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Roadmap

e informal motivation
e structural causal models

e causal graphical models;
d-separation, Markov conditions, faithfulness

e do-calculus
e causal inference...

— using conditional independences
— using restricted function classes or scores

— using “autonomy” of causal mechanisms: IGCI and invariant condi-
tionals

— using time order

e implications for machine learning: SSL, transfer, confounder removal




Dependence vs. Causation

Storks Deliver Babies (p= 0.008)
Robert Matthews
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Country Area Storks | Humans | Birth rate
(km?*)  (pairs) (10%) (10°/yr)
Albania 28,750 100 3.2 83
Austria 83,860 300 7.6 87
Belgium 30,520 1 9.9 118
Bulgaria 111,000 5000 9.0 117
Denmark 43,100 9 5.1 59
France 544,000 140 56 774
Germany 357,000 3300 78 901
Greece 132,000 2500 10 106
Holland 41,900 4 15 188
Hungary 93,000 5000 11 124
Italy 301,280 5 57 551
Poland 312,680 30,000 lmailto:rajm@compuserve.com
Portugal 92,390 1500 10 120
Romania 237,500 5000 23 367
Spain 504,750 = 8000 39 439
Switzerland | 41,200 @ 150 | 6.7 82
Turkey 779,450 ' 25,000 s6 1576

Table 1. Geographic, human and stork data for 17
European countries
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BECOME AWESOME IN EXCEL

Amazon’s recommendation system - is it crazy?

Posted on January 12th, 2008 in business , Humor , technology , wonder why - 6 comments

We have a saying in Telugu that goes like this, “thaadu vundhi kada ani eddu kontama?"” which means, “just because
you have a rope you dont buy a bullock to tie”. Amazon’s recommendation system must have been coded by someone

with a skewed view of reality. How else can you explain this?

Thanks to P. Laskov.

Your Amazon.com Today’s Deals (v)

Share your ovn customer images

Better Together

Mobile Edge Exp

Other products by Mobig
Yookt [v] (18 custq

List Price: $49.99
Price: $48.32 &
You Save: 31.67 (G

Availability: In Stock. °

Want it delivered Tus
at checkout. See detaily

21 used & new avas

Buy this item with HP Pavilion DV2610US 14.1" Entertainment |

Hewlett-Packard today!

Total List Price: $1123 99
Buy Together Today: $898.31

‘+

@ Buy both now! J
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Association of Coffee Drinking with Total and Cause-Specific

Mortality

Neal D. Freedman, Ph.D., Yikyung Park, Sc.D., Christian C. Abnet, Ph.D., Albert R. Hollenbeck, Ph.D., and Rashmi Sinha,

Ph.D.
N Engl J Med 2012; 366:1891-1904 | May 17, 2012

Abstract Article References Citing Articles (1)

BACKGROUND

Coffee is one of the most widely consumed beverages, but the
association between coffee consumption and the risk of death
remains unclear.

Full Text of Background...

METHODS

We examined the association of coffee drinking with subsequent total
and cause-specific mortality among 229,119 men and 173,141
women in the National Institutes of Health-AARP Diet and Health
Study who were 50 to 71 years of age at baseline. Participants with
cancer, heart disease, and stroke were excluded. Coffee
consumption was assessed once at baseline.

We present risk estimates separately for men and women. Multivariate models were adjusted for
the following baseline factors: age; body-mass index (BMI); race or ethnic group; level of education;
alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars,
and time of smoking cessation (<1 year, 1 to <5 years, 5 to <10 years, or 210 years before
baseline); health status; presence or absence of diabetes; marital status; level of physical activity;
total energy intake; consumption of fruits, vegetables, red meat, white meat, and saturated fat; and
use of any vitamin supplement (yes vs. no). In addition, risk estimates for death from cancer were
adjusted for history of cancer (other than nonmelanoma skin cancer) in a first-degree relative (yes
vs. no). For women, status with respect to postmenopausal hormone therapy was also included in

multivariate models. Less than 5% of the cohort lacked any single covariate; for each covariate, we
)

RESULTS

During 5,148,760 person-years of follow-up between 1995 and 2008, a
total of 33,731 men and 18,784 women died. In age-adjusted models,
the risk of death was increased among coffee drinkers. However,
coffee drinkers were also more likely to smoke, and, after adjustment
for tobacco-smoking status and other potential confounders, there
was a significant inverse association between coffee consumption
and mortality. Adjusted hazard ratios for death among men who drank

CONCLUSIONS

In this large prospective study, coffee consumption was inversely
associated with total and cause-specific mortality. Whether this was
a causal or associational finding cannot be determined from our data.
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Figure 1. Subgroup Analysis of
Associations between the
Consumption of 4 or More Cups of
Coffee per Day and Total and Cause-
Specific Mortality.

Hazard ratios for death from all causes
and from specific causes are for the
comparison of men and women who
drank 4 or more cups of coffee per day
with those who did not drink coffee.
Participants were classified as drinking
caffeinated or decaffeinated coffee
according to whether they reported
drinking caffeinated or decaffeinated
coffee more than half the time. Risk
estimates for other categories of coffee
consumption are shown in Tables 2
and 3 in the Supplementary
Appendix. Risk estimates were
adjusted for the following factors at
baseline: age; body-mass index; race
or ethnic group; level of education;
alcohol consumption; the number of
cigarettes smoked per day, use or
nonuse of pipes or cigars, and time of
smoking cessation (<1 year, 110 <5
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Figure 2. Subgroup Analysis of
Associations between the
Consumption of 4 or More Cups of
Coffee per Day and Total Mortality.

Hazard ratios for death from any cause
are for the comparison of men and
women who drank 4 or more cups of
coffee per day with those who did not
drink coffee. The multivariate model
was adjusted for the following factors at
baseline: age; body-mass index (BMI;
the weight in kilograms divided by the
square of the height in meters); race or
ethnic group; level of education; alcohol
consumption; the number of cigarettes
smoked per day, use or nonuse of
pipes or cigars, and time of smoking
cessation (<1 year, 1 to <5 years, 5 to
<10 years, or 10 years before
baseline); health status; diabetes (yes
vs. no); marital status; physical activity;
total energy intake; consumption of
fruits, vegetables, red meat, white
meat, and saturated fat; use or nonuse
of vitamin supplements; and, in women,
use or nonuse of postmenopausal
hormone therapy. Risk estimates for
other categories of coffee consumption
are shown in Tables 4 and 5 in the
Supplementary Appendix. High and
low dietary-intake categories are split at
the median. Horizontal lines represent
95% confidence intervals. P values for
interactions were computed with the
use of likelihood-ratio tests comparing
Cox proportional-hazards models with
and without cross-product terms for
each level of baseline stratifying
variables, with coffee consumption as
an ordinal variable. P values for the
years of follow-up were derived from
testina the addition of a cross-product

<
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Deutsches Kinderkrebsregister untersucht
Haufigkeit von Krebserkrankungen bei
Kindern in der Nahe von Kernkraftwerken

Neue Studie veroffentlicht

Immer wieder wird der Verdacht geauBert, dass Kinder in der Nahe von
Kernkraftwerken haufiger an Krebs erkranken. Eine frGhere Studie des
Kinderkrebsregisters mit Kindern unter 15 Jahren schien darauf hinzudeuten,
dass speziell in den ersten Lebensjahren das Leukémie-Risiko in den
betreffenden Gegenden erhoht war.

In diesen Tagen erscheinen zwei wissenschaftliche Verodffentlichungen tGber

eine neue Studie des Deutschen Kinderkrebsregisters in Mainz. Das Ergebnis:

In Deutschland findet man einen Zusammenhang zwischen der Nahe der
Wohnung zu einem Kernkraftwerk und der Haufigkeit, mit der Kinder vor
ihrem finften Geburtstag an Krebs und besonders an Leukamie erkranken.
Allerdings erlaubt die Studie keine Aussage daruber, wodurch sich die
beobachtete Erhéhung der Anzahl von Kinderkrebsfallen in der Umgebung
deutscher Kernkraftwerke erklaren lasst. So kommt nach dem heutigen
Wissensstand Strahlung, die von Kernkraftwerken im Normalbetrieb ausgeht,
als Ursache flr die beobachtete Risikoerh6hung nicht in Betracht. Denkbar
ware, dass bis jetzt noch unbekannte Faktoren beteiligt sind oder dass es
sich doch um Zufall handelt.

| Weiterbildung | International |Presse

b Kontakt

Dr. Peter Kaatsch

(Leiter des Deutschen
Kinderkrebsregisters)

Dt. Kinderkrebsregister am IMBEI
Tel +49 6131 17-3111

E-Mail

Homepage

Prof. Dr. Maria Blettner
(Direktorin des IMBEI)
Institut fur Medizinische
Biometrie, Epidemiologie und
Informatik (IMBEI)

Tel +49 6131 17-3252
E-Mail



“Correlation does not tell us anything about causality”

 Better to talk of dependence than correlation

* Most statisticians would agree that causality does tell us
something about dependence

* But dependence does tell us something about causality
too:




Common Cause Principle

(Reichenbach)
(i) if X and Y are sta- (ii) Z screens X
tistically dependent, and Y from each
then there exists 7 other (given 7, WS- X
causally influencing X und Y become et
both; independent)

special case:

@ O @—0 @O

p(XY)
3, p(x|2)p(y|2)p(2) p(x)p(y|x) p(x|y)p(y)




Notation

o A B event

e X.Y, Z random variable

e 7 value of a random variable

e Pr probability measure

e Px probability distribution of X

e p density

e px or p(X) density of Px

e p(x) density of Px evaluated at the point z

e always assume the existence of a joint density, w.r.t. a product
measure




Independence
Two events A and B are called independent if
Pr(AN B) = Pr(A) - Pr(B).

A1, ..., A, are called independent if for every subset S C {1,...,n}
we have

Pr (ﬂ Ai> = ][ Pr(4).

€5 €S

Note: for n > 3, pairwise independence Pr(A;NA,) = Pr(A;)-Pr(A,)
tor all ¢, 7 does not imply independence.




Independence of random variables

Two real-valued random variables X and Y are called independent,

X LY,

if for every a,b € R, the events {X < a} and {Y < b} are indepen-
dent.

Equivalently, in terms of densities: for all z,y,

p(z,y) = p(z)p(y)

Note:
If X I Y, then F|XY] = FE|X|E[Y], and cov|X,Y]| = F[XY]| - E[X]E|Y] = 0.

The converse is not true: cov| X, Y| =0+ X 1 Y.

However, we have, for large F: (Vf,g € F :cov[f(X),g(Y)]=0)= X 1LY




Conditional Independence of random variables

Two real-valued random variables X and Y are called conditionally
independent given Z,

(X LY)|Z or XLY|Z or (X LY|2),
if
p(z,y|z) = p(z|2)p(y|2)
for all z,y, and for all z s.t. p(z) > 0.

Note: it is possible to find X, Y which are conditionally independent
(given Z) but unconditionally dependent, and vice versa.




What is cause and what is effect?

10
|

temperature

0 500 1000 1500




Autonomous/invariant mechanisms

0 500 1000 1500 2000 2500 3000
altitude

e intervention on a: raise the city, find that ¢ changes

e hypothetical intervention on a: still expect that ¢
changes, since we can think of a physical mechanism
p(t|a) that is independent of p(a)

e we expect that p(t|a) is invariant across, say, differ-
ent countries in a similar climate zone




Independence of cause & mechanism

0 500 1000 1500 2000 2500 3000
altitude

e the conditional density p(t|a) (viewed as a function of
t and a) provides no information about the marginal
density function p(a)

e this also applies if we only have a single density




Independence of noise terms

temperature

0 500 1000 1500 2000 2500 3000
altitude

e view the distribution as entailed by a structural causal

model (SCM)

A= Ny,
T := fr(A, Nr),

where Np 1L Ny

e this allows identification of the causal graph under

7 suitable restrictions on the functional form of fp




Dependent noises can lead to dependent mechanisms

O

~

e consider the graph A — T N

J
4

| I——

\—f

o SCM
T = F(A,N) ALN

If N can take d different values, it could switch between mech-

anisms f1(A),..., f4YA)

o if A . N, then N could “select” a mechanism f* depending on
(the mechanism selected by) A




(physical) independence of mechanisms
Principle 2.1

(s e ) Y (- R
intervenability e N independence
independence :

autonomy . . of noises,

. of information .
modularity . conditional
. : contained .
invariance ‘" mechanisms independence
 transfer ) N - (structures




Principle 2.1 (Independent Mechanisms) 7The causal generative process of
a system’s variables is composed of autonomous modules that do not inform
or influence each other.

In the probabilistic case, this means that the conditional distribution of each
variable given its causes (i.e., its mechanism) does not inform or influence
the other conditional distributions. In case we have only two variables, this
reduces to an independence between the cause distribution and the mechanism
producing the effect distribution.

e a “structural”’ relation not only explains the observed data, it captures

a structure connecting the variables; related to autonomy and invariance
(Haavelmo 1943, Frisch 1948, ...)

e an equation system becomes structural by virtue of invariance to a do-
main of modifications (Harwich, 1962)

e “Simon’s invariance criterion:” the true causal order is the one that is
invariant under the right sort of intervention (Simon, 1953; Hoover, 2008)

e cach parent-child relationship in the network represents a stable and au-
tonomous physical mechanism (Pearl, 2009)

e formalised using algorithmic information theory (Janzing & Scholkopf,
2010)




Definition of a Structural Causal Model
(Pearl et al.)

e directed acyclic graph G with vertices X1, ..., X,

(following arrows does not lead to loops)

e Semantics: vertices = observables, arrows = direct causation

o Xz = fz(PAza Uz) , with independent RVs Ul, C ey Un that possess a

joint density
e [U; stands for “unexplained” (alternatively “noise” or “exogenous variable”)

e this is also called a (nonlinear) structural equation model

non-descendk

parents (causes) of XJ.

()
\_/\
\ \/‘\_ <~>

‘ \_ _/ descendants




Reichenbach’s Principle and causal sufficiency

e this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence
can only arise in two vertices that depend (partly) on the same noise
term(s).

2. if we condition on these noise terms, the variables become independent

e Independence of noises is a form of ”causal sufficiency:” if the noises were
dependent, then Reichenbach’s principle would tell us the causal graph is
incomplete

fz
Q\fX Iy




Entailed distribution

parents (causes) of XJ.

“\___/\

"\
\{/ N \_/

\_ _/ descendants

non-descendk \

o X; = fi(PA;, U;), ./ \\
with independent Uy, ..., U,,. '

e Recursively substitute the parent equations to get X, = ¢,(Uy, ..., U,),
with independent Uy, ..., U,.

e Each X is thus a RV and we get a joint distribution of X5, ..., X,
called the observational distribution.

e The distribution and the DAG form a directed graphical model and
any directed graphical model can be written as a functional causal
model.

)




Entailed distribution

parents (causes) of XJ.

l/_ i —\\l

O

non-descendh \
1/>7—\\|

./ \ \/“\ \_/
‘ \_ / descendants

e A structural causal model entails a joint distribution p( X1, ..., X,).

Questions:

(1) What can we say about it?

(2) Can we recover G from p?




Markov conditions (Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

— Existence of a structural causal model

— Local Causal Markov condition: X; statistically independent ot
non—deseendant& given parents (i.e.: every information exchange with its

non-descendants involves its parents)

— Global Causal Markov condition: “d-separation” (characterizes the

set of independences implied by local Markov condition — see below)
— Factorization p(X1, ..., X,) =[], p (X, | PA;)

(subject to technical conditions)

p (X, | PA;) is called a causal conditional or causal Markov kernel.
[t corresponds to the structural “equation” X, := f;(PA; U;).

Not every conditional is causal — only those that condition on the
parents in our DAG.

7
7
Ged)




Graphical Causal Inference (Spirtes, Glymour, Scheines, Pearl, ...)
Question: How can we recover GG from a single p (e.g., from the observational
distribution) 7

Answer: by conditional independence testing, infer a class containing

the CorreCt G parents(causes)ofxJ

(i.e., track how the noise information spreads). .. ioccon dg\ \
o . ..

PrOblemS: ‘ \__/ descendants

(X 1LY |Z),, but
(X LY |Z),

~
\

e Markov condition states (X 1 Y |Z)q
we need “faithfulness”: (X ALY |Z)q

(Sprites, Glamour, Scheines 2001)

=
=

Hal"d tO JU.Stlfy fOI‘ ﬁﬂlte da;ta (Uhler, Raskutti, Bihlmann, Yu, 2013).

e if the f; are complex, then conditional independence testing based
on finite samples becomes arbitrarily hard




parents (causes) of XJ.

7\

\\w\
N\

\1,/ ™ \_/

\_ _/ descendants

Interventions and shifts .\
non-descendants

o
@

e Definition. Replacing X, := f;(PA;, U;) with another assignment
(e.g., X, := const.) is called an intervention on X;.

e The entailed distribution is called the interventional distribution.

e This contains as special cases: domain shift distribution and covari-
ate shift distribution (see below).

e A general intervention corresponds to changing some causal con-
ditionals p( X;|PA;)




Principle of independent mechanisms

e a precondition for interventions is that the mechanisms in
n
p(X1,.., X)) =[] p (X0 | PA)
i=1

are independent, hence changing one p (X, | PA;) does not change the condition-
als p (X, | PA;) for j # i — cf. independence of noise terms

e can help infer causal structures: exploit that the terms in one factorisation are
independent from each other (sanzing & schéikops, 2010); €xploit that terms remain invari-
ant across domains (peters et al., 2015; Zhang et al., 2015, Hoover, 1990), 1.€., vary some of them
and check if the others remain unchanged

e can help in machine learning: semi-supervised learning (schitkopf et al., 2012), domain
shift (Zhang et al., 2013), transfer 1earning (Rojas-Carulla et al., 2015)
Cft. independence of mechanisms (Janzing & Schilkopf, 2010), 1ndependence of cause and mechanism

(Janzing et al., 2012), autonomy, (structural) invariance, separability, exogeneity, stability, modular-
1y (Aldrich, 1989; Pearl, 2009)




Independence Principle:
The causal generative
process is composed of
autonomous modules that
do not inform or

R/ PAS
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Counterfactuals

e David Hume (1711-76): “.. we may define a cause to be an object, fol-
lowed by another, and where all the objects similar to the first are followed
by objects stmilar to the second. Or in other words where, if the first object
had not been, the second never had existed.”

e Jerzy Neyman (1923): consider m plots of land and v varieties of crop.

Denote U;; the crop yield that would be observed if variety ¢ = 1,...,v
were planted in plot 7 =1,....m

For each plot j, we can only experimentally determine one U;; in each
growing season.

The others are called “counterfactuals”.

e this leads to the view of causal inference as a missing data problem — the
“potential outcomes” framework (Rubin, 1974)




non-descendh

parents of Xj

/" ™~

‘:\___ ) independent RVs Uy, ..., U,.
/\/--\ 1

\ \/\ \_/
‘ \_ _/ descendants

Can we recover GG from p?
approach assumptions method intuition
graphical approach |noises  jointly | conditional inde- | track how the
(Pearl,  Spirtes,  Glymour, | iINdependent;; pendence testing | noises spread
Scheines) faithfulness (n > 3)
ICM noises and f; | customized tests |noises pick up
(Damiusis et al, UAI 2010;| independent; footprints of the
Shajarisales et ol., ICML 2015) | f; learnable functions
additive noise model | X; = f;(PA;)+U; | regression & un- | restriction of

(Peters, Mooij, Janzing,

Schélkopf, JMLR 2014)

with learnable f;

conditional inde-
pendence testing

function class



Does 1t make sense to talk about
causality without mentioning time?

Does i1t make sense to talk about
statistics without mentioning time?




A Modeling Taxonomy

model predict in IID | predict under | answer obtain automatically
setting changing counter- physical learn from

distributions / | factual insight data
interventions | questions

mechanistic | Y Y Y Y ?

model

structural Y Y Y N Y??

causal model

causal Y Y N N Y?

graphical

model

statistical Y N N N Y

model
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From Ordinary Differential Equations to Structural Causal Models:
the deterministic case

Joris M. Mooij Dominik Janzing Bernhard Scholkopf
Institute for Computing and Max Planck Institute Max Planck Institute
Information Sciences for Intelligent Systems for Intelligent Systems
Radboud University Nijmegen Tiibingen, Germany Tibingen, Germany

The Netherlands

Abstract

We show how, and under which conditions,
the equilibrium states of a first-order Ordi-
nary Differential Equation (ODE) system can
be described with a deterministic Structural
Causal Model (SCM). Our exposition sheds
more light on the concept of causality as ex-
pressed within the framework of Structural
Causal Models, especially for cyclic models.

algorithms (starting from different assumptions) have
been proposed for inferring cyclic causal models from
observational data (Richardson, 1996; Lacerda et al.,
2008; Schmidt and Murphy, 2009; Itani et al., 2010;
Mooij et al., 2011).

The most straightforward extension to the cyclic case
seems to be offered by the structural causal model
framework. Indeed, the formalism stays intact when
one simply drops the acyclicity constraint. However,
the question then arises how to interpret cyclic struc-
tural equations. One option is to assume an under-

UAI 2013

See also Rubenstein, Bongers, Mooij, Scholkopf, 2016



“imitate the superficial exterior of a process
or system without having any understanding

of the underlying substance".
(source: http://philosophyisfashionable.blogspot.com/)

“cargo cult”

- for prediction in the IID setting, imitating the
exterior of a process is often enough
(i.e., can disregard causal structure)

- anything else can benefit from causal learning




Interval




Recall:

e causal structure formalized by DAG (directed cyclic graph) G with random

variables X1, ..., X,, as nodes
e Causal Markov Condition states that density p(z4, ..., x,) then factorizes
into

n

p(xlv ce wrn) — Hp('r] ‘paj)a

g=1

where pa; denotes the values of the parents of X

e causal conditionals p(x;|pa;) represent causal mechanisms




Pearl’s do-notation

e Motivation: goal of causality is to infer the effect of
interventions

e distribution of Y given that X is set to x:

p(Y|doX =x) or p(Y|dox)

e don’t confuse it with P(Y|x)

e can be computed from p and G




Difference between seeing and doing

p(y|x)

probability that someone gets 100 years old given that we know that he/she
drinks 10 cups of coffee per day

p(y|dox)

probability that some randomly chosen person gets 100 years old after he/she
has been forced to drink 10 cups of coffee per day




Computing p(X;y,..., X,|dox;)

from p(Xi,...,X,) and G

e Start with causal factorization

p(X1,.... X,) = | [ p(X;|PA;)

e Replace p(X;|PA;) with dx,,,

p(Xla O 7Xn|d0 xl) = Hp<X]|PAJ)5XzCUz
JF#i




Computing p(X;|do ;)

summation over x; yields

p(Xl, “e 7Xi—17Xi—|—17 . ,Xn’d0$z) = Hp(XJ\PAJ(wz)) .
JFi

e distribution of X; with j # ¢ is given by dropping p(X;|PA;) and substi-
tuting x; into PA, to get PA,(z;).

e obtain p(Xg|dox;) by marginalization




Examples for p(.|dox) = p(.|z)

X—0

®@\@ ®/@\»®




Examples for p(.|dox) # p(.|z)

e p(Yldox) = P(Y) # P(Y|r)

©—

p(Y|dox) = P(Y) # P(Y|x)

x




Example: controlling for confounding

2.
Xy

X LY partly due to the confounder Z and partly due to X — Y

e causal factorization

p(X,Y, Z) = p(Z)p(X|Z)p(Y|X, Z)

e replace P(X|Z) with dx.

p(Y, Zldox) =p(Z) 6x. p(Y|X, Z)

e marginalize

p(Y|dox) = Zp p(Y|x, z) # Zp zlx)p(Ylzx,z) = p(Y|x).




Identifiability problem

e.g. Tian & Pearl (2002)

e given the causal DAG G and two nodes X;, X

e which nodes need to be observed to compute p(X;|doz;) ?




Inferring the DAG

e Key postulate: Causal Markov condition

e Lissential mathematical concept: d-separation

(describes the conditional independences required by a causal DAG)




d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path ¢ is said to be blocked by the set Z if

e ¢ contains a chain i1 — m — j or a fork 1 «<— m — j such
that the middle node is in Z, or

e ¢ contains a collider 1 — m < j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally
(X LY |Z)q

if Z blocks every path from a node in X to a node in Y.




Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both




Example (unblocking of paths)

W—z+—uv-—@

e path from X to Y is blocked by ()

e unblocked by conditioning on Z or W or both




Unblocking by conditioning on common effects
Berkson’s paradox (1946)
Example: X,Y, Z binary @
@ =XorY

XL1Y but XLY|Z

e assume: for politicians there is no correlation between being a good speaker
and being intelligent

e politician is successful if (s)he is a good speaker or intelligent

e among the successful politicians, being intelligent is negatively correlated
with being a good speaker




Asymmetry under inverting arrows

(Reichenbach 1956)

VARPON

X1y X LY
XLY|Z X1Y|Z




Examples (d-separation)

(X LY |ZW)q
(X LY |ZUW)g
(X LY |VZUW)g

(X L Y|VZU)




Causal inference for time-ordered variables

assume X A Y and X earlier. Then X « Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it




Causal inference for time-ordered variables

assume X1, ..., X, are time-ordered and causally sufficient, i.e., there are no
hidden common causes and density is strictly positive

e start with complete DAG

)
) —(%)

e remove as many parents as possible:

p € PA; can be removed if

Xj Lp|PA;j\p

(going from potential arrows to true arrows “only” requires
statistical testing)




Time series and Granger causality

Does X cause Y and/or Y cause X7

exclude instantaeous effects and common causes

o if
Ypresent 7‘”— Xpast ’Ypast

there must be arrows from X to Y (otherwise d-separation)
e Granger (1969): the past of X helps when predicting Y; from its past

e strength of causal influence often measured by transfer entropy

—[(Y})resent; Xpast |Y;oast>




Confounded Granger

Hidden common cause Z relates X and Y

050500

=SS

due to different time delays we have

Ypresent 7M— Xpast ’Ypast

but
Xp’resent AL Ypast ’Xpast

Granger infers X — Y




Why transfer entropy does not
quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

ST

e although the influence is strong

I(Ypresent; Xpast ‘Ypast) =0,

because the past of Y already determines its present
e quantitatively still wrong for non-deterministic relation

e see paper on definitions of causal strength: Janzing, Balduzzi, Grosse-
Wentrup, Scholkopf, Annals of Statistics 2013




Quantifying causal influence for general DAGs

Given:
causally sufficient set of variables X4,...,X,, with

e known causal DAG G

e known joint distribution P(Xjy,...,X,)

*)
h

Goal:

construct a measure that quantifies the strength of X;—X;
with the following properties:




Postulate 1: (mutual information)

X

For this simple DAG we postulate
cxoy =1 (X 3 Y)

(no other path from X to Y, hence the dependence is caused by the arrow
X —=Y)




Postulate 2: (localility)

causes of causes and effects of effects don’t matter
i —

here we also postulate cx_y = I(X;Y)




Postulate 3: (strength majorizes conditional dependence,

given the other parents)

/

®\®

cx—y 2 I(X3Y |Z)
(without X — Y the Markov condition would imply I(X;Y |Z) = 0)




Why cx_yv =I1(X;Y |Z) is a bad idea

/ \ contains / as a limiting case

®\ @ weak influence 7 — Y

where we postulated cx_,y = I(X;Y) instead of I(X;Y |Z)




Our approach: ‘“edge deletion”

e define a new distribution

Px_y (2,y,2) = P(2)P(a]2) ) Plyla’,2)P(a")

e define causal strength by the ’impact of edge deletion’
cx—y = D(P||Px-y)

e intuition of edge deletion:

cut the wire between devices and feed the open end with an iid copy of

the original signal @
/ related work:
@ Ay & Krakauer (2007)

/‘L

X' ~P(X)




Properties of our measure

e strength also defined for set of edges
e satisfies all our postulates
e also applicable to time series

e conceptually more reasonable than Granger causality and transfer entropy




Inferring the causal DAG without time information

e Setting: given observed n-tuples drawn from p(Xy,...,X,), infer G

e Key postulates: Causal Markov condition and causal faithfulness




Causal faithfulness

Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold
true that are implied by the Markov condition, i.e.,

(XLY|Z)e <« (XAY|Z),

Recall: Markov condition reads

(X LY |Z)e = (XL1Y|Z),




Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = Ux
Y = oX +Uy
Z = BX+4AY +Uy

with independent noise terms Ux, Uy, Uz

B+ay=0 = X1 Z

o\




Examples of unfaithful distributions (2)

binary causes with XOR as effect

e for p(X),p(Y) uniform: X 1L Z,Y 1 Z.
i.e., unfaithful (since X, Z and Y, Z are connected in the graph).

e for p(X),p(Y) non-uniform: X £ Z,Y A Z.

i.e., faithful

(fair coins)
O
@) ey

unfaithfulness considered unlikely because it only occurs for
non-generic parameter values




Conditional-independence based causal inference
Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:
e accept only those DAGs GG as causal hypotheses for which

(X LY|Z)e & (XLY|2),.

e identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independences)




Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov
equivalent iff they have the same skeleton and the same
v-structures.

skeleton: corresponding undirected graph
v-structure: substructure X — Y < Z with no edge between
X and Z




Markov equivalent DAGs

X—=—z
X—=r—z
XK=~z

same skeleton, no v-structure

X1 Zy




Markov equivalent DAGs

SN

\

®®®®
\/\/
®@ 6

same skeleton, same v-structure at W




Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:
1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

e graph is acyclic

e all v-structures have been found in 2)




Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set Sxy
such that
(X LY |Sxy .

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened off by
conditioning on an appropriate set

@
@i@_,@ X LYz W}
@

.. but not by conditioning on all other variables!

Sxy is called a Sepset for (X,Y)




Efficient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X —Y with X 1LY

2. remove all edges X — Y for which there is a neighbor Z #Y
of X with X 1LY |Z

3. remove all edges X — Y for which there are two neighbors
Zl,ZQ 7é Yof X with X 1LY ’Zl,ZQ




Advantages

e many edges can be removed already for small sets

e testing all sets Sxy containing the adjacencies
of X is sufficient

e depending on sparseness, algorithm only requires
independence tests with small conditioning tests

e polynomial for graphs of bounded degree




Find v-structures

e given X — Y — Z with X and Y non-adjacent

e given Sxy with X ALY ‘SXY

a priori, there are 4 possible orientations:

X >7Z—->Y )
X +— /=Y
X — Z+Y

X - /4 +Y

/

> Z € Sxy

Z & Sxy

Orientation rule: create v-structure if Z7 € Sxvy



Direct further edges (Rule 1)
-0 ¢
1
®-0-0

(otherwise we get a new v-structure)




Direct further edges (Rule 2)

(otherwise one gets a cycle)




Direct further edges (Rule 3)

could not be completed
without creating a cycle
or a new v-structure




Direct further edges (Rule 4)

could not be completed
without creating a cycle
or a new v-structure




Examples

(taken from Spirtes et al, 2010)

true DAG @_»@_»@4_ @
v

start with fully connected undirected graph

A
@Q\%/@




remove all edges X — Y with X 1 Y |()

AP
ng§%/9

X1WwW Y IW

remove all edges having Sepset of size 1

—0—@—w
v

XLZY XALAU|Y YLU|Z WLU|Z




find v-structure

X——=Z—W

U

Z & Syw
orient further edges (no further v-structure)
\

edge X — Y remains undirected




Conditional independence tests

e discrete case: contingency tables

e multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)




Improvements

e CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

o FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

e for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh




BayeSian approach e.g. Cooper, Heckerman, Meek (1997),
Stegle, Janzing, Zhang, Schélkopf (2010)

idea:
e define prior over possible DAGs

e the conditionals p(X;|PA;) are free parameters in the
factorization

p(Xi,...,X,) = || p(X;|PA;)
j=1

e define priors on the parameter space of each DAG

e compute posterior probabilities of DAGs

implicit preference of faithful DAGs

Note: whether Markov equivalent DAGs obtain the same
posterior probability depends on the prior




Equivalence of Markov conditions

Theorem: the following are equivalent:

— Existence of a structural causal model

— Local Causal Markov condition: X statistically independent of non-
descendants, given parents

— Global Causal Markov condition: d-separation
— Factorization p(X1,..., X,) =[], p(Xj; | PAj)

(subject to technical conditions)

\ parents of X
non-descendh / /\
. \ J/

‘/ \ \,’/ N \ /

\_ _/ descendants




Local Markov = factorization (rauritzen 1996)

e Assume X, is a terminal node, i.e., it has no descendants, then ND,, =
{X1,...,X,_1}. Thus the local Markov condition implies

X, AL {X1,...,X,_1}|PA, .

e Hence the general decomposition

p(x1,...,xn) =p(Tn|Te, . s Tp_1)p(T1, ., Tp_1)

becomes
p(xla SR 7'7:71) — p(xn|p&n)p(x1, SR 7:Cn—1> .

e Induction over n yields




Factorization = global Markov
(Lauritzen 1996)
Need to prove (X LY |Z)g = (X LY |Z),.

Assume (X 1L Y |Z)¢

e define the smallest subgraph G’ containing X,Y, Z
and all their ancestors

e consider moral graph G'™ (undirected graph containing
the edges of G’ and links between all parents)

e use results that relate factorization of probabilities with
separation in undirected graphs




Global Markov = local Markov

Know that if Z d-separates X,Y, then X I Y |Z.
Need to show that X; 1L ND;|PA;.

Simply need to show that the parents PA; d-separate X; from its non-descendants
NDjZ

All paths connecting X; and ND; include a P € PA;, but never as a collider

- — P+ Xj
Hence all paths are chains

-— P — Xj
or forks

4= P = X;

Therefore, the parents block every path between X; and ND;.




structural causal model = local Markov condition

(Pearl 2000) G G

®\®/® ~ s
|

o

® (o

e augmented DAG G’ contains unobserved noise

local Markov-condition holds for G’:

(i): the unexplained noise terms U; are jointly independent, and thus
(unconditionally) independent of their non-descendants

(ii): for the X;, we have
X; L ND; |PA

because X; is a (deterministic) function of PA’.

local Markov in G’ implies global Markov in G’

global Markov in G implies local Markov in G (proof as previous slide)




factorization = structural causal model

generate each p(X,;|PA;) in
p(X1,.... X,) = | [ p(X;|PA;)

by a deterministic function:

e define a vector valued noise variable U j

e cach component Uj|pa;| corresponds to a possible value
paj of PA;

e define structural equation
zj = fi(paj, u;) = u;|pa;] .
e let component U;|pa,| be distributed according to p(X,|pa;).

Note: joint distribution of all Uj[pa;] is irrelevant, only
marginals matter




different point of view

@ =g(X), U chooses g € G

e (7 denotes set of deterministic mechanisms

e U randomly chooses a mechanism




Example: XY binary

= g(X), U chooses g € {ID,NOT,1,0}

the same p(X,Y) can be induced by different distributions on G:
e model 1 (no causal link from X to Y')

Plg=0)=1/2, Plg=1)=1/2

e model 2 (random switching between I'D and NOT)

Plg=1ID)=1/2, P(g= NOT)=1/2

both induce the uniform distribution for Y, independent of X



INTERVAL




What’s the cause and what’s the effect?

| | 1 | | J
0 500 1000 1500 2000 2500 3000




What’s the cause and what’s the effect?

1
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X (Altitude) — Y (Temperature)




What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?
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Y (Solar Radiation) — X (Temperature)




What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?
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What’s the cause and what’s the effect?
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vwviat’'s tne cause and wihat's tne eriect!
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X (Day in the year) — Y (Temperature)

MAX-PLANCK-GESELLSCIAFT



Recap: Structural Causal Model
o X, = f;(ParentsOf;, Noise;), with jointly independent Noisey, ..., Noise,.

. ’ parents of X (PAJ,)

.\»@—f (PA, U)

e entails p(X1,...,X,) with part1cular conditional independence structure

Q

Assuming Markov condition + faithfulness we can recover an equivalence
class containing the correct graph using conditional independence testing.

Problems:
1. does not work for graphs with only 2 vertices (even with infinite data)

2. if we don’t have infinite data, conditional independence testing can be
arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.




Restricting the Structural Causal Model

O—
l'—i\
e general functional model -

X A N

e consider the graph X — Y

Y = f(X,N)

Note: if NV can take d different values, it could switch randomly
between mechanisms f1(X),..., f4(X)

e additive noise model

Y = f(X)+ N




Causal Inference with Additive Noise, 2-Variable Case

additive noise model (ANM):
Y := f(X)+ Ny, with X 1L Ny O= )

Identifiability:  when is there a
backward model of the same form?

e (X)

answer: generically, there is no model
X =¢g(Y)+ Nx withY 1 Nx

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
Peters et al: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
Peters et al.: Detecting the Direction of Causal Time Series. ICML 2009




Intuition

e Assume noise of bounded range
e Additive noise model implies range of Y around f1s constant

* For nonlinear f, range of X around backward function non-constant




Identiﬁability Result (Hoyer, Janzing, Mooij, Peters, Scholkopf, 2008)

Theorem 1 (Identifiability of ANMSs) For the purpose of this theorem, let
us call the ANM smooth if Ny and X have strictly positive densities py, and
px and fy,pn,, and px are three times differentiable.

Assume that Py|x admits a smooth ANM from X toY, and there exists ay € R

such that
(logpny )" (y — fy (@) fi-(x) # 0 (1)

for all but countably many values x. Then, the set of log densities logpx for
which the obtained joint distribution Pxy admits a smooth ANM fromY to X

18 contained in a 3-dimensional affine space.

Except for some rare cases, an ANM from X to Y induces a joint
distribution Pxy that does not admit an ANM from Y to X




Idea of the proof

If p(x,y) admits an additive noise model

we have
p(x,y) = q(z)r(y — f(x)) .
It then satisfies the differential equation

0 ( 0*logp(,y)/02% \ _
0x \ 02logp(x,y)/dxdy)

If it also holds with exchanging x and vy, only specific cases remain.




Alternative View ( cf. Zhang & Hyvdrinen, 2009)

H differential entropy

I mutual information
Ny =Y — f(X), Nx:=X —g(Y) residual noises

Lemma: For arbitrary joint distribution of X,Y and functions f,
g : R — R, we have:

H(X,Y)=H(X)+H(Ny)—I(Ny : X) = HY)+H(Nx)—I(Nx : Y).

Note: I(Ny : 0) = 0 iff there is an additive noise model from X to
Y with function f, i.e.,

Then
H(X)+ H(Ny) < H(Y)+ H(Nx).

Hence, we can infer the causal direction by comparing sum of en-
tropies




Causal Inference Method

Prefer the causal direction that can better be fit
with an additive noise model.

Implementation:
e Compute a function f as non-linear regression of X on Y

e Compute the residual
Ny =Y — f(X)

e check whether Ny and X are statistically independent (un-
correlated is not enough)




Experiments

Relation between altitude (cause) and average temperature (effect)
of places in Germany

temperature

0 1000 2000 3000
altitude
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altitude temperature

Our independence tests detect strong dependence.
Hence the method prefers the correct direction

altitude — temperature




Generalization of ANM: post-nonlinear model

Assume

Then, there is in the “generic” case no such a PNL model from Y to X

Zhang & Hyvarinen, UAI 2009




Side note on multivariate ANMs

For some DAG G with nodes X1, ..., X,, assume
Xj = [;(PAj) + N;
where all V; are independent

e then one can identify the DAG G (except for some rare cases)
e distinguishes even between Markov equivalent DAGs

e avoids conditional independence testing: if all residuals X; — f;(PA;) are
independent, Px, . x, satisfies the Markov condition w.r.t. G

(addresses two problems with the conditional-independence based approach)

Peters et al, UAI 2011




Inferring conditional independences...

...Irom unconditional ones

Example: if there are functions f, g such that
X~ f(2) LY - f(2)

then
X 1LY|Z

(condition is sufficient, but not necessary)




Causal inference in brain research

Grosse-Wentrup, Janzing, Siegel, Scholkopf, Neurolmage 2016

Let X,Y be some brain state features and S some randomized experimental
condition (i.e., a parentless node!) Assume

S £ X
S LY
S I Y|X

then Markov condition and faithfulness imply
S—-X =Y

applied to:

X: ~-power in the parietal cortex

Y. v-power in the medial prefrontal cortex

S instruction to up- or down-regulate X
(conditional independence verified via regression)




So far, we have employed the presence of noise:

e in deterministic causal relations conditional independences get mostly triv-
ial

e ANM-based inference requires noise

What about the noiseless case?




Inferring deterministic causality ovaniusis e a1, uar 2010

e Problem: infer whether Y = f(X) or X = f~}(Y) is the right causal
model

e Idea: if X — Y then f and the density px are chosen independently “by
nature”

e Hence, peaks of px do not correlate with the slope of f

e Then, peaks of py correlate with the slope of f~!

/ p(x)




Formalization

Assume that f is a monotonously increasing bijection of [0, 1].
View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (log f/,pz) =0
Note: this is equivalent to
1 1
| o5 @pladz = [ 1og £ (@)
0 0

since

Cov (log f',ps) = E[log f"ps]—E[log f') E[p,] = E[log f"-pz]—E[log f'].

Proposition: /
Cov (log f = ,py) >0

$7) with equality iff f = Id.




Testable implication / inference rule

o [f X — Y then

/ log |/ (z) p(x)de < / log |1~ () lp(y)dy

(high density p(y) tends to occur at points with large slope)

e empirical estimator

Yj+1 — Yj
Lj+1 — &

CA’X_>Y = Z log

~ / log | /() |p(x)dz

e infer X — Y whenever
Cxoy <Cy_ox.

“information geometric causal inference”




Benchmark dataset with 106 cause-effect pairs

http://webdav.tuebingen.mpg.de/cause-effect/

discussion of the ground truth and extensive performance studies for bivariate
causal inference methods:

Mooij et al: Distinguishing Cause from Effect Using Observational Data: Meth-
ods and Benchmarks, JMLR 2016




Cause-Effect Pairs — Examples

pair0001
pair0005
pair0012
pair0025
pair0033
pair0040
pair0042
pair0047
pair0064
pair0068
pair0069
pair0070
pair0072
pair0074
pair0078

var 1

Altitude

Age (Rings)

Age

cement

daily alcohol consumption
Age

day

#cars/24h

drinking water access
bytes sent

inside room temperature
parameter

sunspot area

GNI per capita

PPFD (Photosynth. Photon Flux)

var 2

Temperature

Length

Wage per hour

compressive strength

mcv mean corpuscular volume
diastolic blood pressure
temperature

specific days

infant mortality rate

open http connections
outside temperature

sex

global mean temperature

life expectancy at birth

NEP (Net Ecosystem Productivity)

dataset

DWD
Abalone
census income
concrete data
liver disorders
pima indian
B. Janzing
traffic
UNdata

P. Daniusis

J. M. Mooij
Biilthoff
sunspot data
UNdata
Moffat A. M.

ground truth

L A
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Independence of input and mechanism
Causal structure:

C' cause ;@
E effect i T
NC

N noise
¢ mechanism N,

Assumption:
p(C) and p(E

(') are “independent”

Janzing & Scholkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire &€ Dirkx, 2007




Recall different aspects of independence

e informational: Po and Pg|c don’t contain information about each other

e modularity: Pc and Pg|c often change independently across datasets

= machine learning should care about the causal direction in prediction tasks




Causal Learning and Anticausal Learning
Scholkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, /[CML 2012

e example 1: predict gene from mRNA sequence
Q\ Growing peptide chain

Q -
- e ]
I\ \
\ “pl,\. @ {Lys (- /\.\ Incoming tRNA
\® \ \.—(R“N‘- bound to Amino Acid >
Outgoing \\ \ \ \
empty tRNA \ ¢, O\ \
RN \ned) 0)
(
X

MessengerRNA

N

Y

Ribosome

Peptide Synthesis .
Source: http.://commons.wikimedia.org/wiki/File:Peptide syn.png causal mechanism QY

e example 2: predict class membership from handwritten digit

’
i id
0

N, N,




Prediction with changing distributions

assume distributions Px and Pj differ between training and test data

e causal prediction, X = C,Y = E: use the same Py |x also for the test
data because probably Py |x remained the same (even if we knew that it
changed too we would still use Py |x in absence of a better candidate).

“covariate shift”

e anticausal prediction, X = E,Y = C: probably also Py |x has changed
(maybe only Py changed or only Px|y)




Semi-supervised learning (SSL)

in addition to (x,y)-pairs, SSL uses unlabeled x-values to predict y from =z

e causal prediction: Px doesn’t tell us something about Py |x, why should
unlabeled instances help?

(SSL requires more subtle phenomena to work)

e anticausal prediction: Px may contain information about Py x there-
fore the unlabeled instances help

y=01 y=1

plx)




Covariate Shift and Semi-Supervised Learning

Goal: learn X +— Y, i.e., estimate (properties of) p(Y|X)

Semi-supervised learning: improve estimate by more data from p(X)
Covariate shift: p(X) changes between training and test

Causal assumption: p(C') and mechanism p(F|C) “independent”

Causal learning
p(X) and p(Y|X) independent X ;)
1. semi-supervised learning hard id
N, N,

2. p(Y|X) invariant under change in p(X)

, , causal mechanism @
Anticausal learning

p(Y) and p(X|Y) independent v
hence p(X) and p(Y|X) dependent @(p ?d

I

NX NY

1. semi-supervised learning possible
2. p(Y|X) changes with p(X)

é £ Scholkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, 2012, cf. Storkey, 2009, Bareinboim & Pearl, 2012




Semi-Supervised Learning (schsikopfet al., ICML 2012)

* Known SSL assumptions link p(X) to p(Y|X):

* Cluster assumption: points in same cluster of p(X) have
the same Y

* Low density separation assumption: p(Y|X) should cross
0.5 in an area where p(X) 1s small

» Semi-supervised smoothness assumption: E(Y|X) should be
smooth where p(X) 1s large

* Next slides: experimental analysis




SSL Book Benchmark Datasets — Chapelle et al. (2006)

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

| Category | Dataset
g241c: the class causes the 241 features.
. g241d: the class (binary) and the features are confounded by a variable with 4 states.
Anticausal/ —— — . - .
Confounded Digitl: the positive or negative angle and the features are confound@d by the Var}al_)le of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.
| Causal | SecStr: the amino acid is the cause of the secondary structure.

| Unclear | BCI, Text: Unclear which is the cause and which the effect.




UCI Datasets used in SSL benchmark — Guo et al., 2010

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Q
o
=8
(¢}
V)]

Dataset

Anticausal/Confounded

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).

Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).

Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.

Iris: the size of the plant is an effect of the category it belongs to.

Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).

Letter: the class (letter) is a cause of the produced image of the letter.

Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).

Image Segmentation: the class of the image is the cause of the features of the image.

Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.

Vehicle: the class of the vehicle causes the features of its silhouette.

Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.

Vowel: the class (vowel) causes the features.

Wave: the class of the wave causes its attributes.

Balance Scale: the features (weight and distance) cause the class.

Causal | Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.
Unclear| Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear

whether the class label may have been generated or defined based on the features (e.g., lonoshpere, Credit Approval,
Sick).




Datasets, co-regularized LS regression — Brefeld et al., 2006

Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal or

Unclear
| Categ.| Dataset | Target variable Remark
breastTumor | tumor size causing predictors such as inv-nodes and deg-malig
S cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood
s sugar
5; cleveland presence of heart disease in the pa- | causing predictors such as chest pain type, resting blood pressure,
S tient and fasting blood sugar
g lowbwt birth weight causing the predictor indicating low birth weight
S pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and
§ Albumin
S pollution age-adjusted mortality rate per | causing the predictor number of 1960 SMSA population aged 65
< 100,000 or older
wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity
autoMpg city-cycle fuel consumption in | caused by predictors such as horsepower and weight
miles per gallon
cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
= memory, and cache memory
§ fishcatch fish weight caused by predictors such as fish length and fish width
) housing housing values in suburbs of | caused by predictors such as pupil-teacher ratio and nitric oxides
Boston concentration
machine_cpu| cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-
tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
Servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-
ical linkages
auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
5 fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
< pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
S stock (target: price of one particular stock); strike (target: strike volume);

triazines (target: activity); veteran (survival in days)




Benchmark Datasets of Chapelle et al. (2006)
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Self-training does not help for causal problems (cf. Guo et al., 2010)
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Co-regularization helps for the anticausal problems of Brefeld et al., 2006
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Co-regularization hardly helps for the causal problems of Brefeld et al., 2006
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Causal Inference for Individual Objects (anzing & Schlkopf; 2010)

Similarities between single objects also indicate causal relations:

J s (g
SPORT E

Halbbitter

try 0 quantify complexity of similarities




Kolmogorov complexity
(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)

of a binary string z
e K(x) := length of the shortest program with output x (on a

Turing machine)

e interpretation: number of bits required to describe the rule that
generates x

7

e equality "=" is always understood up to string-independent
additive constants (often denoted by 3, but we drop the ”+7)

e K(z) is uncomputable

-, probability-free definition of information content




Conditional Kolmogorov complexity

e K(y|x*): length of the shortest program that generates y
from the shortest description of the input x. For simplicity, we
write K(y | x).

e number of bits required for describing y if the shortest descrip-
tion of x is given

e note: x can be generated from its shortest description but not
vice versa because there is no algorithmic way to
find the shortest compression




Algorithmic mutual information (Chaitin, Gacs)

Information of z about y

e I(v:y) = K(z)+ K(y) — K(z,y)
= K(r)—-K(z|y)=K(y) - K(y|z)

e Interpretation: number of bits saved when compressing z, vy
jointly rather than independently

e Algorithmic independence z 1L y: <= [(x:y) =0




Conditional algorithmic mutual information

Information that x has on y (and vice versa) when z is given

o [(x:ylz") =K (z[z)+ K (y|z") — K(z,y|z")
e Analogy to statistical mutual information:

[(X:Y|2)=S8(X|2)+S8(Y|2Z)-S(X,Y|Z2)

e Conditional algor. independence x 1.y |z <= [ (x:y|z) =0




Algorithmic mutual information: example

(o0 0 0) = K




Postulate: Local Algorithmic Markov Condition

Let x1,...,x, be observations (formalized as strings). Given its di-
rect causes pa;, every x; is conditionally algorithmically independent
of its non-eflects nd;

z; I nd;|pa;




Causal Markov Conditions

e Recall the (Local) Causal Markov condition:
An observable is statistically independent of its non-descendants, given
parents

e Reformulation:
Given all direct causes of an observable, its non-effects provide no addi-
tional statistical information on it




Causal Markov Conditions

e Generalization:
Given all direct causes of an observable, its non-effects provide no addi-
tional staetsstieat information on it

e Algorithmic Causal Markov Condition:
Given all direct causes of an object, its non-effects provide no additional
algorithmic information on it




Equivalence of Algorithmic Markov Conditions

For n strings x4, ..., z, the following conditions are equivalent

e [Local Markov condition
I(z; : ndj|pa;) =0

e (Global Markov condition:
If R d-separates S and T then I (S:T|R)=0

e Recursion formula for joint complexity

K(I’l,...,xn) — ZK(ZC] ‘paj)
j=1

Janzing € Scholkopf, IEEE Trans. Information Theory, 2010




Algorithmic model of causality

e for every node x, there exists a program u; that computes z;
from its parents pa, Pa j

e all u; are jointly independent O

e the program u; represents the causal mechanism that generates
the effect from its causes

e u; are the analog of the unobserved noise terms in the statistical
functional model

Theorem: this model implies the algorithmic Markov condition




Generalized independences Steudel, Janzing, Schélkopf (2010)

Given n objects O := {x1,...,T,}

Observation: if a function R : 2° — RJ is submodular, i.e.,
R(S)+ R(T) > R(SUT)+R(SNT) VYS,TcCO
then
I(A;B|C) :=R(AUC)+ R(BUC) — R(AUBUC) — R(C) >0

for all disjoint sets A, B,C' C O

Interpretation: [ measures conditional dependence
(replace R with Shannon entropy to obtain usual mutual information)




Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

e local Markov condition
z; AL nd; |pa;

e ¢lobal Markov condition: d-separation implies independence

e sum rule

R(A) = )  R(xjlpay),

JEA

for every ancestral set A of nodes.

—but can we postulate that the conditions hold w.r.t. to the true DAG?




Generalized structural causal model

Theorem:

e assume there are unobserved objects uq, ..., u, Qpaj Q

(x; contains only information that is already contained in its parents +
noise object)

® assuline
R(zj,paj,uj) = R(paj,u;)

then x1,...,x, satisty the Markov conditions

= causal Markov condition is justified provided that mechanisms fit to infor-
mation measure




Generalized PC

PC algorithm also works with generalized conditional independence

Examples:
1. R := number of different words in a text
2. R := compression length (e.g. Lempel Ziv is approximately submodular)
3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (different versions of
a paper abstract)




“Independent” = algorithmically independent?

Postulate (Janzing & Scholkopf, 2010, inspired by Lemeire & Dirkx, 2006):
The causal conditionals p(X;|PA;) are algorithmically independent

e special case: p(X) and p(Y|X) are alg. independent for X — Y

e abstract version: the mechanism that relates cause and effect is algorith-
mically independent of the cause

e can be used as justification for novel inference rules (e.g., for additive noise
models: Steudel & Janzing 2010)

e excludes many, but not all violations of faithfulness (Lemeire & Janzing,
2012)




A Physical Example

Particles scattered at an object

e by default, only the outgoing particles contain information about
the object

e time-reversing the scenario requires fine-tuning the incoming beam
e consider incoming and outgoing beams as ‘cause’ and ‘effect’

e ‘cause’ contains no information about the mechanism relating cause
and effect (the object), but ‘effect’ does




Algorithmic independence of initial state and dynamics

Independence Principle. If s is the initial state of a physical
system and M a map describing the effect of applying the system
dynamics for some fixed time, then s and M are algorithmically inde-
pendent

I(s:M)=0,

i.e., knowing s does not enable a shorter description of M and vice
versa.




Reproduces the thermodynamic Arrow of Time

Theorem [non-decrease of entropy]. Let D be a bijective map
on the set of states of a system then I(s : D) = 0 implies

K(D(s)) > K(s)

Proof idea: If D(s) admits a shorter description than s, knowing D admits a shorter

description of s: just describe D(s) and then apply D!,

e K (s) has been proposed as physical entropy (Zurek, Bennett)

e entropy increase amounts to heat production (irreversible process)

Janzing, Chaves, Scholkopf. Algorithmic independence of initial condition and

dynamical law in thermodynamics and causal inference. New Journal of Physics,
2016




Common root of thermodyn. and causal inference

algorithmic independence of
cause
and
mechanism relating cause and effect

e reproduces arrow of time in physics

e justifies new causal inference rules




Milky Way Galaxy
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Exoplanet Transits
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mit Hogg, Wang, Foreman-
Mackey, Janzing, Simon-Gabriel,
Peters, Montet, and Morton.
ICML 2015

Astrophysical Journal 2015 . .
PNAS 2016 @ half—szbllngs

Kepler 5088536 Quarter 5 Kepler 5949551 Quarter 5
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Half-Sibling Regression

unobserved

observed

[dea: remove E|Y|X] from Y to reconstruct Q).

X 1L Q

X and Y share information
(only) through N

If we try to predict Y from X,
we only pick up the part due to NV

with David Hogg, Dan Foreman-Mackey, Dun Wang, Dominik Janzing,
Jonas Peters, Carl-Johann Simon-Gabriel (remr 2015)



Proposition. (), N, Y, X random variables, X 1 (), and f measurable.
Define

e ):=Y —E[Y|X].
Suppose E[Q] = 0 and
o Y =Q+ f(N) (additive noise model)

Then E[(Q — Q)?] = E[Var[f(N)|X]] .

If f(N) can (in principle) be predicted well from X,
then () can be reconstructed well by ().

unobserved

observed



Proposition. R, N, () jointly independent.
Suppose

X=g(N)+ R

Recovery results if either

(i) magnitude of R goes to 0 (i.e., influence of stars negligible), or
(ii) R is a random vector whose components are jointly independent

(i.e., many independent stars).

unobserved @

observed
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Summary

e conventional causal inference algorithms use conditional statistical depen-
dences

e more recent approaches also use other properties of the joint distribution

e non-statistical dependences also tell us something about causal directions




