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Cross-entropy method for TSP

Simple ‘genetic style’ methods can be very effective, such as the
following algorithm for ‘learning’ a near-optimal tour in a TSP.

Initialise: Given: asymmetric distances between C cities
Initialise P, a matrix of transition probabilities between cities (to
uniform distributions)

Repeat until convergence:

1. Generate a large number (∼ 10C 2) of random tours according
to P, starting from city 1, under the constraint that no city
may be visited twice.

2. Select the shortest 1% of these tours, and tabulate the
transition counts for each city.

3. Adjust P towards the transition counts
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Venn diagram

Machine 
learning

Evolutionary 
computation
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Machine 
learning

Evolutionary 
computation

• Estimation of distribution algorithms (EDA)
(Pelikan and many others)

• Cross-entropy method (CEM)
(Rubinstein, Kroese, Mannor 2000 - 2005)

• Evolution of reward functions (Niv, Singh)

• Simple model of evolution and learning
(Hinton and Nowlan 1987)
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Perhaps we should take evolution seriously?

Nature’s number one 
learning algorithm: 
asexual evolution 

Nature’s number two  
learning algorithm:
sexual evolution 

Machine 
learning
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Needed: an ‘enabling model’ of evolution

The best model of a cat is a cat.

— Norbert Wiener

Wiener is wryly pointing out that a model should be as simple as
possible, and should contain only what is essential for the problem
at hand.

We should discard as many biological details as possible, while
keeping the computational essence.

If someone says “But biological detail X is important !”, then we
can try putting it back in and see if it makes any difference.
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Aim:

Can we construct a ‘machine learning’ style model of evolution,
which includes both genetic evolution and individual learning?
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Genetic mechanisms of sexual reproduction

At DNA level, the mechanisms of sexual reproduction are well
known and tantalisingly simple!

Genetic mechanisms of sexual reproduction were fixed > 109 years
ago, in single-celled protozoa;
since then, spontaneous evolution of advanced representational
systems for multicellular anatomy and complex instincts.

Evolution is so robust you can’t stop it...

Hypothesis: fair copying is the essence of sexual reproduction

Each child – each new member of the population – is a
combination of genetic material copied (with errors) from other
members of the population.

The copying is fair : all genetic material from all members of the
population has an equal chance of being copied into the ‘child’
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A Markov chain of populations

Suppose we ‘breed’ individuals under constant conditions.
Procedures for breeding, recombination, mutation and for selection
are constant.

Then each population depends only on the previous population, so
the sequence of populations is a Markov chain.

We will consider a sequence of populations where at each transition
just one individual is removed, and just one is added. (In genetic
language, this is the Moran model of overlapping populations)
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Markov Chains: unique stationary distribution

A Markov chain is specified by its transition probabilities

Tji = T (i → j) = P(Xt+1 = j |Xt = i)

There is a unique1 stationary distribution π over the states such
that

Tπ = π

In genetic language, the stationary distribution of the Markov
chain of populations is the mutation-selection equilibrium .

1All the Markov chains we consider will be irreducible, aperiodic, and
positive recurrent: such chains have a unique stationary distribution over
states. (Any reasonable model of mutation allows some probability of any
genome changing to any other. )
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Markov Chains: detailed balance and reversibility

Reversibility

A Markov chain T is reversible iff Tπ = π = TTπ

Detailed balance condition

For any two states X , X ′,

π(X )T (X → X ′) = π(X ′)T (X ′ → X )

Kolmogorov cycle condition

For all n > 2, X1,X2, . . . ,Xn,

T (X1 → X2)T (X2 → X3) · · ·T (Xn → X1) =

T (Xn → Xn−1)T (Xn−1 → Xn−2) · · ·T (X1 → Xn)

Reversibility ⇐⇒ Detailed balance ⇐⇒ Kolmogorov cycle
condition
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Markov Chain Monte-Carlo (MCMC) in a nutshell

MCMC is a computational approach for sampling from a known,
(typically complicated) probability distribution π.

Given a probability distribution π, construct a Markov chain T
with stationary distribution π, and run the Markov chain to
(eventually) get samples from π.

But how to construct a suitable T ?
Easiest way: define T that satisfies detailed balance for π.

Most common techniques for constructing reversible chains for a
specified stationary distribution are:

• Metropolis-Hastings algorithm

• Gibbs sampling

Note that only a ‘small’ class of Markov chains are reversible:
there is no advantage in reversible chains except that it may be
easier to characterise the stationary distribution.
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Evolution as MCMC

Idea: can we find a computational model of evolution that satisfies
detailed balance (and so is reversible) ?

A nice stationary distribution would be:

π(g1, . . . , gN) = pB(g1, . . . , gN)f (g1) · · · f (gN)

where

• π is an (unnormalised) stationary distribution of a population
of N genomes g1, . . . , gN

• pB(g1, . . . , gN) is the ‘breeding distribution’, the stationary
probability of the population with no selection

• f (g) is the ‘fitness’ of genome g . We require f (g) > 0.
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Reversibility: a problem

When a reversible chain has reached its stationary distribution, an
observer cannot tell if it is running forwards or backwards, because
every cycle of state transitions has the same probability in both
directions (as in physics).

Any model where a child must have two parents is not
reversible

Given parents g1, g2, and their child c , the child is more similar to
each parent, than the parents are similar to each other. e.g. for
genomes of binary values,

HammingDistance(g1,c) ≈ 1
2 HammingDistance(g1,g2)

Hence in small populations with large genomes, we can identify
parents and children, and so identify the direction of time

So natural evolution (and Holland’s genetic algorithms) are not
reversible Markov chains.

We must abandon the assumption of two parents!
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Key idea: Exchangeable Breeding

Generative probability model for a sequence of ‘genomes’ g1, g2, . . .
Breeding only, no selection.

g1 consists entirely of mutations

g2 consists of elements copied from g1, with some mutations

g3 is elements copied from g1 or g2, with fewer mutations

· · ·
Each element of gN is copied from one of g1, . . . , gN−1, with few
additional mutations...

Generating the sequence g1, g2, . . . does not seem biologically
realistic – but conditionally sampling gN+1 given g1, . . . , gN can be
much more plausible.

The sequence g1, g2, . . . needs to be exchangeable
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Exchangeable sequences

Definition of exchangeability

A sequence of random variables g1, g2, . . . is infinitely exchangeable
iff for any N and any permutation σ of {1, . . . ,N},

p(g1, . . . , gN) = p(gσ1 , . . . , gσN
)

Which sequences are exchangeable?

de Finetti’s theorem

g1, g2, . . . is exchangeable off there is some prior distribution Θ,
and a ‘hidden parameter’ θ ∼ Θ, such that, given knowledge of θ
g1, g2, . . . are all i.i.d. samples, distributed according to θ

But de Finetti’s theorem does not help us much at this point – we
want an example of a plausible generative breeding distribution.
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Example: Blackwell-MacQueen urn model

Pick a ‘mutation distribution’ H. A new genetic element can be
sampled from H, independently of other mutations.

Pick a ‘concentration parameter’ α > 0; this will determine the
mutation rate

Generate a sequence θ1, θ2, . . . by:

• θ1 ∼ H

• With prob. 1
1+α , θ2 = θ1, else w.p. α

1+α , θ2 ∼ H

• · · ·
• With prob. n−1

n−1+α , θn is randomly chosen (copied) from
a uniform random choice of θ1, . . . , θn−1,

else with prob. α
n−1+α , there is a new mutation θn ∼ H

This exchangeable sequence is well known in machine learning: it
samples from the predictive distribution of a Dirichlet process
DP(H, α)
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Example: Cartesian product of DPs

Each genome gi = (θi1, . . . , θiL)

Generated with L independent Blackwell-MacQueen urn processes:

For each j , 1 ≤ j ≤ L,

the sequence θ1j , θ2j , . . . , θNj is a sample from the jth urn process.

Sequence of genomes g1, g2, . . . , gN is exchangeable, and is a
sample from a Cartesian product of L Dirichlet processes.

This is the simplest plausible exchangeable breeding model for
sexual reproduction.
Many elaborations possible...
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Examples of possible breeding distributions

There is a rich and growing family of highly expressive
non-parametric distributions, which achieve exchangeablility
through random copying. Dirichlet process is the simplest.

Can construct elegant exchangeable distributions of networks, and
exchangeable sequences of ‘machines’ with shared components...
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Exchangeable breeding with tournaments (EBT)

Fitness function f , s.t. for all genomes g , f (g) > 0.
Current population of N genomes g1, . . . , gN , with fitnesses
f1, . . . , fN .

Repeat forever:

1. Breed gN+1 by sampling from pB conditional on the current
population.

gN+1 ∼ pB(· | g1, . . . , gN)

2. fN+1 ← f (gN+1). Add gN+1 into the population.

3. Select one genome i to remove from the population

Pr(remove gi ) =
1
fi

1
f1

+ · · ·+ 1
fN+1

The genomes {g1, . . . , gN+1} \ {gi} become the next
population of N genomes.
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EBT satisfies detailed balance

Let G = {g1, g2, . . . , gN+1}
To prove: π(G\N+1)T (G\N+1 → G\i ) = π(G\i )T (G\i → G\N+1)

Proof:

π(G\N+1)T (G\N+1 → G\i ) =

pB(G\N+1) f1 · · · fN pB(gN+1 | G\N+1)
1
fi

1
f1

+ · · ·+ 1
fN+1

= pB(G )
f1 · · · fN+1

fi fN+1

1
1
f1

+ · · ·+ 1
fN+1

which is symmetric between gi and gN+1. QED.
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X1 X2 X3 X4 X5

X1 X2 X3 X4 X5 X6

X1 X2 X3 X4 X5 X6 X7

X1 X2 X3 X4 X5 X6 X7

X3 X7 X3 X7

X1 X2 X3 X4 X5 X6 X7

X1 X3 X5 X6X1 X3 X5 X6

X1 X2 X3 X4 X5 X6 X7

X2 X3 X4 X5 X7

X6 ∼ pB(· | X1, . . . ,X5)

X7 ∼ pB(· | X1, . . . ,X6)

Pr(Xi wins the ticket against Xj) =
f(Xi)

f(Xi) + f(Xj)

Selection phase:

 

    Current generation given survival ‘tickets’ 

    Any number of ‘tournaments’ between randomly

    chosen elements with and without tickets

Breeding phase:

    Any number of ‘children’ exchangeably sampled

    in sequence.

Next generation are the ticket owners 

at the end of the selection phase

Tournaments are shown between X3 and X7, 

then between X1, X3,  and between X5, X6 

Current generation
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Role of the population

EBT reduces to Metropolis-Hastings with a population size of 1.
Why have a population larger than 1?

Two reasons:

1. Larger population concentrates the conditional breeding
distribution pB(· | g1, . . . , gN).

2. Can scale log fitness as 1/N, thus improving acceptance rate
for newly generated individuals.
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Stochastically generated environments

If environments are generated from an exchangeable distribution
that is independent of the genome, then the environment plays a
formally similar role to the genome, in that the stationary
distribution for EBT with environments v1, . . . , vN exchangeably
sampled from a distribution PV (·) is:

π(g1, . . . , gN , v1, . . . , vN) ∝
pB(g1, . . . , gN)pV (v1, . . . , vN)f (g1, v1) · · · f (gN , vN) (1)

An intuitive interpretation of this is that each genome is ‘born’ into
its own randomly generated circumstances, or ‘environment’; the
current population will consist of individuals that are particularly
suited to the environments into which they happen to have been
born. Indeed, each ‘gene’ is part of the environment of other genes.
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Individual learning

An abstract model of individual learning in different environments
is that a genome g in an environment v

1. performs an experiment, observing a result x . The experiment
that is performed, and the results obtained, depend on both g
and v : let us write x = experiment(g , v).

2. given g and x , the organism develops a post-learning
phenotype learn(g , x).

3. the fitness of g in v is then evaluated as

f (g , v) = f (learn(g , experiment(g , v)), v)
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Individual learning

This model captures the notion that an organism:

• obtains experience of its environment;

• the experience depends both on the environment and on its
own innate decision making, which depends on the interaction
between its genome and the environment;

• the organism then uses this experience to develop its extended
phenotype in some way;

• the organism’s fitness depends on the interaction of its
extended phenotype with its environment.

Minimal assumptions about ‘learning’

We do not assume:

• learning is rational in any sense

• organism has subjective utilities or reinforcement
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