:

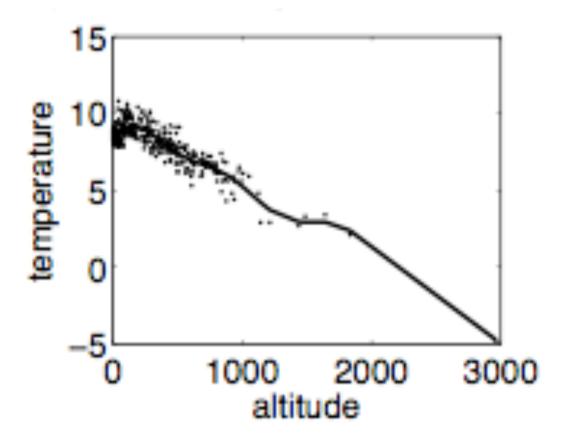
- Compute a function f as non-linear regression of X on Y
- Compute the residual

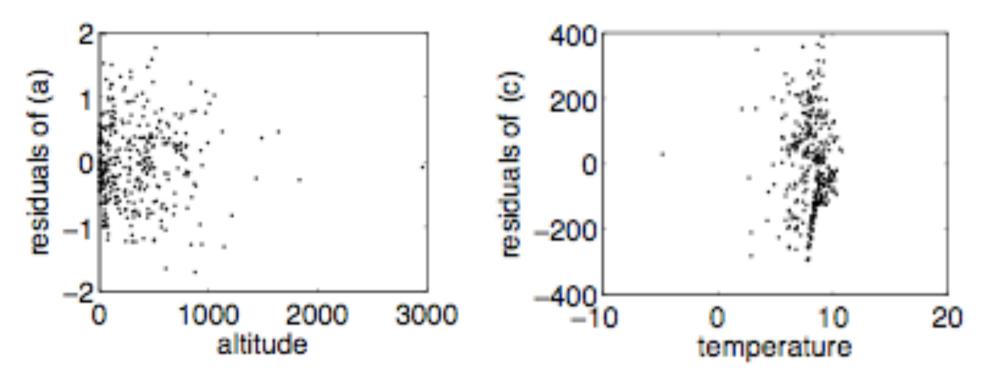
$$N_Y := Y - f(X)$$

• check whether N_Y and X are statistically independent (uncorrelated is not enough)

Experiments

Relation between altitude (cause) and average temperature (effect) of places in Germany





Our independence tests detect strong dependence. Hence the method prefers the correct direction

altitude \rightarrow temperature

Generalization of ANM: post-nonlinear model

Assume

$Y = g(f(X) + N_Y) \quad \text{with } N_Y \perp X$

Then, there is in the "generic" case no such a PNL model from Y to X

Zhang & Hyvärinen, UAI 2009

Side note on multivariate ANMs

For some DAG G with nodes X_1, \ldots, X_n assume

$$X_j = f_j(PA_j) + N_j$$

where all N_j are independent

- then one can identify the DAG G (except for some rare cases)
- distinguishes even between Markov equivalent DAGs
- avoids conditional independence testing: if all residuals $X_j f_j(PA_j)$ are independent, $P_{X_1,...,X_n}$ satisfies the Markov condition w.r.t. G

(addresses two problems with the conditional-independence based approach)

Peters et al, UAI 2011

Inferring conditional independences...

... from unconditional ones

Example: if there are functions f, g such that

 $X - f(Z) \perp Y - f(Z)$

then

 $X \perp\!\!\!\perp Y \mid \!\! Z.$

(condition is sufficient, but not necessary)

Causal inference in brain research

Grosse-Wentrup, Janzing, Siegel, Schölkopf, NeuroImage 2016

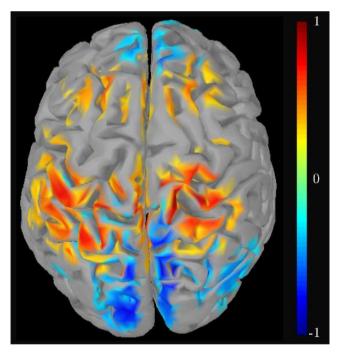
Let X, Y be some brain state features and S some randomized experimental condition (i.e., a parentless node!) Assume

S	<u> </u>	X
S	<u> </u>	Y
S		$Y \mid X$

then Markov condition and faithfulness imply

 $S \to X \to Y$

applied to: $X: \gamma$ -power in the parietal cortex $Y: \gamma$ -power in the medial prefrontal cortex S instruction to up- or down-regulate X(conditional independence verified via regression)



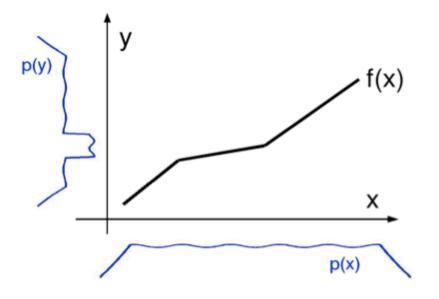
So far, we have employed the presence of noise:

- in deterministic causal relations conditional independences get mostly trivial
- ANM-based inference requires noise

What about the noiseless case?

Inferring deterministic causality Daniusis et al, UAI 2010

- Problem: infer whether Y = f(X) or $X = f^{-1}(Y)$ is the right causal model
- Idea: if $X \to Y$ then f and the density p_X are chosen independently "by nature"
- Hence, peaks of p_X do not correlate with the slope of f
- Then, peaks of p_Y correlate with the slope of f^{-1}



Formalization

Assume that f is a monotonously increasing bijection of [0, 1]. View p_x and log f' as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):

$$\operatorname{Cov}\left(\log f', p_x\right) = 0$$

Note: this is equivalent to

$$\int_{0}^{1} \log f'(x) p(x) dx = \int_{0}^{1} \log f'(x) dx,$$

since

Cov
$$(\log f', p_x) = E [\log f' \cdot p_x] - E [\log f'] E [p_x] = E [\log f' \cdot p_x] - E [\log f'].$$

Proposition:

$$\operatorname{Cov}\left(\log f^{-1'}, p_y\right) \ge 0$$

Testable implication / inference rule

• If $X \to Y$ then

$$\int \log |f'(x)| p(x) dx \le \int \log |f^{-1'}(y)| p(y) dy$$

(high density p(y) tends to occur at points with large slope)

• empirical estimator

$$\hat{C}_{X \to Y} := \frac{1}{m} \sum_{j=1}^{m} \log \left| \frac{y_{j+1} - y_j}{x_{j+1} - x_j} \right| \approx \int \log |f'(x)| p(x) dx$$

• infer $X \to Y$ whenever

$$\hat{C}_{X \to Y} < \hat{C}_{Y \to X} \,.$$

"information geometric causal inference"

Benchmark dataset with 106 cause-effect pairs

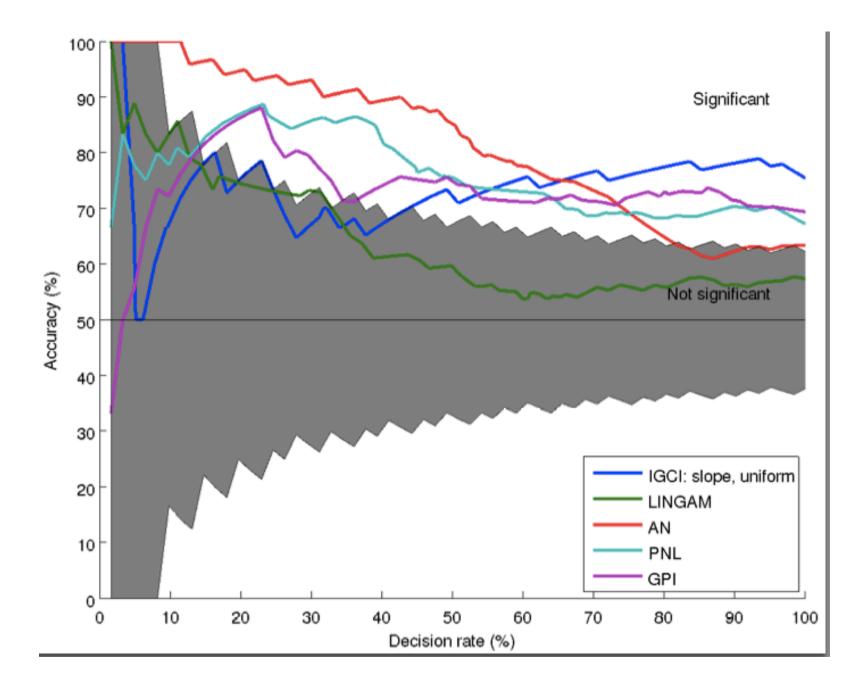
http://webdav.tuebingen.mpg.de/cause-effect/

discussion of the ground truth and extensive performance studies for bivariate causal inference methods:

Mooij et al: Distinguishing Cause from Effect Using Observational Data: Methods and Benchmarks, JMLR 2016

Cause-Effect Pairs – Examples

	var 1	var 2	dataset	ground truth
pair0001	Altitude	Temperature	DWD	\rightarrow
pair0005	Age (Rings)	Length	Abalone	\rightarrow
pair0012	Age	Wage per hour	census income	\rightarrow
pair0025	cement	compressive strength	concrete_data	\rightarrow
pair0033	daily alcohol consumption	mcv mean corpuscular volume	liver disorders	\rightarrow
pair0040	Age	diastolic blood pressure	pima indian	\rightarrow
pair0042	day	temperature	B. Janzing	\rightarrow
pair0047	#cars/24h	specific days	traffic	\leftarrow
pair0064	drinking water access	infant mortality rate	UNdata	\rightarrow
pair0068	bytes sent	open http connections	P. Daniusis	\leftarrow
pair0069	inside room temperature	outside temperature	J. M. Mooij	\leftarrow
pair0070	parameter	sex	Bülthoff	\rightarrow
pair0072	sunspot area	global mean temperature	sunspot data	\rightarrow
pair0074	GNI per capita	life expectancy at birth	UNdata	\rightarrow
pair0078	PPFD (Photosynth. Photon Flux)	NEP (Net Ecosystem Productivity)	Moffat A. M.	\rightarrow



IGCI: Deterministic Method

LINGAM: Shimizu et al., 2006

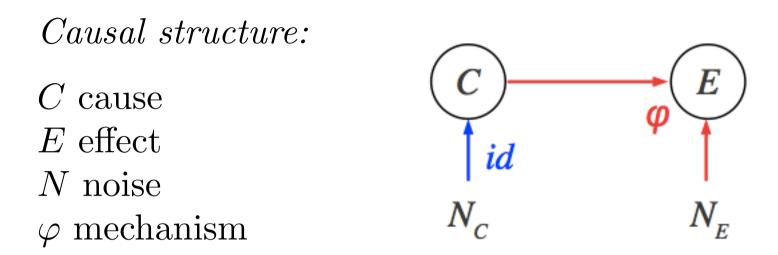
AN: Additive Noise Model (nonlinear)

PNL: AN with postnonlinearity

GPI: Mooij et al., 2010

(source: Mooij et al, JMLR 2016)

Independence of input and mechanism



Assumption: p(C) and p(E|C) are "independent"

Janzing & Schölkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire & Dirkx, 2007

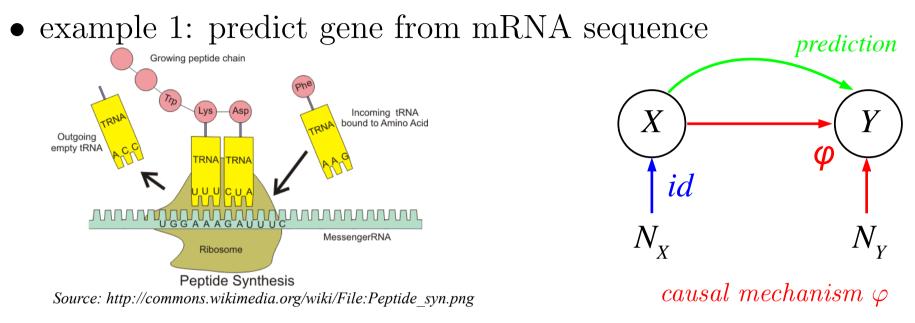
Recall different aspects of independence

- informational: P_C and $P_{E|C}$ don't contain information about each other
- modularity: P_C and $P_{E|C}$ often change independently across datasets
- \Rightarrow machine learning should care about the causal direction in prediction tasks

Causal Learning and Anticausal Learning

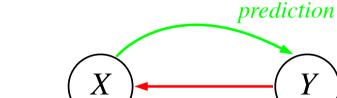
0

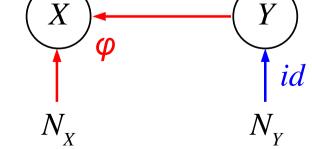
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012



• example 2: predict class membership from handwritten digit

0





Prediction with changing distributions

assume distributions P_X and P'_X differ between training and test data

• causal prediction, X = C, Y = E: use the same $P_{Y|X}$ also for the test data because probably $P_{Y|X}$ remained the same (even if we knew that it changed too we would still use $P_{Y|X}$ in absence of a better candidate). "covariate shift"

• anticausal prediction, X = E, Y = C: probably also $P_{Y|X}$ has changed (maybe only P_Y changed or only $P_{X|Y}$)

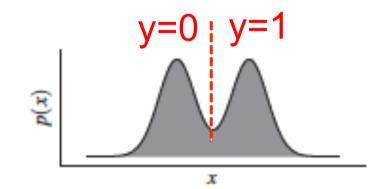
Semi-supervised learning (SSL)

in addition to (x, y)-pairs, SSL uses unlabeled x-values to predict y from x

• causal prediction: P_X doesn't tell us something about $P_{Y|X}$, why should unlabeled instances help?

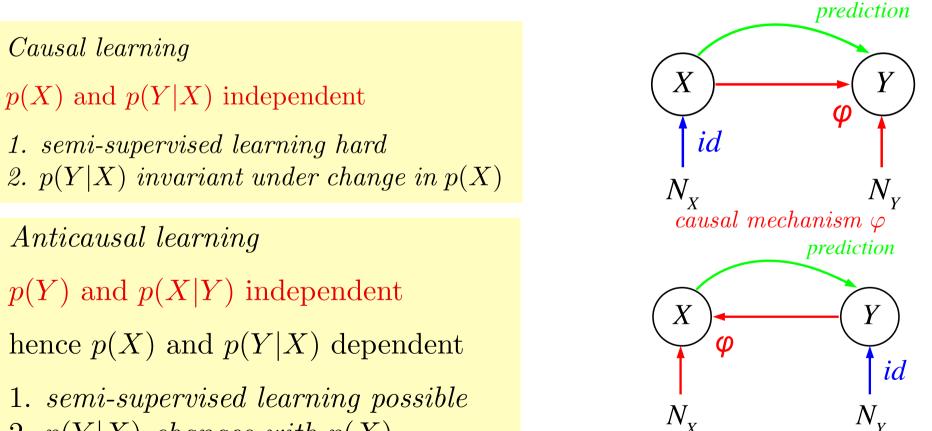
(SSL requires more subtle phenomena to work)

• anticausal prediction: P_X may contain information about $P_{Y|X}$ therefore the unlabeled instances help

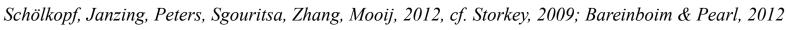


Covariate Shift and Semi-Supervised Learning

Goal: learn $X \mapsto Y$, i.e., estimate (properties of) p(Y|X)Semi-supervised learning: improve estimate by more data from p(X)Covariate shift: p(X) changes between training and test Causal assumption: p(C) and mechanism p(E|C) "independent"



2. p(Y|X) changes with p(X)



Semi-Supervised Learning (Schölkopf et al., ICML 2012)

- Known SSL assumptions link p(X) to p(Y|X):
 - *Cluster assumption*: points in same cluster of *p*(*X*) have the same *Y*
 - Low density separation assumption: p(Y|X) should cross
 0.5 in an area where p(X) is small
 - *Semi-supervised smoothness assumption*: E(*Y*|*X*) should be smooth where *p*(*X*) is large
- Next slides: experimental analysis

SSL Book Benchmark Datasets – Chapelle et al. (2006)

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category	Dataset	
Anticausal/ Confounded	g241c: the class causes the 241 features.g241d: the class (binary) and the features are confounded by a variable with 4 states.Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.USPS: the class and the features are confounded by the 10-state variable of all digits.COIL: the six-state class and the features are confounded by the 24-state variable of all objects.	
Causal	SecStr: the amino acid is the cause of the secondary structure.	
Unclear	BCI, Text: Unclear which is the cause and which the effect.	

UCI Datasets used in SSL benchmark – Guo et al., 2010

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

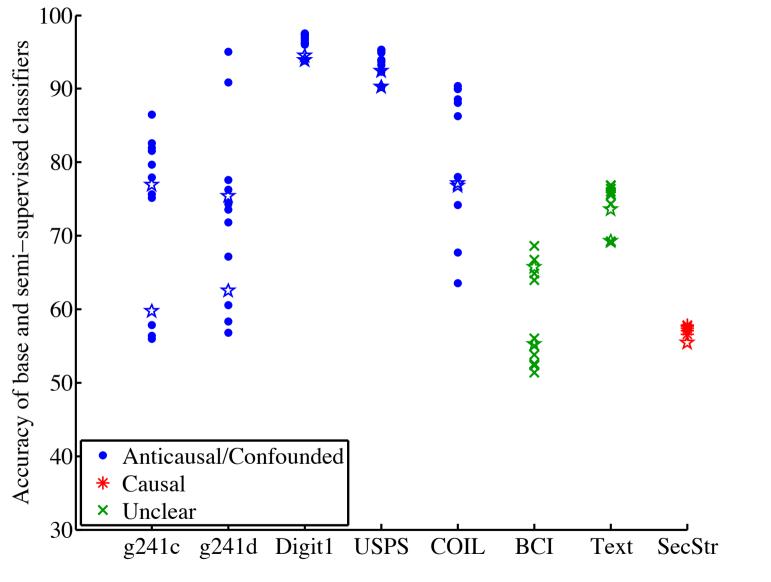
Categ.	Dataset		
	Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor		
	thickness, size, shape etc.).		
led	Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-		
1WC	sure), but also is an effect of some others (e.g. age, number of times pregnant).		
ifoi	Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the		
Jor	presence or absence of hepatitis. Some of the features, however, may also cause death.		
	Iris: the size of the plant is an effect of the category it belongs to.		
nsc	Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage		
ica	increase, number of working hours per week, number of paid vacation days, employer's help during employee 's long		
Anticausal/Confounded	term disability). Moreover, the features and the class may be confounded by elements of the character of the employer		
	and the employee (e.g., ability to cooperate).		
-	Letter: the class (letter) is a cause of the produced image of the letter. Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the		
	taxonomy of the mushroom (23 species).		
-	Image Segmentation: the class of the image is the cause of the features of the image.		
-	Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.		
-	Vehicle: the class of the vehicle causes the features of its silhouette.		
	Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped		
	infants or being part of religious groups in school can cause one's vote, being democrat or republican can causally		
	influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.		
	Crime and the class may be confounded, e.g., by the environment in which one grew up.		
	Vowel: the class (vowel) causes the features.		
	Wave: the class of the wave causes its attributes.		
	Balance Scale: the features (weight and distance) cause the class.		
Causal	Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.		
	Splice: the DNA sequence causes the splice sites.		
Unclear	Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear		
	whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,		
	Sick).		

Datasets, co-regularized LS regression – Brefeld et al., 2006

Table 3. Categorization of 31 datasets (described in the paragraph "Semi-supervised regression") as Anticausal/Confounded, Causal or Unclear

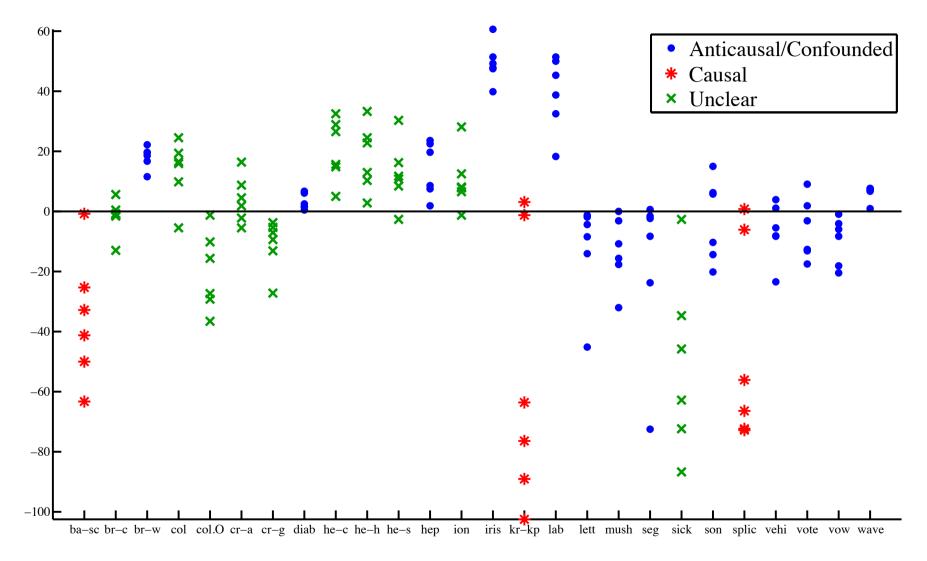
Categ.	Dataset	Target variable	Remark		
	breastTumor	tumor size	causing predictors such as inv-nodes and deg-malig		
pa	cholesterol	cholesterol	causing predictors such as resting blood pressure and fasting blood		
Anticausal/Confounded			sugar		
	cleveland	presence of heart disease in the pa-	causing predictors such as chest pain type, resting blood pressure,		
		tient	and fasting blood sugar		
	lowbwt	birth weight	causing the predictor indicating low birth weight		
120	pbc	histologic stage of disease	causing predictors such as Serum bilirubin, Prothrombin time, and		
cai			Albumin		
nti	pollution	age-adjusted mortality rate per	causing the predictor number of 1960 SMSA population aged 65		
A		100,000	or older		
	wisconsin	time to recur of breast cancer	causing predictors such as perimeter, smoothness, and concavity		
Causal	autoMpg	city-cycle fuel consumption in	caused by predictors such as horsepower and weight		
		miles per gallon			
	cpu	cpu relative performance	caused by predictors such as machine cycle time, maximum main		
			memory, and cache memory		
	fishcatch	fish weight	caused by predictors such as fish length and fish width		
	housing	housing values in suburbs of	caused by predictors such as pupil-teacher ratio and nitric oxides		
	<u>1 ·</u>	Boston	concentration		
	machine_cpu	cpu relative performance	see remark on "cpu"		
	meta	normalized prediction error	caused by predictors such as number of examples, number of at-		
		value of missouries linear function	tributes, and entropy of classes		
	pwLinear	value of piecewise linear function wine quality	caused by all 10 involved predictors caused by predictors such as trellis		
	sensory servo	rise time of a servomechanism	caused by predictors such as gain settings and choices of mechan-		
	Servo	The time of a servon echanism	ical linkages		
	auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of car				
	autoPrice (target: price of cars); baskball (target: points scored per minute);				
	cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived); fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);				
ear	pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);				
Unclear	stock (target: price of one particular stock); strike (target: strike volume);				
C.	triazines (target: activity); veteran (survival in days)				
	utazines (target, activity), vetetan (survival in tays)				

Benchmark Datasets of Chapelle et al. (2006)



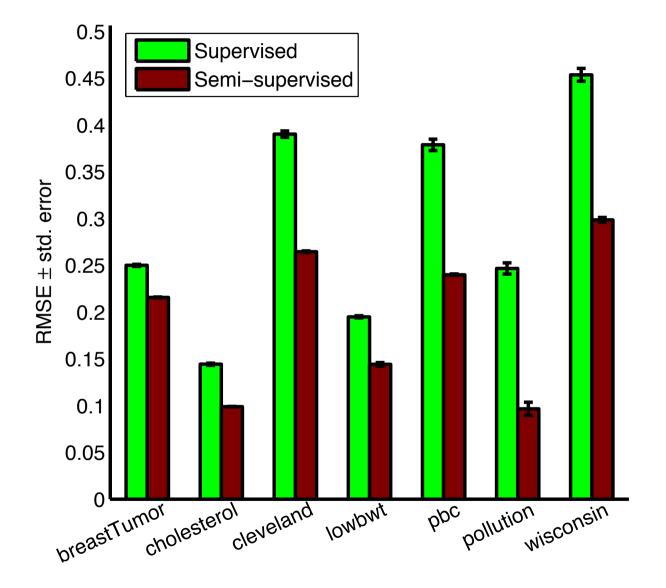
Asterisk = 1-NN, SVM

Self-training does not help for causal problems (cf. Guo et al., 2010)

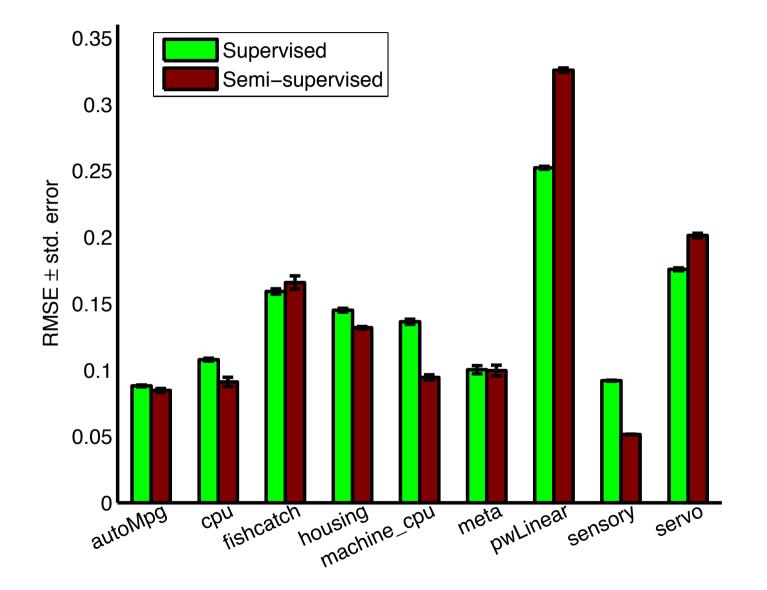


Relative error decrease = (error(base) -error(self-train)) / error(base)

Co-regularization helps for the anticausal problems of Brefeld et al., 2006

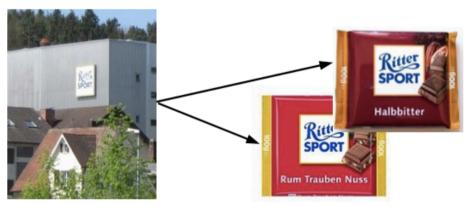


Co-regularization hardly helps for the causal problems of Brefeld et al., 2006



Causal Inference for Individual Objects (Janzing & Schölkopf, 2010)

Similarities between single objects also indicate causal relations:



However, if similarities are too simple there need not be a common cause:

 \Rightarrow try to quantify complexity of similarities

Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)

of a binary string x

- K(x) := length of the shortest program with output x (on a Turing machine)
- \bullet interpretation: number of bits required to describe the rule that generates x
- equality "=" is always understood up to string-independent additive constants (often denoted by ⁺=, but we drop the "+")

• K(x) is uncomputable

• probability-free definition of information content

Conditional Kolmogorov complexity

- $K(y \mid x^*)$: length of the shortest program that generates y from the shortest description of the input x. For simplicity, we write $K(y \mid x)$.
- number of bits required for describing y if the shortest description of x is given
- note: x can be generated from its shortest description but not vice versa because there is no algorithmic way to find the shortest compression

Algorithmic mutual information (Chaitin, Gacs)

Information of x about y

•
$$I(x:y) := K(x) + K(y) - K(x,y)$$

= $K(x) - K(x | y) = K(y) - K(y | x)$

- Interpretation: number of bits saved when compressing x, y jointly rather than independently
- Algorithmic independence $x \perp y : \iff I(x : y) = 0$

Conditional algorithmic mutual information

Information that x has on y (and vice versa) when z is given

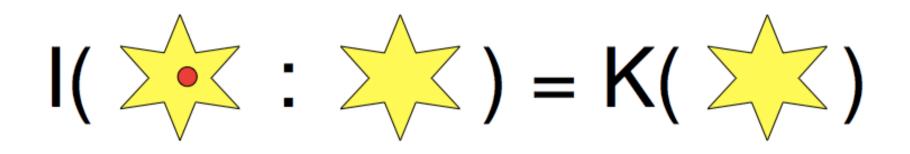
•
$$I(x:y | z^*) := K(x | z^*) + K(y | z^*) - K(x, y | z^*)$$

• Analogy to statistical mutual information:

I(X : Y | Z) = S(X | Z) + S(Y | Z) - S(X, Y | Z)

• Conditional algor. independence $x \perp | y | z :\iff I(x : y | z) = 0$

Algorithmic mutual information: example



Postulate: Local Algorithmic Markov Condition

Let x_1, \ldots, x_n be observations (formalized as strings). Given its direct causes pa_j , every x_j is conditionally algorithmically independent of its non-effects nd_j

 $x_j \perp nd_j \mid pa_j$

Causal Markov Conditions

- Recall the **(Local) Causal Markov condition**: An observable is statistically independent of its non-descendants, given parents
- Reformulation:

Given all direct causes of an observable, its non-effects provide no additional statistical information on it

Causal Markov Conditions

• Generalization:

Given all direct causes of an observable, its non-effects provide no additional $\underline{statistical}$ information on it

• Algorithmic Causal Markov Condition:

Given all direct causes of an object, its non-effects provide no additional *algorithmic* information on it

Equivalence of Algorithmic Markov Conditions

For n strings x_1, \ldots, x_n the following conditions are equivalent

• Local Markov condition

 $I(x_j : nd_j | pa_j) = 0$

• Global Markov condition:

If R d-separates S and T then I(S:T | R) = 0

• Recursion formula for joint complexity

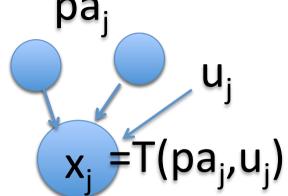
$$K(x_1,\ldots,x_n) = \sum_{j=1}^n K(x_j \mid pa_j)$$

Janzing & Schölkopf, IEEE Trans. Information Theory, 2010

Algorithmic model of causality

• for every node x_j there exists a program u_j that computes x_j from its parents pa_j Pa_i

• all u_j are jointly independent



- the program u_j represents the causal mechanism that generates the effect from its causes
- u_j are the analog of the unobserved noise terms in the statistical functional model

Theorem: this model implies the algorithmic Markov condition

Generalized independences Steudel, Janzing, Schölkopf (2010)

Given *n* objects $\mathcal{O} := \{x_1, \ldots, x_n\}$

Observation: if a function $R: 2^{\mathcal{O}} \to \mathbb{R}_0^+$ is submodular, i.e.,

$$R(S) + R(T) \ge R(S \cup T) + R(S \cap T) \qquad \forall S, T \subset \mathcal{O}$$

then

$$I(A; B | C) := R(A \cup C) + R(B \cup C) - R(A \cup B \cup C) - R(C) \ge 0$$

for all disjoint sets $A, B, C \subset \mathcal{O}$

Interpretation: I measures conditional dependence (replace R with Shannon entropy to obtain usual mutual information)

Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG ${\cal G}$

• local Markov condition

$$x_j \perp nd_j | pa_j$$

- global Markov condition: d-separation implies independence
- sum rule

$$R(A) = \sum_{j \in A} R(x_j | pa_j) \,,$$

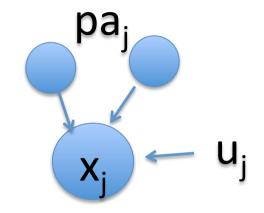
for every ancestral set A of nodes.

-but can we postulate that the conditions hold w.r.t. to the true DAG?

Generalized structural causal model

Theorem:

• assume there are unobserved objects u_1, \ldots, u_n



• assume

$$R(x_j, pa_j, u_j) = R(pa_j, u_j)$$

 $(x_j \text{ contains only information that is already contained in its parents + noise object)$

then x_1, \ldots, x_n satisfy the Markov conditions

 \Rightarrow causal Markov condition is justified provided that mechanisms fit to information measure

Generalized PC

PC algorithm also works with generalized conditional independence

Examples:

- 1. R := number of different words in a text
- 2. R := compression length (e.g. Lempel Ziv is approximately submodular)
- 3. R :=logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (different versions of a paper abstract)

"Independent" = algorithmically independent?

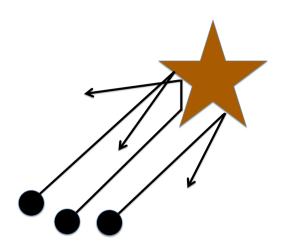
Postulate (Janzing & Schölkopf, 2010, inspired by Lemeire & Dirkx, 2006): The causal conditionals $p(X_j|PA_j)$ are algorithmically independent

- special case: p(X) and p(Y|X) are alg. independent for $X \to Y$
- abstract version: the mechanism that relates cause and effect is algorithmically independent of the cause

- can be used as justification for novel inference rules (e.g., for additive noise models: Steudel & Janzing 2010)
- excludes many, but not all violations of faithfulness (Lemeire & Janzing, 2012)

A Physical Example

Particles scattered at an object



- \bullet by default, only the outgoing particles contain information about the object
- time-reversing the scenario requires fine-tuning the incoming beam
- consider incoming and outgoing beams as 'cause' and 'effect'
- 'cause' contains no information about the mechanism relating cause and effect (the object), but 'effect' does

Algorithmic independence of initial state and dynamics

Independence Principle. If s is the initial state of a physical system and M a map describing the effect of applying the system dynamics for some fixed time, then s and M are algorithmically independent

$$I(s:M) \stackrel{+}{=} 0,$$

i.e., knowing s does not enable a shorter description of M and vice versa.

Reproduces the thermodynamic Arrow of Time

Theorem [non-decrease of entropy]. Let D be a bijective map on the set of states of a system then $I(s : D) \stackrel{+}{=} 0$ implies

 $K(D(s)) \stackrel{+}{\geq} K(s)$

Proof idea: If D(s) admits a shorter description than s, knowing D admits a shorter description of s: just describe D(s) and then apply D^{-1} .

- K(s) has been proposed as physical entropy (Zurek, Bennett)
- entropy increase amounts to heat production (irreversible process)

Janzing, Chaves, Schölkopf: Algorithmic independence of initial condition and dynamical law in thermodynamics and causal inference. New Journal of Physics, 2016

Common root of thermodyn. and causal inference

algorithmic independence of cause and mechanism relating cause and effect

- reproduces arrow of time in physics
- justifies new causal inference rules

Kepler Search Space

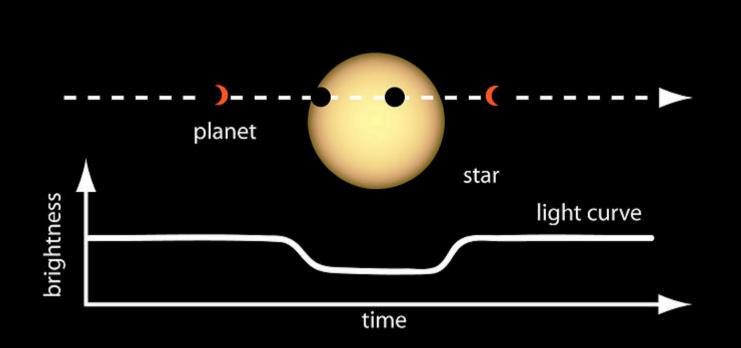
Sagittarius Arm

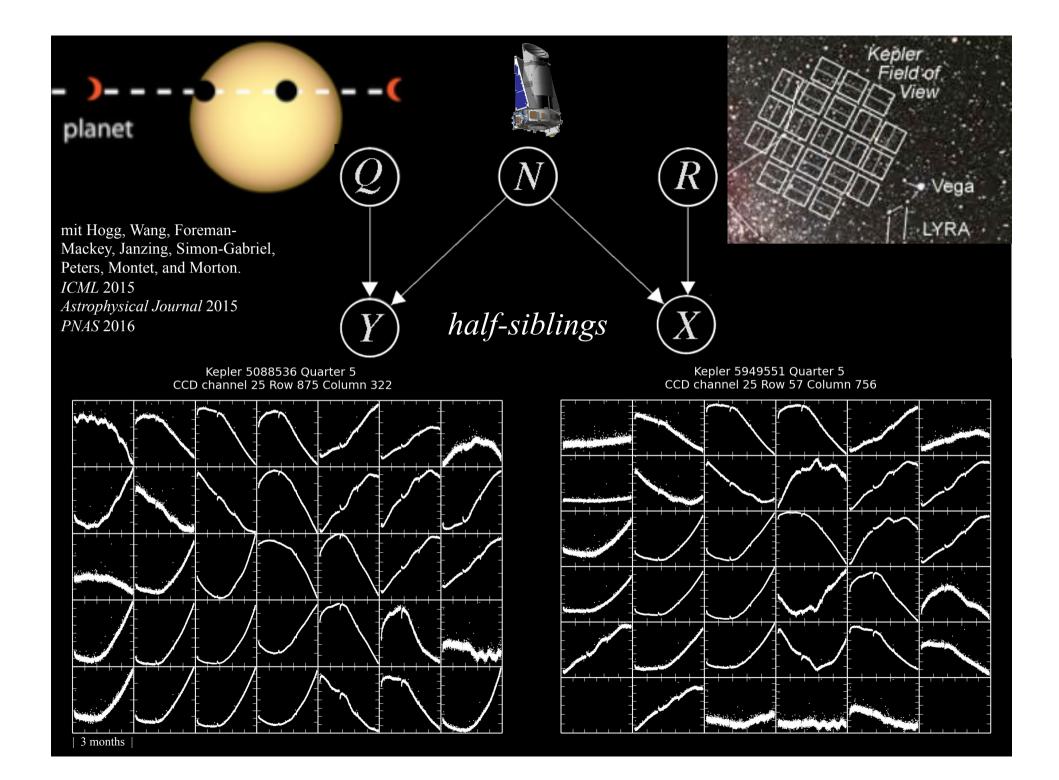
⇔Sun

Orion Spur

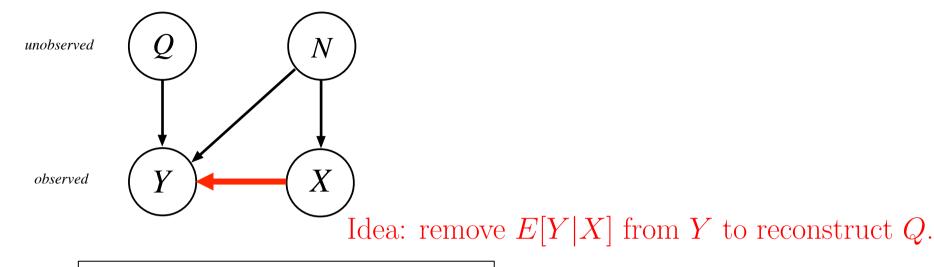
Perseus Arm

Exoplanet Transits





Half-Sibling Regression



$X \perp\!\!\!\!\perp Q$

X and Y share information (only) through N

If we try to predict Y from X, we only pick up the part due to N

with David Hogg, Dan Foreman-Mackey, Dun Wang, Dominik Janzing, Jonas Peters, Carl-Johann Simon-Gabriel (ICML 2015)

Proposition. Q, N, Y, X random variables, $X \perp \!\!\!\perp Q$, and f measurable. Define

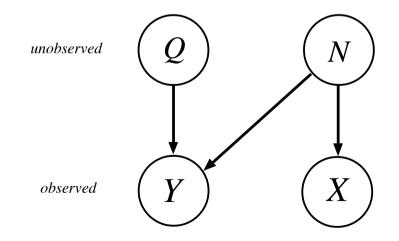
•
$$\hat{Q} := Y - \mathbb{E}[Y|X].$$

Suppose $\mathbb{E}[Q] = 0$ and

• Y = Q + f(N) (additive noise model)

Then $E[(\hat{Q} - Q)^2] = E[\operatorname{Var}[f(N)|X]].$

If f(N) can (in principle) be predicted well from X, then Q can be reconstructed well by \hat{Q} .

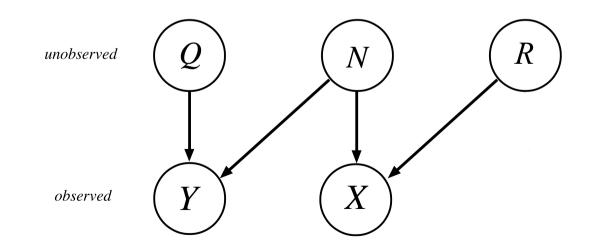


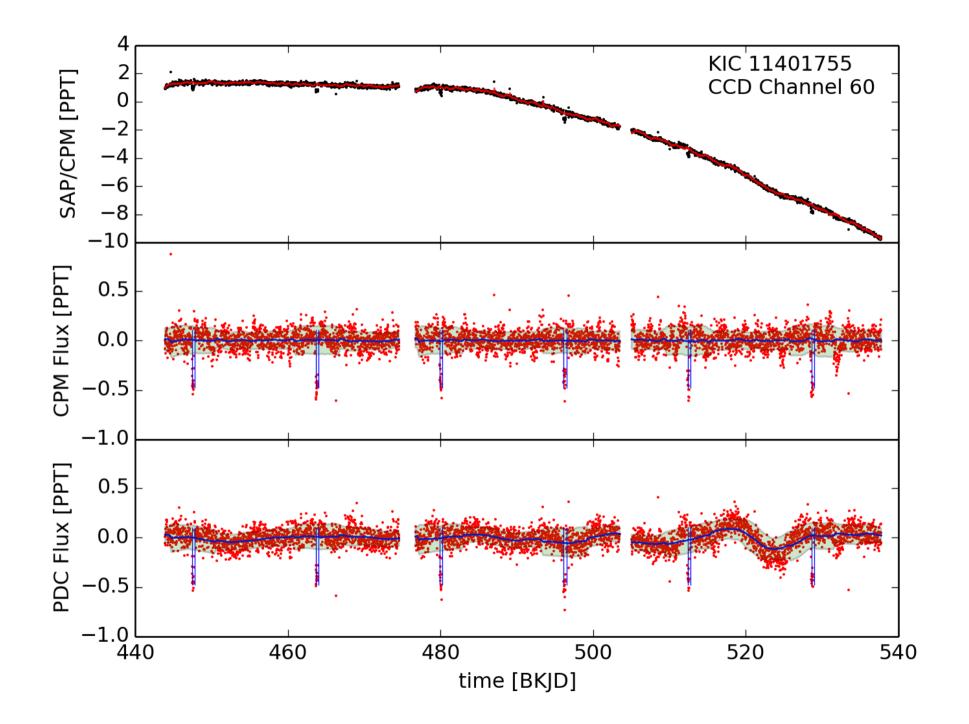
Proposition. R, N, Q jointly independent. Suppose

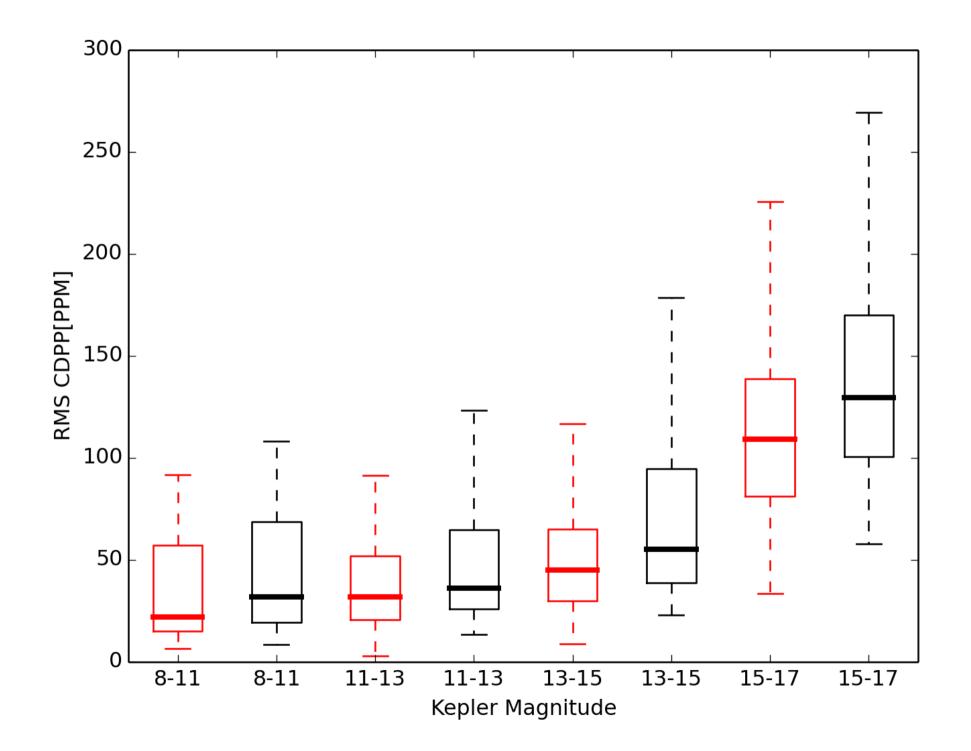
$$X = g(N) + R$$

Recovery results if either

(i) magnitude of R goes to 0 (i.e., influence of stars negligible), or (ii) R is a random vector whose components are jointly independent (i.e., many independent stars).







Summary

- conventional causal inference algorithms use conditional statistical dependences
- more recent approaches also use other properties of the joint distribution
- non-statistical dependences also tell us something about causal directions

