
Reinforcement Learning: Part 2

Chris Watkins

Department of Computer Science
Royal Holloway, University of London

July 27, 2015

1

TD(0) learning

Define the temporal difference prediction error

δt = rt + γV (st+1)− V (st)

Agent maintains a V -table, and updates V (st) at time t + 1:

V (st)← V (st) + αδt

Simple mechanism; solves problem of short segments of experience.

Dopamine neurons seem to compute δt !

Does TD(0) converge?
Can be proved using results from theory of stochastic
approximation, but simpler to consider a visual proof.

2

Replay process: exact values of replay process are
equal to TD estimates of values of actual process

1 2 3

0 0 0

t=1

t=2

t=4

t=3

t=6

t=5

r 1

r 2

r 3

r 4

r 5

r 6

Final payoffs

Shows 7 state-transitions and rewards, in a 3 state MDP. Replay
process is built from bottom, and replayed from top.

3

Replay process: example of replay sequence

1 2 3

0 0 0

r 1

r 2

r 3

r 4

r 5

r 6

Final payoffs

Replay (in green)
starts in state 3

Transition 4 not
replayed with prob.

1 - α
Second replay

transition

With prob. α
replay transition

Return of this replay = r6 + γ r2
4

Values of replay process states

r 2

r 3

r 6

r 5

32

r 4

V0(3) = 0V0(2) = 0

V1(3) = (1� ↵)V0(3) + ↵(r3 + �V1(2))

V1(2) = (1� ↵)V0(2) + ↵(r2 + �V1(0))

V2(3) = (1� ↵)V1(3) + ↵(r6 + �V2(2))

V1(2)

V2(2)

Each stored transition is replayed with probability α
Downward transitions have no discount factor.

5

Replay process: immediate remarks

• The values of states in the replay process are exactly equal to
the TD(0) estimated values of corresponding states in the
observed process.

• For small enough α, and with sufficiently many TD(0)
updates from each state, the values in the replay process will
approach the true values of the observed process.

• Observed transitions can be replayed many times: in the limit
of many replays, state values converge to the value function of
the maximum likelihood MRP, given the observations.

• Rarely visited states should have higher α, or (better) their
transitions replayed more often.

• Stored sequences of actions should be replayed in reverse
order.

• Off-policy TD(0) estimation by re-weighting observed
transitions

6

Model-free estimation: backward-looking TD(1)

Idea 2: for each state visited, calculate the return for a long
sequence of observations, and then update the estimated value of
the state.

Set T � 1
1−γ . For each state st visited, and for a learning rate α,

V (st)← (1− α)V (st) + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T)

Problems:

• Return estimate only computed after T steps; need to
remember last T states visited. Update is late!

• What if process is frequently interrupted, so that only small
segments of experience available?

• Estimate is unbiased, but could have high variance. Does not
exploit Markov property!

7

Telescoping of TD errors

TD(1)(s0)− V (s0) = r0 + γr1 + · · ·
= −V (s0) + r0 + γV (s1)+

γ(r1 + γV (s2)− V (s1))

γ2(r2 + γV (s3)− V (s2))

...

= δ0 + γδ1 + γ2δ2 + · · ·

Hence the TD(1) error arrives incrementally in the δt .

8

TD(λ)

As a compromise between TD(1) (full reward sequence) and
TD(0) (one step) updates, there is a convenient recursion called
TD(λ), for 0 ≤ λ ≤ 1.

The ‘accumulating traces’ update uses an ‘eligibility trace’ zt(i),
defined for each state i at each time t. z0(i) is zero for all i :

δt = rt + γVt(st+1)− Vt(st)

zt(i) = [st = i] + γλzt−1(i)

Vt+1(i) = Vt(i) + αδtzt(i)

9

Q-learning of control

An agent in a MDP maintains a table of Q values, which need not
(at first) be consistent with any policy.

When agent performs a in state s, and receives r and transitions to
s ′, it is tempting to update Q(s, a) by:

Q(s, a)← (1− α)Q(s, a) + α(r + γmax
b

Q(s ′, b))

This is a stochastic, partial value-iteration update.

It is possible to prove convergence by stochastic approximation
arguments,
but can we devise a suitable replay process which makes
convergence obvious?

10

Replay process for Q-learning

Suppose that Q-learning updates are carried out for a set of
〈s, a, s ′, r〉 experiences.

We construct a replay MDP using the 〈s, a, s ′, r〉 data.

If Q values for s were updated 5 times using the data, the replay
MDP contains states s(0), s(1), . . . , s(5).

The optimal Q values of s(k) in the replay MDP are equal to the
estimated Q values of the learner after the kth Q learning update
in the real MDP.

QReal = Q∗Replay ≈ Q∗Real

Q∗Replay ≈ Q∗Real if there are sufficiently many Q updates of all
state-action pairs in the MDP, with sufficiently small learning
factors α.

11

Replay process for Q-learning

a

b

a

a

b

Q0(s, a) Q0(s, b)

1

↵

1� ↵

1� ↵

1� ↵

↵

↵

To perform action a in state s(5):

Transition (with no discount) to
most recent performance of a in s;

REPEAT

With probability α replay this
performance, else transition with
no discount to next most recent
performance.

UNTIL a replay is made, or final
payoff reached.

s(5)

s(0)

12

Some properties of Q-learning

• Both TD(0) and Q-learning have low computational
requirements: are they ‘entry-level’ associative learning for
simple organisms?

• In principle, needs event-memory only for one time-step, but
can optimise behaviour for a time-horizon of 1

1−γ
• Constructs no world-model: it samples the world instead.

• Can use replay-memory: a store of past episodes, not ordered
in time.

• Off-policy: allows construction of optimal policy while
exploring with sub-optimal actions.

• Works better for frequently visited states than for rarely
visited states: learning to approach good states may work
better than learning to avoid bad states.

• Large-scale implementation possible with a large collection of
stored episodes.

13

What has been achieved?

For finite state-spaces and short time horizons, we have:

• solved the problem of preparatory actions

• developed a range of tabular associative learning methods for
finding a policy with optimal return

I Model-based methods based on learning P(a), and several
possible modes of calculation.

I Model-free methods for learning V ∗, π∗, and/or Q∗ directly
from experience.

Computational model of operant reinforcement learning that is
more coherent than the previous theory.
General methods of associative learning and control for small
problems.

14

The curse of dimensionality

Tabular algorithms feasible only for very small problems.

In most practical cases, size of state space is given as number of
dimensions, or number of features; the number of states is then
exponential in the number of dimensions/features.

Exact dynamic programming using tables of V or Q values is
computationally impractical except for low dimensional problems,
or problems with special structure.

15

A research programme: scaling up

Tables of discrete state values are infeasible for large problems.

Idea: use supervised learning to approximate some or all of:

• dynamics (state transitions)

• expected rewards

• policy

• value function

• Q, or the action advantages Q − V

Use RL, modfiying supervised learning function approximators
instead of tables of values.

16

Some major successes

• Backgammon (TDGammon, by Tesauro, 1995)

• Helicopter manoeuvres (Ng et al, 2006)

• Chess (Knightcap, by Bartlett et al, 2000)

• Multiple arcade games (Mnih et al, 2015)

Also applications in robotics...

17

Challenges in using function approximation

Standard challenges of non-stationary supervised learning, and
then in addition:

1. Formulation of reward function

2. Finding an initial policy

3. Exploration

4. Approximating π, Q, and V

5. Max-norm, stability, and extrapolation

6. Local maxima in policy-space

7. Hierarchy

18

Finding an initial policy

In a vast state-space, this may be hard! Human demonstration

only gives paths, not a policy.

1. supervised learning of initial policy from human instructor

2. Inverse RL and apprenticeship learning (Ng and Russell 2000,
Abbeel and Ng, 2004)
Induce or learn reward functions that reinforce a learning
agent for performance similar to that of a human expert.

3. ‘Shaping’ with a potential function (Ng 1999)

19

Shaping with a potential function

In a given MDP, what transformations of the reward function will
leave the optimal policy unchanged? 1

Consider a finite horizon MDP. Define a potential function Φ over
states, with all terminal states having same potential. Define an
artificial reward

φ(s, s ′) = Φ(s ′)− Φ(s)

Adjust the MDP so that 〈s, a, s ′, r〉 becomes 〈s, a, s ′, r + φ(s, s ′)〉.
Starting from state s, the same total potential difference is added
along all possible paths to a terminal state.
The optimal policy is unchanged.

1Ng, Harada, Russell, Policy invariance under reward transformations, ICML
1999

20

Exploration

Only a tiny region of state-space is ever visited; an even small
fraction of paths are taken, or policies attempted.

• Inducing exploration with over-optimistic initial value
estimates is totally infeasible.

• Naive exploration with ε-greedy or softmax action choice may
produce poor results.

• Need an exploration plan

Some environments may enforce sufficient exploration: games with
a chance (backgammon), and adversarial games (backgammon,
chess) may force agent to visit sufficiently diverse parts of the state
space.

21

Approximating π, Q, and V

P may be a ‘natural’ function, derived from a physical system.
R specified by the modeller; may be simple function of dynamics.

π, Q, and V are derived from P and R by an RL operator that
involves maximisation and recursion. Not ‘natural’ functions.

Policy is typically both discontinuous and multi-valued.

Value may be discontinuous, and typically has discontinuous
gradient.
Either side of a gradient discontinuity, value is achieved by
different strategies, so may be heterogeneous.

Q, or ‘advantages’ Q − V , are typically discontinuous and poorly
scaled.

Supervised learning of π, V , Q may be challenging.

22

Max-norm, stability, and extrapolation

Supervised learning algorithms do not usually have max-norm
guarantees.

Distribution of states visited depends sensitively on current policy,
which depends sensitively on current estimated V or Q.

Many possibilities for instability.

Estimation of V by local averaging is stable (though possibly not
accurate). (Gordon 1995)

23

Local maxima in ‘policy-space’

According to the policy improvement lemma, there are no ‘local
optima’ in policy space.
If a policy is sub-optimal, then there is always some state where
the policy action can be improved, according to the value function.

Unfortunately, in a large problem, we may never visit those
interesting states where the policy could be improved !

‘Locally optimal’ policies are all too real....

24

Hierarchy

Three types of hierarchy:

1. Options (macro-operators).

2. Fixed hierarchies (lose optimality)

3. Feudal hierarchies

25

How state-spaces become large

1. Complex dynamics: even a simple robot arm has 7 degrees
of freedom. Any complex system has many more, and each
degree of freedom adds a dimension to the state-space.

2. A robot arm also has a high-dimension action-space. This
complicates modelling Q, and finding the action with maximal
Q. Finding arg maxa Q(s, a) may be a hard optimisation
problem even if Q is known.

3. Zealous modelling: in practice, it is usually better to work
with a highly simplified state-space than to attempt to include
all information that could possibly be relevant.

26

How state-spaces become large (2)

4. Belief state: Even if the state-space is small, the agent may
not know what the current state is. The agent’s actual state
is then properly described as a probability distribution over
possible states. The set of possible states of belief can be
large.

5. Goal state: suppose we wish the system to achieve any of a
number of goals: one way to tackle this is to regard the goal
as part of the state, so that the new state space is the
cartesian product state-space × goal-space. Few or rare
transitions between different goals: goal is effectively a
parameter of the policy.

6. Reward state: even in a small system with simple dynamics,
the rewards may depend on the history in a complex way.
Expansion of reward state happens when an agent is trying to
accomplish complex goals, even in a simple system.

27

Example: Asymmetric Travelling Salesman Problem

Given: distances d(i , j) for K cities; asymmetric so d(i , j) 6= d(j , i).

To find: a permutation σ of 1 : K such that
d(σ1, σ2) + · · ·+ d(σK−1, σK) + d(σK , σ1) is minimal.

RL formulation as a finite horizon problem:

• w.l.o.g. select city 1 as start state.

• state is 〈current city, set of cities already visited〉. Number of
states is:

N = 1 + (K − 1)2K−2

• actions: In state 〈i ,S〉, agent can move from i to any state
not yet visited.

• rewards: In moving from i to j , agent receives d(i , j).
In the K − 1 states where all cities have been visited, and
agent is at j 6= 1, final payoff is d(j , 1).

Although TSP can be formulated as RL, no gain in doing so!

28

Example: Searching an Area

An agent searches a field for mushrooms: it finds a mushroom only
if close to it. What is the state-space?

Agent

State includes:

• area already searched: can be a complex shape.

• estimates of mushroom abundance in green and brown areas

• time remaining; level of hunger; distance from home...
29

Optimisation of Subjective Return?

In RL, the theory we have is for how to optimise expected return
from a sequence of immediate rewards.
In some control applications, this is the true aim of the system
design: the control costs and payoffs can be adequately expressed
as immediate rewards. The RL formalisation then really does
describe the problem as it really is.

From point of view of psychology, continual optimisation of a
stream of subjective immediate rewards is a strong and implausible
theory.
No evidence for this at all !!

A bigger question: where do subjective rewards come from?

30

Where next?

1. New models: policy optimisation as probabilistic inference,
including path integral methods (Kappen, Todorov)

2. ?? New compositional models needed for accumulating
knowledge through exploration.

3. Simpler approaches: parametric policy optimisation,
cross-entropy method

4. Different models of learning and evolution.

31

	The curse of dimensionality
	Scaling up

