
Reinforcement Learning

Chris Watkins

Department of Computer Science
Royal Holloway, University of London

July 27, 2015

1



Plan 1

• Why reinforcement learning? Where does this theory come
from?

• Markov decision process (MDP)

• Calculation of optimal values and policies using dynamic
programming

• Learning of value: TD learning in Markov Reward Processes

• Learning control: Q learning in MDPs

• Discussion: what has been achieved?

• Two fields:
I Small state spaces: optimal exploration and bounds on regret
I Large state spaces: engineering challenges in scaling up

2



What is an ‘intelligent agent’?

What is intelligence?

Is there an abstract definition of intelligence?

Are we walking statisticians, building predictive statistical models
of the world?

If so, what types of prediction do we make?

Are we constantly trying to optimise utilities of our actions?

If so, how do we measure utility internally?

3



Predictions

Having a world-simulator in the head is not intelligence. How to
plan?

Many types of prediction are possible, and perhaps necessary for
intelligence.

Predictions conditional on an agent committing to a goal may be
particularly important.

In RL, predictions are of total future ‘reward’ only, conditional on
following a particular behavioural policy.
No predictions about future states all!

4



A wish-list for intelligence

A (solitary) intelligent agent:

• Can generate goals that it seeks to achieve. These goals may
be innately given, or developed from scattered clues about
what is interesting or desirable.

• Learns to achieve goals by some rational process of
investigation, involving trial and error.

• Develops an increasingly sophisticated repertoire of goals that
it can both generate and achieve.

• Develops an increasingly sophisticated understanding of its
environment, and of the effects of its actions.

+ understanding of intention, communication, cooperation, ...

5



Learning from rewards and punishments

It is traditional to train animals by rewards for ‘good’ behaviour
and punishments for bad.

Learning to obtain rewards or to avoid punishment is known as
‘operant conditioning’ or ‘instrumental learning’.

The behaviourist psychologist B.F. Skinner (1950s) suggested that
an animal faced with a stimulus may ‘emit’ various responses;
those emitted responses that are reinforced are strengthened and
more likely to be emitted in future.

Elaborate behaviour could be learned as ‘S-R chains’ in which the
response to each stimulus sets up a new stimulus, which causes the
next response, and so on.

There was no computational or true quantitative theory.

6



Thorndike’s Law of Effect

Of several experiments made in the same situation,
those which are accompanied or closely followed by
satisfaction to the animal will, other things being equal,
be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those
which are accompanied or closely followed by discomfort
to the animal will, other things being equal, have their
connections with that situation weakened, so that, when
it recurs, they will be less likely to occur. The greater the
satisfaction or discomfort, the greater the strengthening
or weakening of the bond.

Thorndike, 1911.

7



Law of effect: a simpler version

...responses that produce a satisfying effect in a
particular situation become more likely to occur again in
that situation,

and responses that produce a discomforting effect
become less likely to occur again in that situation

8



Criticism of the ‘law of effect’

It is stated like a natural law – but is it even coherent or testable?

Circular : What is a ‘satisfying effect’? How can we define if
an effect is satisfying, other than by seeing if an
animal seeks to repeat it? ‘Satisfying’ later replaced
by ‘reinforcing’.

Situation : What is ‘a particular situation’ ? Every situation is
different!

Preparatory actions : What if the ‘satisfying effect’ needs a
sequence of actions to achieve? e.g. a long search for
a piece of food? If the actions during the search are
unsatisfying, why does this not put the animal off
searching?

Is it even true? : Plenty of examples of actions of people repeating
actions that produce unsatisfying results!

9



Preparatory actions

To achieve something satisfying, a long sequence of unpleasant
preparatory actions may be necessary.

This is a problem for old theories of associative learning:

• Exactly when is reinforcement given? The last action should
be reinforced, but should the preparatory actions be inhibited,
because they are unpleasant and not immediately reinforced?

• Is it possible to learn a long-term plan by short-term
associative learning?

10



Solution: treat associative learning as adaptive
control

Dynamic programming for computing optimal control policies was
developed by Bellman (1957), Howard (1960), and others.

Control problem is to find a control policy that minimises average
cost, (or maximises average payoff).

Modelling associative learning as adaptive control introduces a new
psychological theory of associative learning that is more coherent
and capable than before.

11



Finite Markov Decision Process

Finite set S of states; |S| = N

Finite set A of actions; |A| = A

On performing action a in state i :

• probability of transition to state j is Pa
ij , independent of

previous history.

• on transition to state j , there is a (stochastic) immediate
reward with mean R(i , a, j) and finite variance.

The return is the discounted sum of immediate rewards, computed
with a discount factor γ, where 0 ≤ γ ≤ 1.

12



Transition probabilities

When action a is performed in state i , Pa
ij is the probability that

the next state is j

These probabilities depend only on the current state and not on
the previous history (Markov property).

For each a, Pa
ij is a Markov transition matrix; for all i ,

∑
j Pa

ij = 1

To represent transition probabilities (aka dynamics) we may need
up to A(N2 − N) parameters.

13



State - action - state - reward

An agent ‘in’ a MDP repeatedly:

1. Observes the current state s

2. Chooses an action a and performs it

3. Experiences/causes a transition to a new state s ′

4. Receives an immediate reward r ,which may depend on s, a,
and s ′

Agent’s experience completely described as a sequence of tuples

〈s1, a1, s2, r1〉
〈s2, a2, s3, r2〉

· · ·
〈st , at , st+1, rt〉

· · ·

14



Defining immediate reward

Immediate reward r can be defined in several ways.

Experience consists of 〈s, a, s ′, r〉 tuples

r may depend on any subset of s, a, and s ′

But s ′ depends only on s and a, and s ′ becomes known only after
action is performed.
For action choice, only E[r | s, a] is relevant.

Define R(s, a) as:

R(s, a) = E[r | s, a] =
∑
s′

Pa
ss′E[r | s, a, s ′]

15



Reward and return

Return is a sum of rewards. Sum can be computed in three ways:

Finite horizon : there is a terminal state that is always reached, on
any policy, after a (stochastic) time T :

v = r0 + r1 + · · ·+ rT

Infinite horizon, discounted rewards : for discount factor γ < 1,

v = r0 + γr1 + · · ·+ γtrt + · · ·

Infinite horizon, average reward : Process never ends, but need
assumption that MDP is irreducible for all policies:

v = lim
t→∞

1

t
(r0 + r1 + · · ·+ rt)

16



Return as total reward: finite horizon problems

Termination must be guaranteed.

• Shortest-path problems.

• Success of a predator’s hunt.

• Number of strokes to put the ball in the hole in golf.

• Total points in a limited duration video game.

If number of time-steps is large, then learning becomes hard since
the effect of each action may be small in relation to total reward.

17



Return as total discounted reward

Introduce a discount factor γ, with 0 ≤ γ < 1.
Define return :

v = r0 + γr1 + γ2r2 + γ3r3 + · · ·

We can define return from time t:

vt = rt + γrt+1 + γ2rt+2 + γ3rt+3 + · · ·

Note the recursion:
vt = rt + γvt+1

18



What is the meaning of γ?

Three interpretations:

• A ‘soft’ time horizon to make learning tractable.

• Total reward, with 1− γ as probability of interruption at each
step.

• Discount factor for future utility. γ quantifies how a reward in
the future is less valuable than a reward now.

Note that γ may be a random variable and may depend on s, a,
and s ′.

e.g. where γ is interpreted as a discount factor for utility, and
different actions take different amounts of time.

19



Policy

A policy is a rule for choosing an action in every state: a mapping
from states to actions. A policy, therefore, defines behaviour.

Policies may be deterministic or stochastic: if stochastic, we
consider policies where the random choice of action depends only
on the current state s

Defined over whole state space.

‘Closed-loop’ behaviour: observe state, then choose action given
observed state.

When following a policy, the policy makes the decisions: the
sequence of states is a Markov chain. (In fact the sequence of
〈s, a, s ′, r〉 tuples is a Markov chain.)

20



Value function for a policy

The value of a state s given policy π is the expected return from
starting in s and following π thereafter by taking action π(s) in
each state s visited.

Can think of π as a ‘composite action’.

V π(i) = E[r0 + γr1 + · · · | start in i and follow π]

By linearity of expectation, we have the N linear equations:

V π(i) = R(i , π) + γ
∑
j

Pπ
ij V π(j)

so that V π is given by:

V π = (I − γPπ)−1Rπ

21



Policy improvement lemma

Suppose that the value function for policy π is V π, and for some
state i , there is a non-policy action b 6= π(i), such that

R(i , b) + γ
∑
j

Pb
ij V

π(j) = V π(i) + ε, where ε > 0

Consider the policy π′ such that

π′(i) = b and π′(j) = π(j) for j 6= i

Then, by the Markov property,

V π′
(i) ≥ V π(i) + ε

V π′
(j) ≥ V π(j) for all j 6= i

If you see a quick profit, or short-cut, according to your current
value function, take it!

22



Policy improvement algorithm

Given: MDP and initial policy π

Repeat

Calculate value function:

V π = (I − γPπ)−1Rπ

Improve policy: For all i ,

π′(i)← arg max
a

R(i , a) + γ
∑
j

Pa
ijV

π(j)


π ← π′

Until there has been no change in π

23



Bellman optimality equations

Policy iteration must terminate with V ∗, π∗ which cannot be
further improved, and which satisfy:

V ∗(i) = max
a

R(i , a) + γ
∑
j

Pa
ijV
∗(j)

π∗(i) = arg max
a

R(i , a) + γ
∑
j

Pa
ijV
∗(j)

These conditions are necessary for V ∗ and π∗ to be optimal, but
are they sufficient?

Are V ∗ and π∗ unique? Could there be ‘locally optimal’ policies?

These questions may be easily answered with a different solution
method, value iteration.

24



Action values

Define

Qπ(i , a) = R(i , a) + γ
∑
j

Pa
ijV

π(j)

From policy improvement lemma,

max
a

Qπ(i , a) ≥ V π(i)

and Bellman optimality equations become:

Q∗(i , a) = R(i , a) + γ
∑
j

Pa
ij max

b
Q∗(j , b)

Note that Q∗ represents both the optimal value function and policy

V ∗(i) = max
a

Q∗(i , a) and π∗(i) = arg max
a

Q∗(i , a)

25



Value iteration: a different optimisation procedure

Define a sequence of finite-horizon MDPs, working backwards in
time, with Q tables Q0,Q−1,Q−2, ...

Q0(i , a) is a table of arbitrary payoffs

Q−1(i , a) = R(i , a) + γ
∑
j

Pa
ij max

b
Q0(j , b)

...

Q−(t+1)(i , a) = R(i , a) + γ
∑
j

Pa
ij max

b
Q−t(j , b)

Q−t is optimal for the the t stage process from −t to 0 that
terminates with final payoffs Q0(i , a) (Proof by induction)

26



Max-norm contraction property

Consider two value-iteration sequences starting from Q0 and Q ′0.

max
i ,a

(Q−(t+1)(i , a)− Q ′−(t+1)(i , a)) ≤ γmax
i ,a

(Q−t(i , a)− Q ′−t(i , a))

As t →∞, ‖Q−t − Q ′t‖∞ → 0

Provided that the policy Markov chains are irreducible, Q−t and
Q ′−t must converge to the same limit Q∗, which satisfies the
Bellman optimality equations.

In particular,

‖Q−(t+1) − Q∗‖∞ ≤ γ‖Q−t − Q∗‖∞

27



Summary of optimality properties

Uniqueness
Q∗ and hence V ∗ are unique; π∗ is unique up to
actions with equal Q∗

Deterministic policy
optimal returns can be achieved with a deterministic
policy (no need for stochastic action choice)

No local maxima
In a policy with sub-optimal values, there is always
some state where policy improvement gives a better
choice of action.

28



Free interleaving of updates

States need not be updated in a fixed systematic scan; as long as
all states are updated sufficiently often, the following updates will
converge:

V (i)← R(i , π(i)) + γ
∑
j

P
π(i)
ij V (j) and

π(i)← max
a

R(i , a) + γ
∑
j

Pa
ijV (j)

or

Q(i , a)← R(i , a) + γ
∑
j

Pa
ij max

b
Q(j , b)

29



Modes of control

An agent in a MDP can choose its actions in several ways:

Explicit policy agent maintains a table π of policy actions (or
action probabilities)

Q-greedy agent maintains a table of Q; in state i chooses
arg maxa Q(i , a), or some stochastic function of these
Q values

One step look-ahead Agent maintains V , P, and R. In state i ,
chooses arg maxa R(i , a) + γ

∑
j Pa

ijV (j)

Sample based planning Agent maintains V , P, and R, and samples
a forward search tree to estimate action-values.

30



Function approximation

What may happen if we use a Q-greedy policy π from Q̃ which
approximates Q∗ ?

Suppose ‖Q̃ − Q∗‖∞ ≤ ε, then

V π ≥ V ∗ − 2ε

1− γ

Suppose function approximation is used at each stage in policy
iteration, with max-norm error ε; then

V π ≥ V ∗ − 2ε

(1− γ)2

These bounds are tight!
Usually we are not so unlucky.

31



Temporal difference (TD) learning

The problem: estimate value from experience.

An agent follows a policy in an unknown MDP, visits a sequence of
states and receives rewards.

s1, r1, s2, r2, . . . , st , rt , . . .

How can agent ‘learn’ or estimate the values of the states from
this experience?

Idea 1: Model based learning. Keep statistics on state transition
probabilities and rewards, estimate a model of the process, and
then calculate the value function from the model.

Not very ‘neural’ !
Difficult to extend to function approximation methods.

32



Model-free estimation: backward-looking TD(1)

Idea 2: for each state visited, calculate the return for a long
sequence of observations, and then update the estimated value of
the state.

Set T � 1
1−γ . For each state st visited, and for a learning rate α,

V (st)← (1− α)V (st) + α(rt + γrt+1 + γ2rt+2 + · · ·+ γT rt+T )

Problems:

• Return estimate only computed after T steps; need to
remember last T states visited. Update is late!

• What if process is frequently interrupted, so that only small
segments of experience available?

• Estimate is unbiased, but could have high variance. Does not
exploit Markov property!

33



TD(1) estimates may have high variance

S

U

Z

The TD(1) value estimate for the rarely-visited state U is based on
rewards along the single brown path, which visits S.

But V(S) can be well estimated from other experiences: this
additional information is not used in the TD(1) estimate for U.

34



Model free estimation: short segments of experience

We can think of V as a Q table with only one action: the
value-iteration update

V (i)← R(i) + γ
∑
j

PijV (j)

cannot increase ‖V − V ∗‖∞.

(It may make V (i) less accurate, but cannot increase max error.)

But a model-free agent cannot perform this update because it does
not know P; what about the stochastic update, for small α > 0:

V (st)← (1− α)V (st) + α(rt + γV (st+1))

= V (st) + α(rt + γV (st+1)− V (st))

= V (st) + αδt

35



TD(0) learning

Define the temporal difference prediction error

δt = rt + γV (st+1)− V (st)

Agent maintains a V -table, and updates V (st) at time t + 1:

V (st)← V (st) + αδt

Simple mechanism; solves problem of short segments of experience.

Dopamine neurons seem to compute δt !

Does TD(0) converge?
Can be proved using results from theory of stochastic
approximation, but simpler to consider a visual proof.

36


	Origins
	Markov Decision Processes

