

Robotics

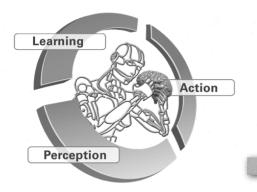
Part II: From Learning Model-based Control to Model-free Reinforcement Learning

Stefan Schaal

Max-Planck-Institute for Intelligent Systems Tübingen, Germany

Computer Science, Neuroscience, & Biomedical Engineering University of Southern California, Los Angeles

sschaal@is.mpg.de
http://www-amd.is.tuebingen.mpg.de

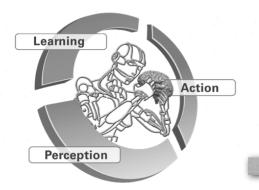


Where Did We Stop ...

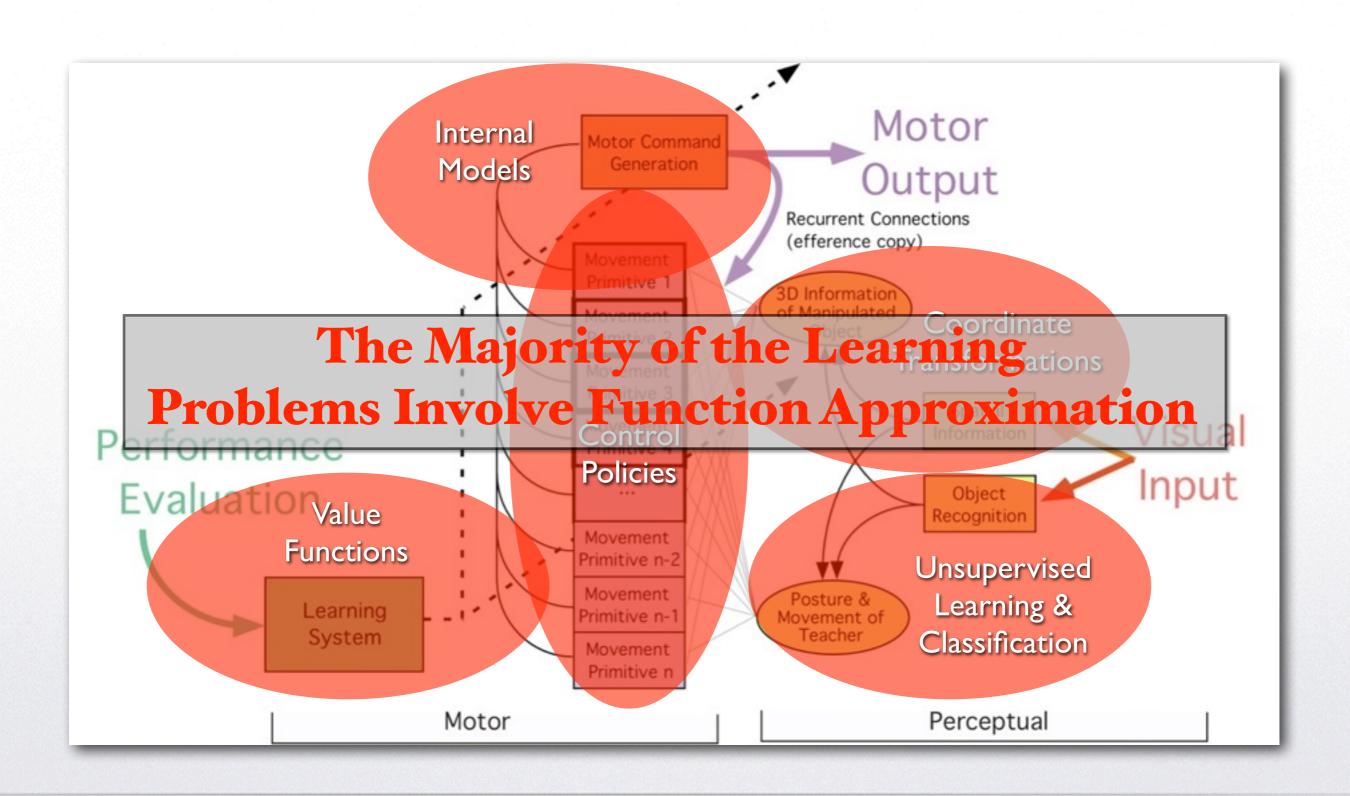


Outline

- A Bit of Robotics History
- Foundations of Control
- Adaptive Control
- Learning Control
 - Model-based Robot Learning
 - Reinforcement Learning



What Needs to Be Learned in Learning Control?



Learning Internal Models

Forward Models

- models the causal functional relationship

$$\mathbf{y} = \mathbf{f}(\mathbf{x})$$

$\ddot{\mathbf{q}} = \mathbf{B}^{-1}(\mathbf{q}) (\tau - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} - \mathbf{G}(\mathbf{q}))$

Inverse Models

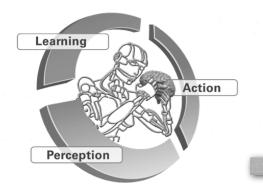
- models the inverse of the causal functional relationship

$$\mathbf{x} = \mathbf{f}^{-1}(\mathbf{y})$$

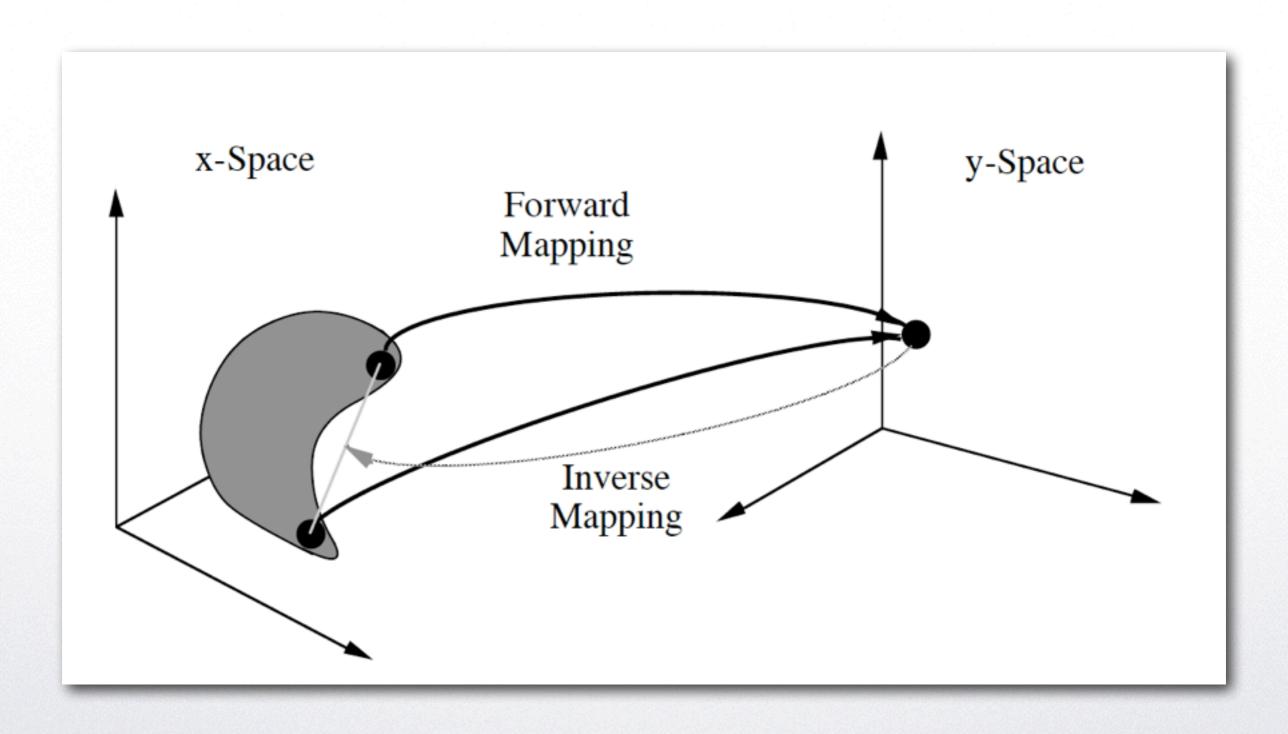
- for example:

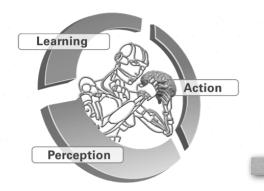
$$\mathbf{B}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q},\dot{\mathbf{q}})\dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}) = \tau$$

- NOTE: inverse models are not necessarily functions any more!



Inverse Models May Not Be Trivially Learnable

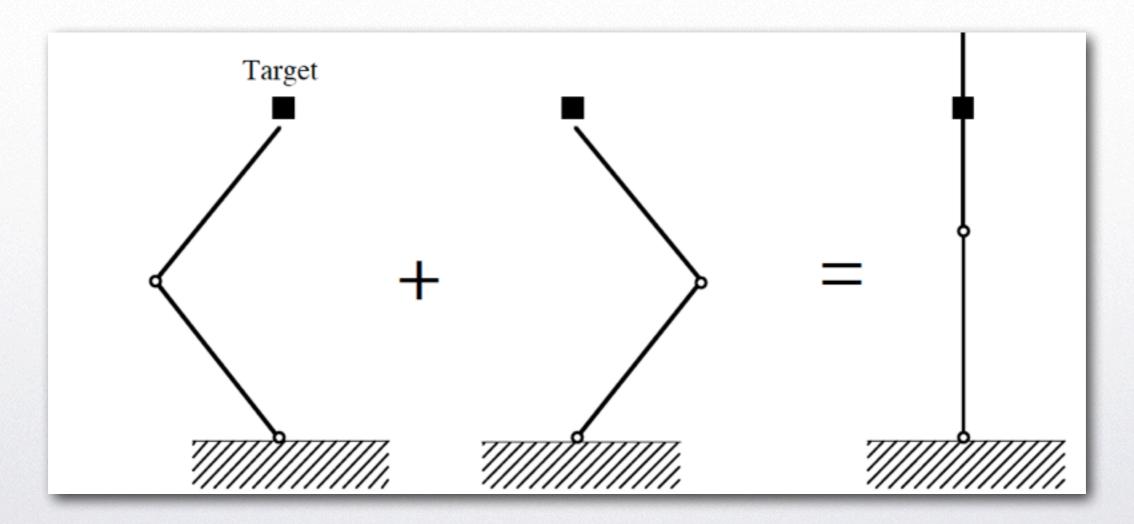


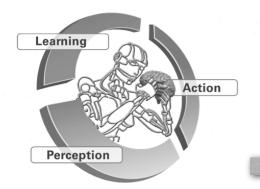


Inverse Models May Not Be Trivially Learnable

$$\mathbf{t} = \mathbf{f} \left(\theta_1^1, \theta_2^1 \right)$$

$$\mathbf{t} = \mathbf{f} \left(\theta_1^2, \theta_2^2 \right)$$
what is $\mathbf{f}^{-1} (\mathbf{t})$?





Characteristics of Function Approximation in Robotics

Incremental Learning

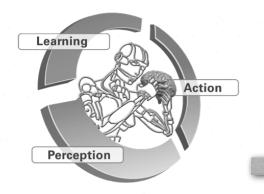
- large amounts of data
- continual learning
- to be approximated functions of growing and unknown complexity

Fast Learning

- data efficient
- computationally efficient
- real-time

Robust Learning

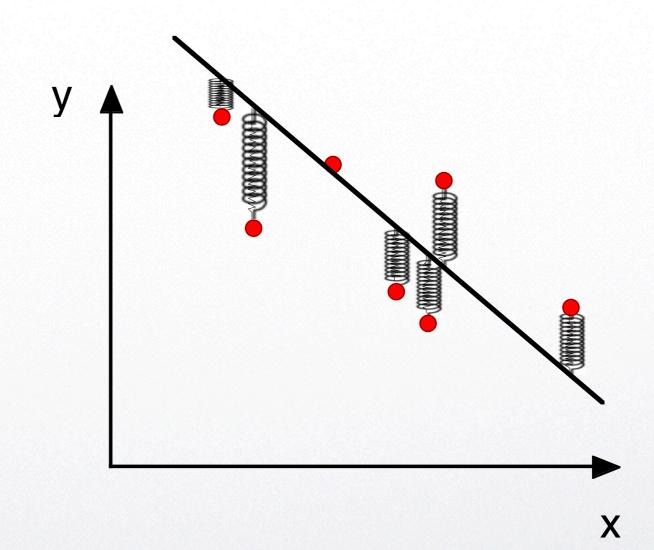
- minimal interference
- hundreds of inputs

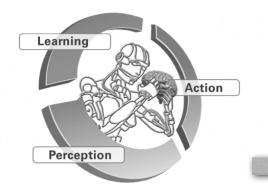


Linear Regression: One of the Simplest Function Approximation Methods

Recall the simple adaptive control model with: $f(x) = \theta x$

- find the line through all data points
- imagine a spring attached between the line and each data point
- all springs have the same spring constant
- points far away generate more "force" (danger of outliers)
- springs are vertical
- solution is the minimum energy solution achieved by the springs





Linear Regression: One of the Simplest Function Approximation Methods

The data generating model:

$$y = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}} + w_0 + \varepsilon = \mathbf{w}^T \mathbf{x} + \varepsilon$$

where
$$\mathbf{x} = \begin{bmatrix} \mathbf{x}^T, 1 \end{bmatrix}^T, \mathbf{w} = \begin{bmatrix} \tilde{\mathbf{w}} \\ w_0 \end{bmatrix}, E\{\varepsilon\} = 0$$

The Least Squares cost function

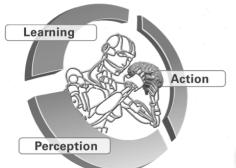
$$J = \frac{1}{2} (\mathbf{t} - \mathbf{y})^T (\mathbf{t} - \mathbf{y}) = \frac{1}{2} (\mathbf{t} - \mathbf{X} \mathbf{w})^T (\mathbf{t} - \mathbf{X} \mathbf{w})$$

where :
$$\mathbf{t} = \begin{bmatrix} t_1 \\ t_2 \\ \dots \\ t_n \end{bmatrix}$$
, $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \dots \\ \mathbf{x}_n^T \end{bmatrix}$

Minimizing the cost gives

the least-square solution
$$\frac{\partial J}{\partial \mathbf{w}} = 0 = \frac{\partial J}{\partial \mathbf{w}} \left(\frac{1}{2} (\mathbf{t} - \mathbf{X} \mathbf{w})^T (\mathbf{t} - \mathbf{X} \mathbf{w}) \right) = -(\mathbf{t} - \mathbf{X} \mathbf{w})^T \mathbf{X}$$
$$= -\mathbf{t}^T \mathbf{X} + (\mathbf{X} \mathbf{w})^T \mathbf{X} = -\mathbf{t}^T \mathbf{X} + \mathbf{w}^T \mathbf{X}^T \mathbf{X}$$
thus:
$$\mathbf{t}^T \mathbf{X} = \mathbf{w}^T \mathbf{X}^T \mathbf{X} \quad or \quad \mathbf{X}^T \mathbf{t} = \mathbf{X}^T \mathbf{X} \mathbf{w}$$

result:
$$\mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{t}$$



Recursive Least Squares:

An Incremental Version of Linear Regression

Based on the matrix inversion theorem:

$$(\mathbf{A} - \mathbf{B}\mathbf{C})^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{I} + \mathbf{C}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{C}\mathbf{A}^{-1}$$

Incremental updating of a linear regression model

Initialize:
$$\mathbf{P}^n = \mathbf{I} \frac{1}{\gamma}$$
 where $\gamma << 1$ (note $\mathbf{P} = (\mathbf{X}^T \mathbf{X})^{-1}$

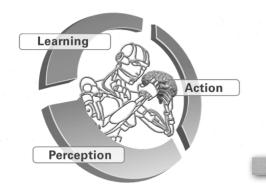
For every new data point (x,t)

(note that **x** includes the bias):

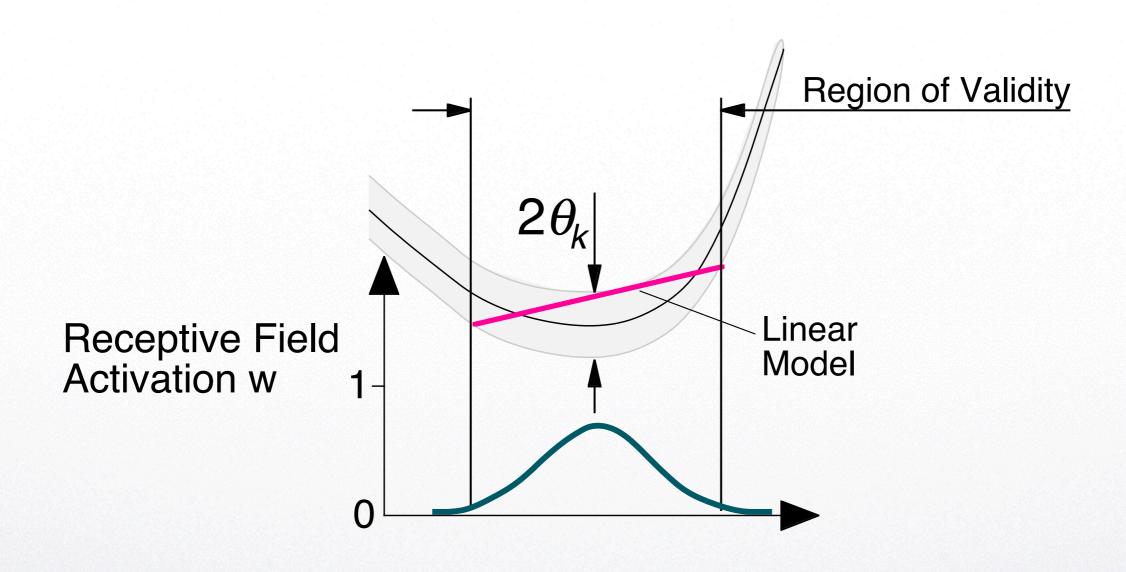
$$\mathbf{P}^{n+1} = \frac{1}{\lambda} \left(\mathbf{P}^n - \frac{\mathbf{P}^n \mathbf{x} \mathbf{x}^T \mathbf{P}^n}{\lambda + \mathbf{x}^T \mathbf{P}^n \mathbf{x}} \right) \text{ where } \lambda = \begin{cases} 1 \text{ if no forgetting} \\ < 1 \text{ if forgetting} \end{cases}$$

$$\mathbf{W}^{n+1} = \mathbf{W}^n + \mathbf{P}^{n+1} \mathbf{x} \left(\mathbf{t} - \mathbf{W}^{nT} \mathbf{x} \right)^T$$

- NOTE: RLS gives exactly the same solution as linear regression if no forgetting

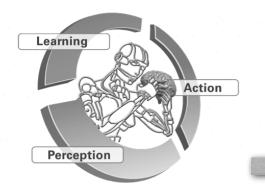


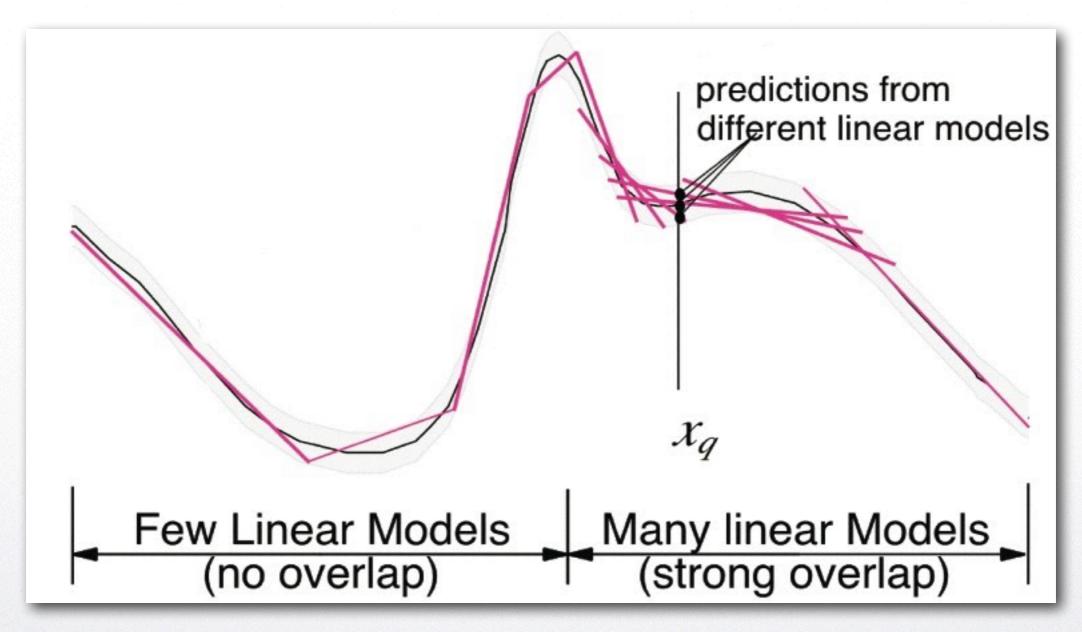
Making Linear Regression Nonlinear: Locally Weighted Regression



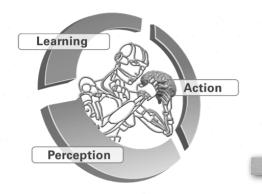
$$J = \sum_{i=1}^{N} w_i \left(y_i - \mathbf{x}_i^T \mathbf{\beta} \right)^2$$

Note: Using GPs, SVR, Mixture Models, etc., are other ways to nonlinear regression

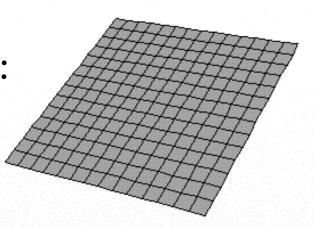




- Piecewise linear function approximation,
- Each local model is learned from only local data
- No over-fitting due to too many local models (unlike RBFs, ME)



Linear Model:



learned with

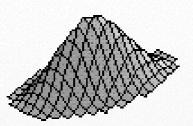
Recursive weighted least squares:

$$\boldsymbol{\beta}_k^{n+1} = \boldsymbol{\beta}_k^n + w \mathbf{P}_k^{n+1} \mathbf{x} \left(\mathbf{y} - \tilde{\mathbf{x}}^T \boldsymbol{\beta}_k^n \right)^T$$

$$\mathbf{P}_{k}^{n+1} = \frac{1}{\lambda} \left(\mathbf{P}_{k}^{n} - \frac{\mathbf{P}_{k}^{n} \tilde{\mathbf{x}} \tilde{\mathbf{x}}^{T} \mathbf{P}_{k}^{n}}{\frac{\lambda}{w} + \tilde{\mathbf{x}}^{T} \mathbf{P}_{k}^{n} \tilde{\mathbf{x}}} \right)$$

 $\mathbf{y} = \boldsymbol{\beta}_{x}^{T} \mathbf{x} + \boldsymbol{\beta}_{0} = \boldsymbol{\beta}^{T} \tilde{\mathbf{x}}$ where $\tilde{\mathbf{x}} = [\mathbf{x}^{T} \, 1]^{T}$

Weighting Kernel:



learned with

Gradient descent in penalized leave-one-out local cross-validation (PRESS) cost function:

$$\mathbf{M}_{k}^{n+1} = \mathbf{M}_{k}^{n} - \alpha \frac{\partial J}{\partial \mathbf{M}}$$

$$J = \frac{1}{\sum_{i=1}^{N} w_{k,i}} \sum_{i=1}^{N} w_{k,i} \|\mathbf{y}_{i} - \hat{\mathbf{y}}_{k,i,-i}\|^{2} + \gamma \sum_{i=1,j=1}^{n} D_{k,ij}^{2}$$

Combined Prediction:

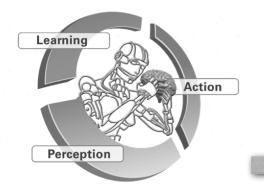
$$\mathbf{y} = \frac{\sum_{i=1}^{K} w_i \mathbf{y}_k}{\sum_{i=1}^{K} w_i}$$

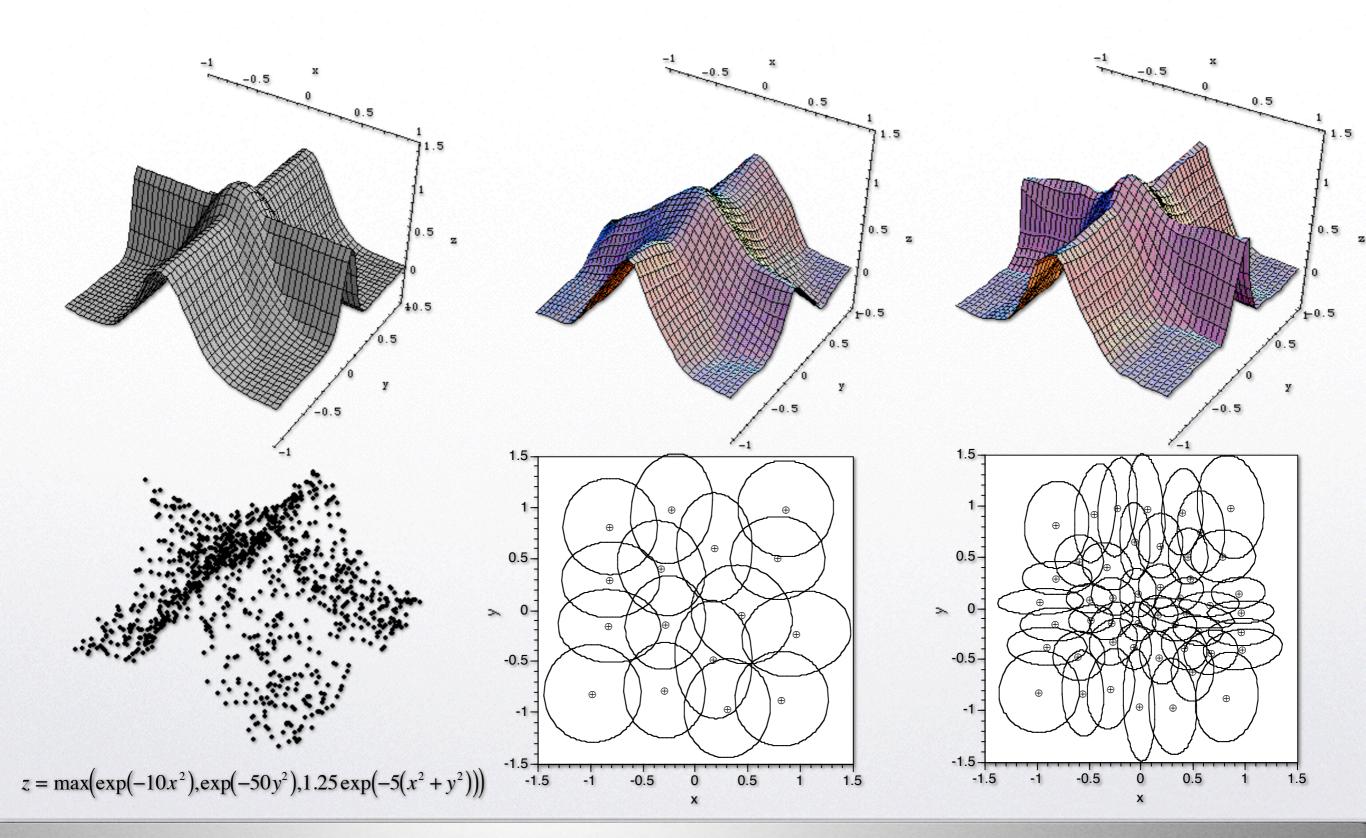
 $w = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{c})^T \mathbf{D}(\mathbf{x} - \mathbf{c})\right)$ where $\mathbf{D} = \mathbf{M}^T \mathbf{M}$

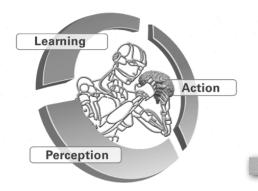
add model when

if
$$\min_{k} (w_k) < w_{gen}$$

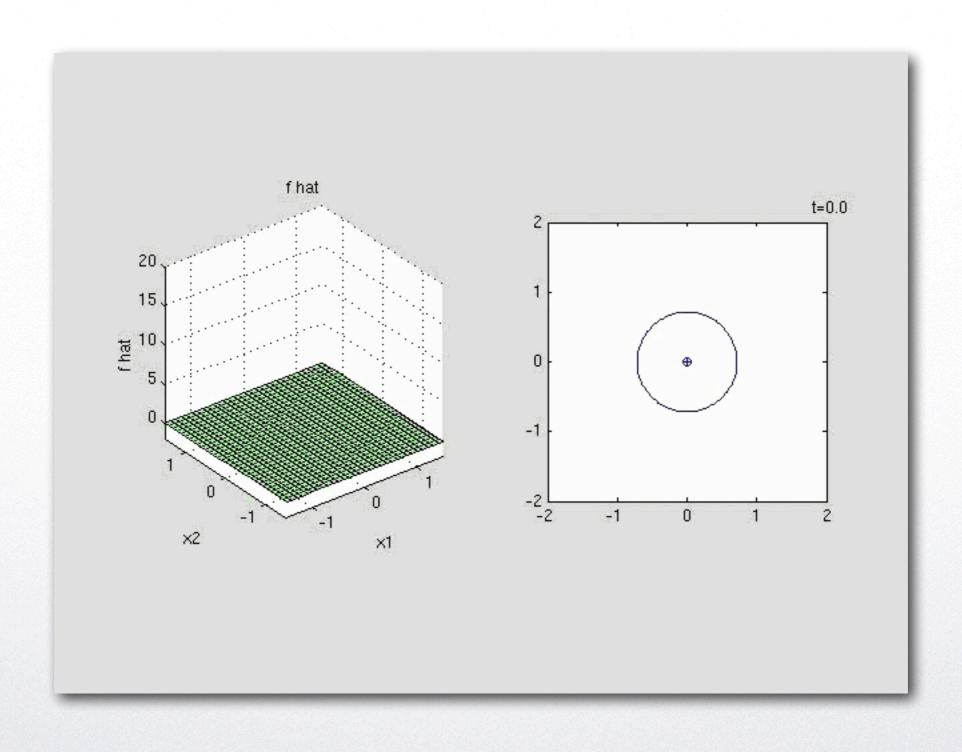
$$create new RF at \mathbf{c}_{K+1} = \mathbf{x}$$



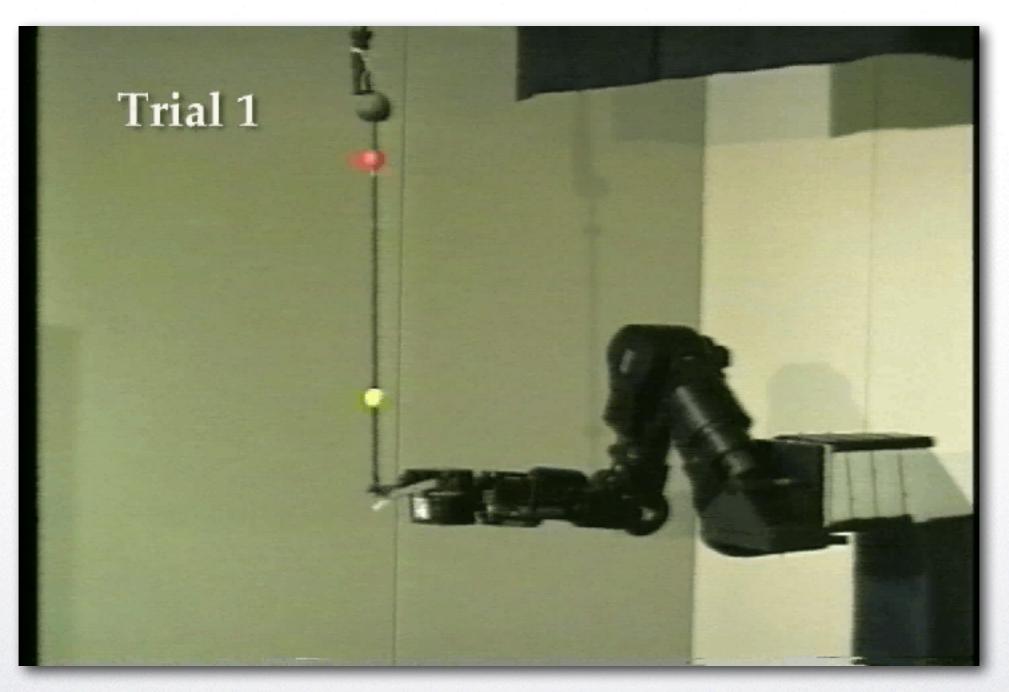




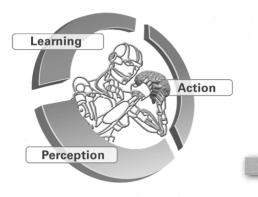
Locally Weighted Regression Inserted into Adaptive Control





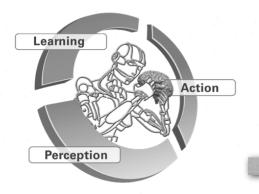


Learn forward model of task dynamics, then computer controller



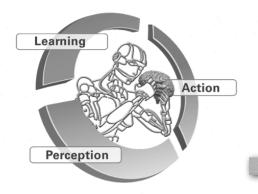
Model-based Reinforcement Learning of Devilsticking

Learn forward model of task dynamics, then computer controller



Criticism of Locally Weighted Learning

- Breaks down in high-dimensional spaces
- Computationally expensive and numerically brittle due to (incremental) dxd matrix inversion
- Not compatible with modern probabilistic statistical learning algorithms
- Too many "manual tuning parameters"

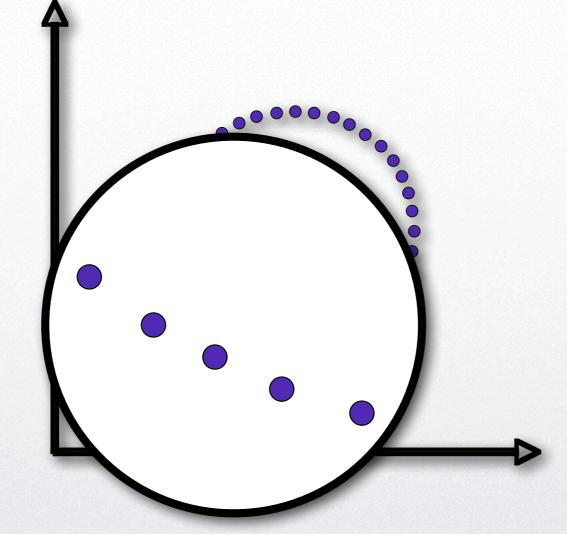


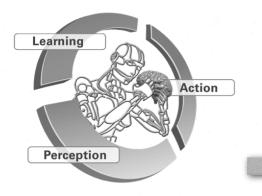
The Curse of Dimensionality

• The power of local learning comes from exploiting the discriminative power of local neighborhood relations.

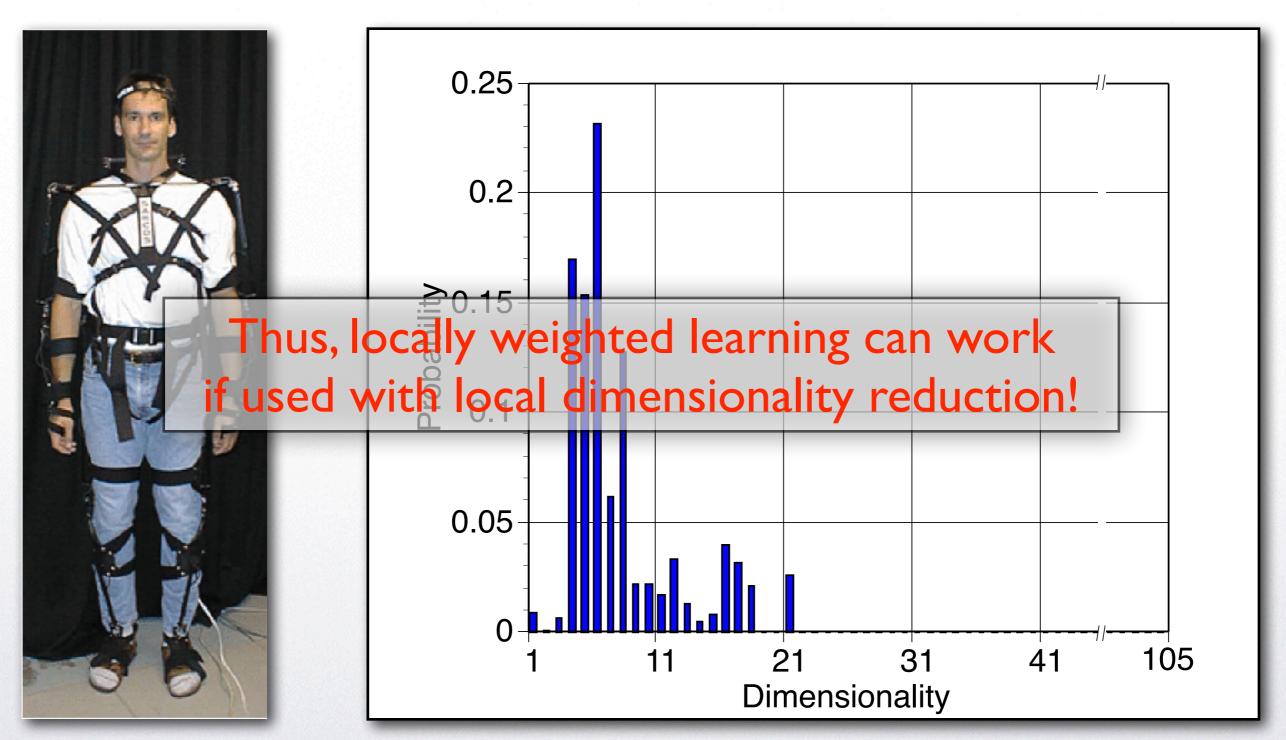
• But the notion of a "local" breaks down in high dim.

spaces!

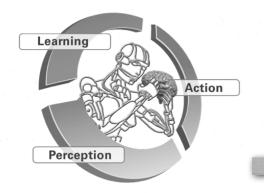




The Curse of Dimensionality Movement Data is Locally Low Dimensional

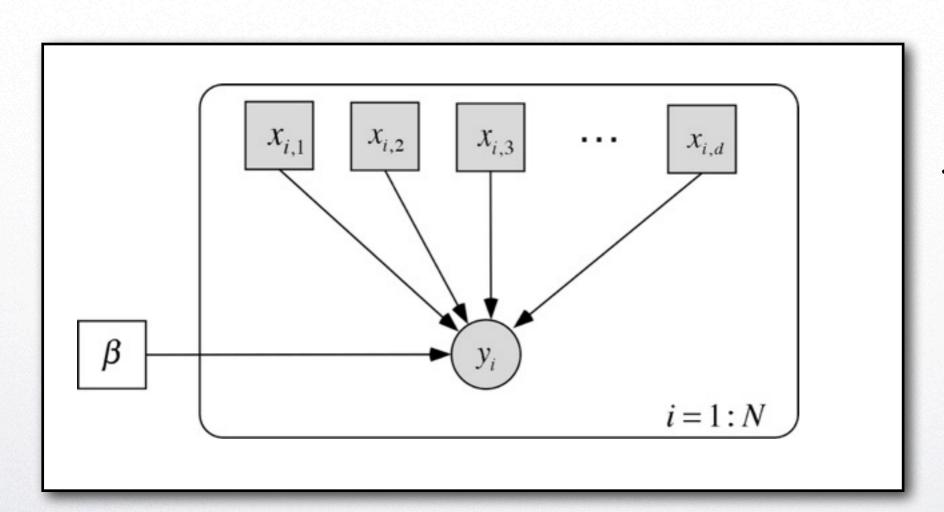


Derived with Bayesian Factor Analysis



A Bayesian Approach to Locally Weighted Learning

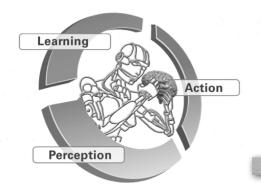
Linear Regression as a Graphical Model



$$y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

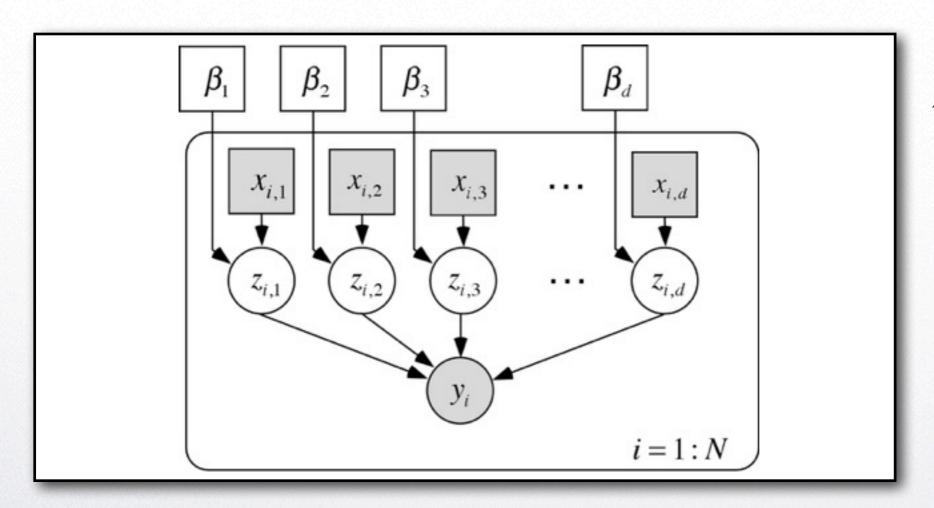
$$\boldsymbol{\varepsilon} \sim N(0, \boldsymbol{\psi}_y)$$

$$\boldsymbol{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X} \mathbf{y}$$



A Bayesian Approach to Locally Weighted Learning

 Inserting a Partial-Least-Squares-like projection as a set of hidden variables

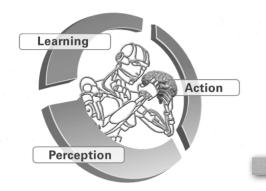


$$z_{i,m} = x_{i,m}\beta_j + \eta_m$$

$$y_i = \sum_{m=1}^d z_{i,m} + \varepsilon$$

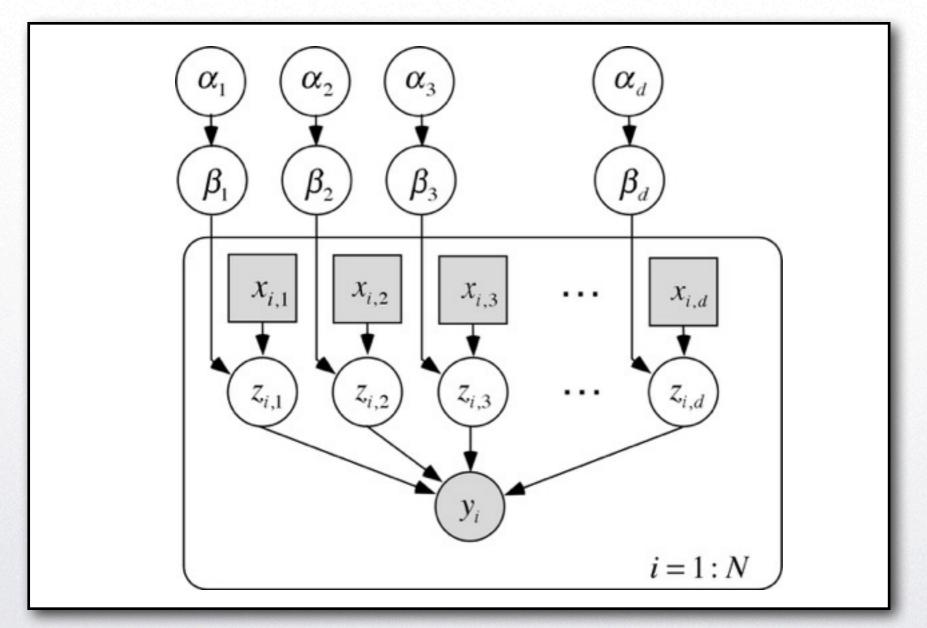
$$\varepsilon \sim N(0, \psi_y)$$

$$\eta_m \sim N(0, \psi_{z,m})$$



A Bayesian Approach to Locally Weighted Learning

 Robust linear regression with automatic relevance detection (ARD, sparsification)



$$z_{i,m} = x_{i,m}\beta_j + \eta_m$$

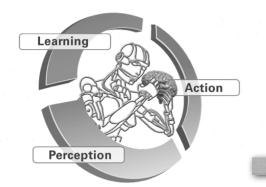
$$y_i = \sum_{m=1}^d z_{i,m} + \varepsilon$$

$$\varepsilon \sim N(0, \psi_y)$$

$$\eta_m \sim N(0, \psi_{z,m})$$

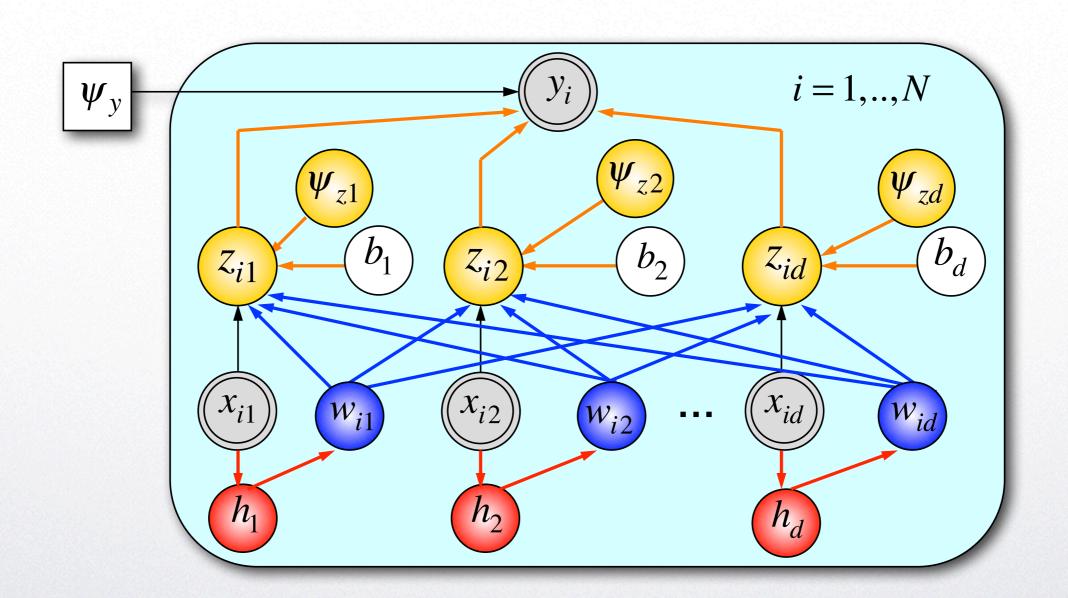
$$\beta_m \sim N\left(0, \frac{1}{\alpha_m}\right)$$

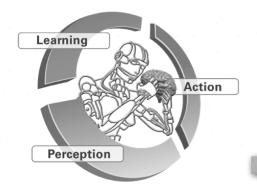
$$\alpha_m \sim Gamma(a_\alpha, b_\alpha,)$$



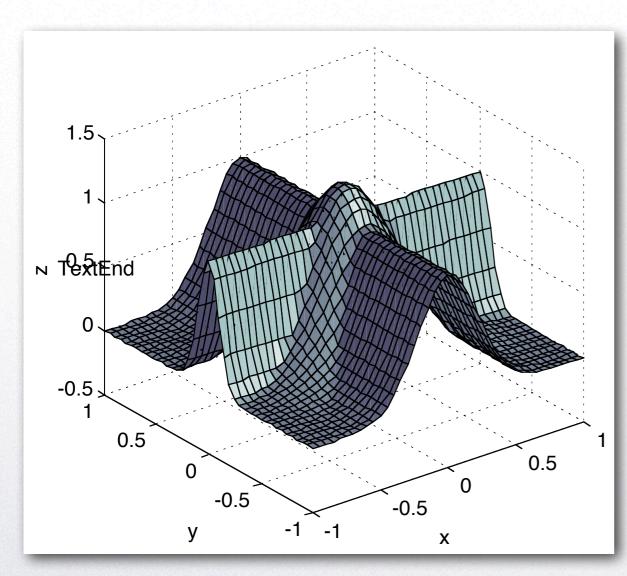
A Full Bayesian Treatment of Locally Weighted Learning

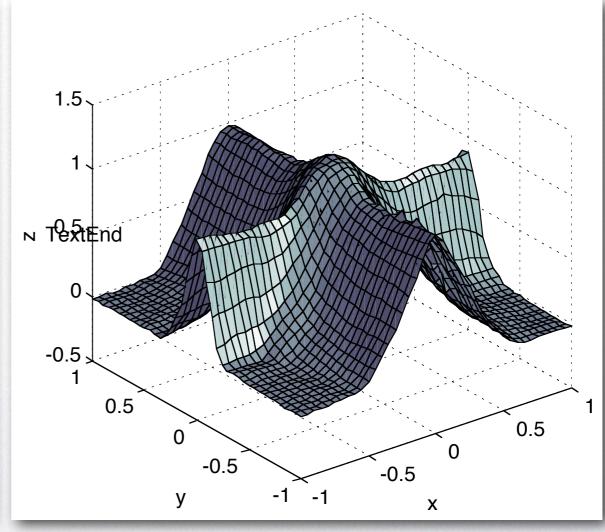
 The final model for full Bayesian parameter adaptation for regression and locality

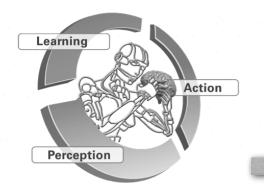




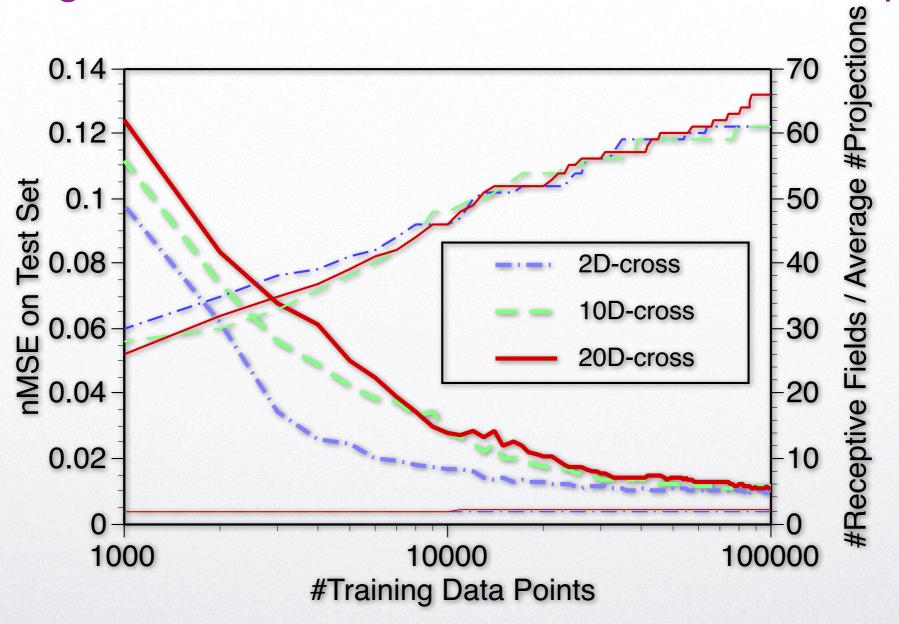
Learning the "cross" function in 20-dimensional space

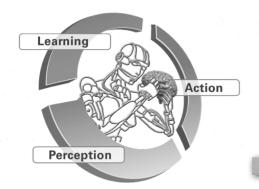




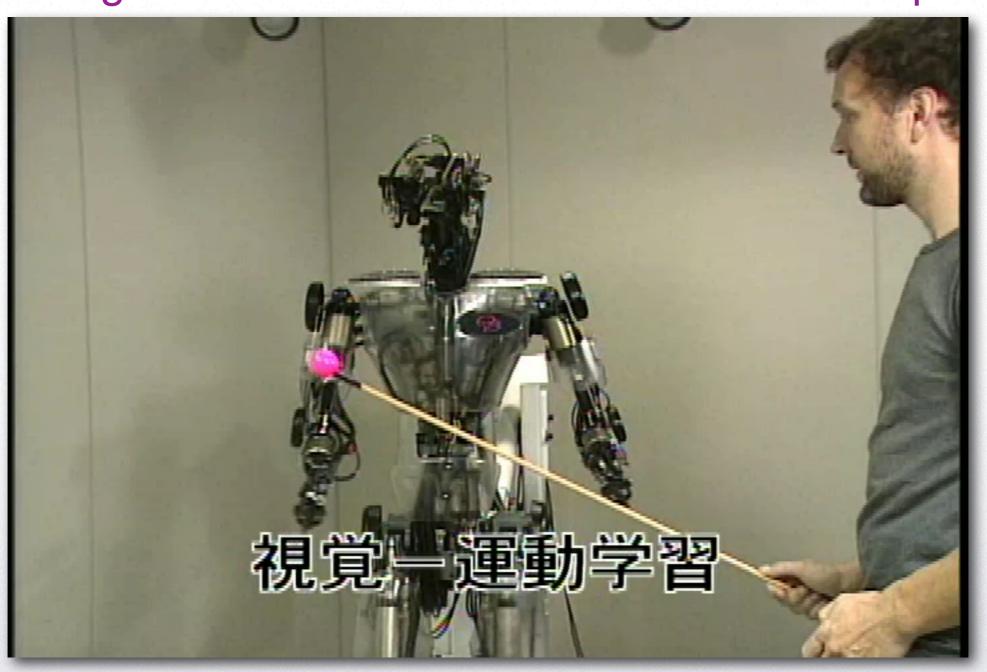


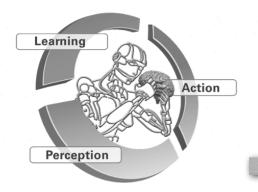
Learning the "cross" function in 20-dimensional space



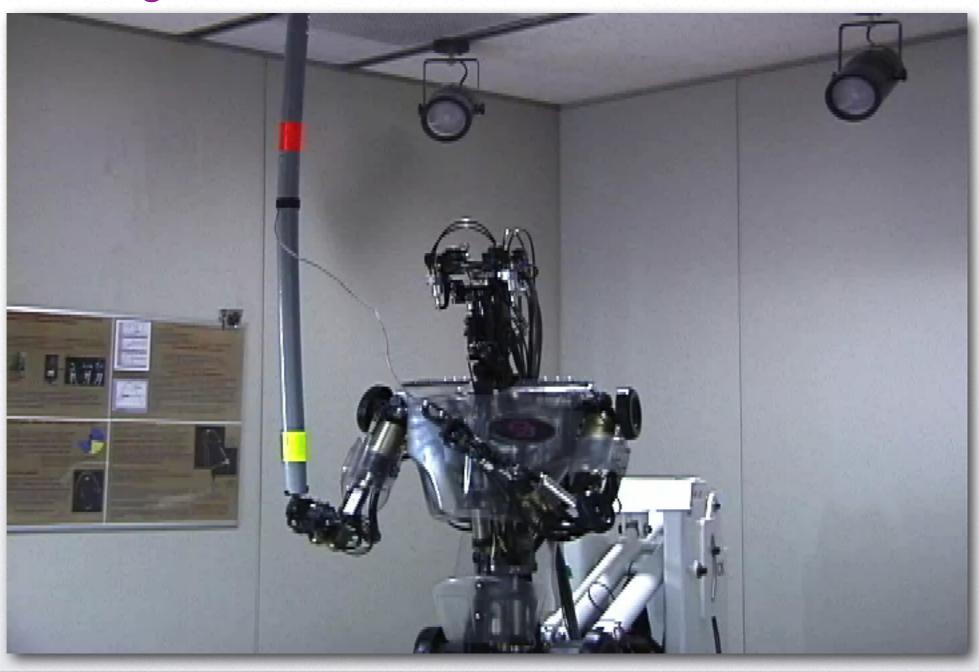


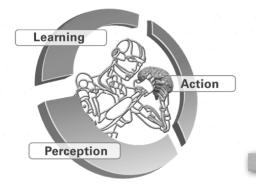
Learning inverse kinematics in 60 dimensional space





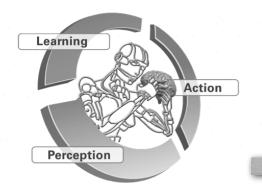
Skill learning



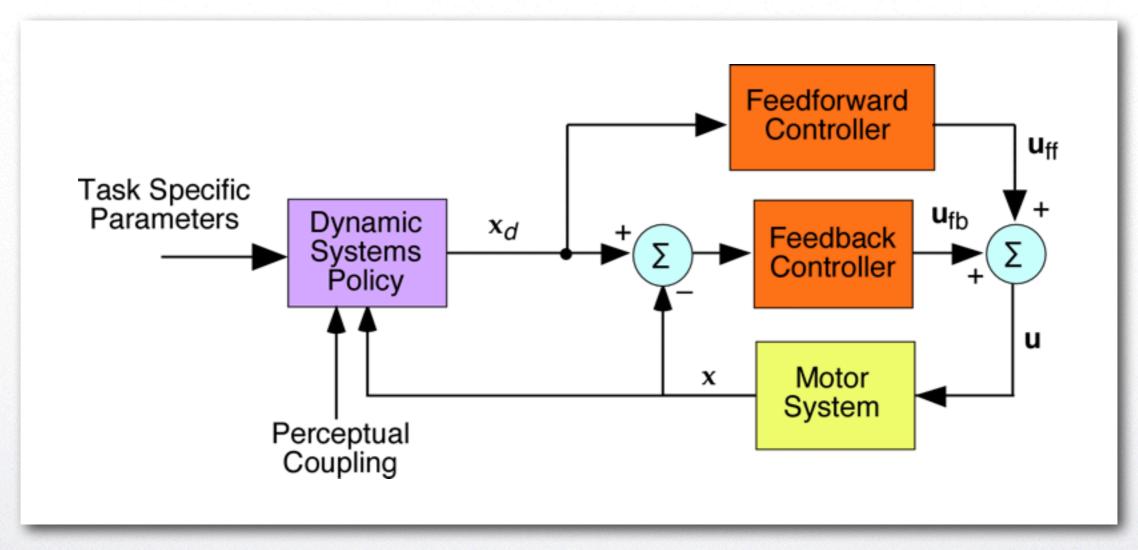


Outline

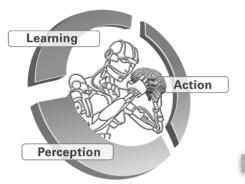
- A Bit of Robotics History
- Foundations of Control
- Adaptive Control
- Learning Control
 - Model-based Robot Learning
 - Reinforcement Learning



Given: A Parameterized Policy and a Controller



Note: we are now starting to address planning, i.e,. where do desired trajectories come from?



Trial & Error Learning Reinforcement Learning from Trajectories

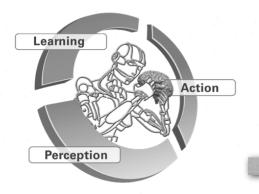
Problem:

- How can a motor system learn a novel motor skill?
- Reinforcement learning is a general approach to this problem, but little work has been done to scale to the highdimensional continuous stateaction domains of humans

Approach:

- Teach with imitation learning the initial skill using a parameterized control policy
- Provide an objective function for the skill
- Perform trial-and-error learning from exploratory trajectories





Reinforcement Learning Terminology

Policies

 perceived state to action mapping (can be probabilistic)

Reward functions

 maps the perceived stateaction pair into a a single number, an immediate reward (stochastic)

Value functions

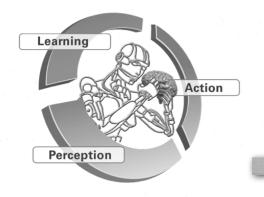
 maps the state into the accumulated expected reward that would be received if starting in the state

Models

 predicts the next state given the current state and action (can be probabilistic)

- Policy: what to do
- Reward: what is good
- Value: what is good because it predicts reward
- Model: what follows what

Objective: Optimize Reward!



Value Functions

 The value of a state is the expected return starting from that state; depends on the agent's policy:

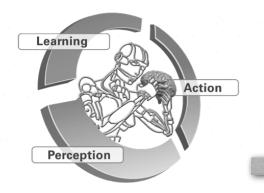
State - value function for policy π :

$$V^{\pi}(\mathbf{x}) = E_{\pi} \left\{ R_t \mid \mathbf{x}_t = \mathbf{x} \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid \mathbf{x}_t = \mathbf{x} \right\}$$

• The value of taking an action in a state under policy π is the expected return starting from that state, taking that action, and thereafter following π :

Action - value function for policy π :

$$Q^{\pi}(\mathbf{x},\mathbf{u}) = E_{\pi} \left\{ R_{t} \mid \mathbf{x}_{t} = \mathbf{x}, \mathbf{u}_{t} = \mathbf{u} \right\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid \mathbf{x}_{t} = \mathbf{x}, \mathbf{u}_{t} = \mathbf{u} \right\}$$



Bellman Equation for a Policy TT

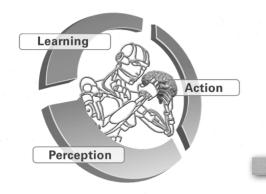
The basic idea:

$$R_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \gamma^{3} r_{t+4} \cdots$$

$$= r_{t+1} + \gamma \left(r_{t+2} + \gamma r_{t+3} + \gamma^{2} r_{t+4} \cdots \right)$$

$$= r_{t+1} + \gamma R_{t+1}$$

$$V^{\pi}(\mathbf{x}) = E_{\pi} \left\{ R_{t} \, \middle| \, \mathbf{x}_{t} = \mathbf{x} \right\}$$
$$= E_{\pi} \left\{ r_{t+1} + \gamma V(\mathbf{x}_{t+1}) \middle| \, \mathbf{x}_{t} = \mathbf{x} \right\}$$

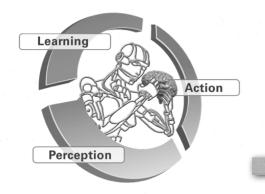


Bellman Optimality Equation for V*

 The value of a state under an optimal policy must equal the expected return for the best action from that state:

$$V * (\mathbf{x}) = \max_{\mathbf{u} \in A(\mathbf{x})} Q^{\pi} (\mathbf{x}, \mathbf{u})$$
$$= \max_{\mathbf{u} \in A(\mathbf{x})} E \{ r_{t+1} + \gamma V * (\mathbf{x}_{t+1} \mid \mathbf{x}_t = \mathbf{x}, \mathbf{u}_t = \mathbf{u}) \}$$

 V^* is the unique solution of this system of equations.

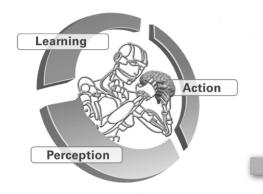


Bellman Optimality Equation for Q*

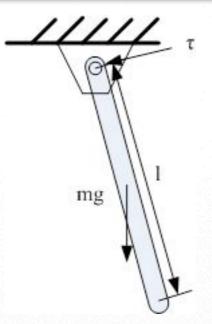
 The value of a state/action under an optimal policy must equal the expected return for this action from that state, and then following the optimal policy:

$$Q^*(\mathbf{x},\mathbf{u}) = E\left\{r_{t+1} + \gamma \max_{\mathbf{u}'} Q^*(\mathbf{x}_{t+1},\mathbf{u}') \middle| \mathbf{x}_t = \mathbf{x}, \mathbf{u}_t = \mathbf{u}\right\}$$

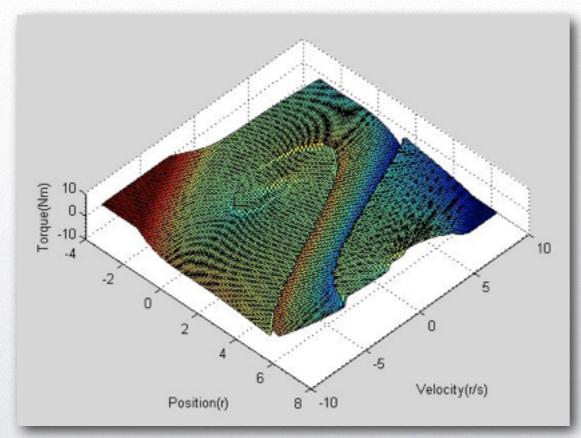
 Q^* is the unique solution of this system of equations.

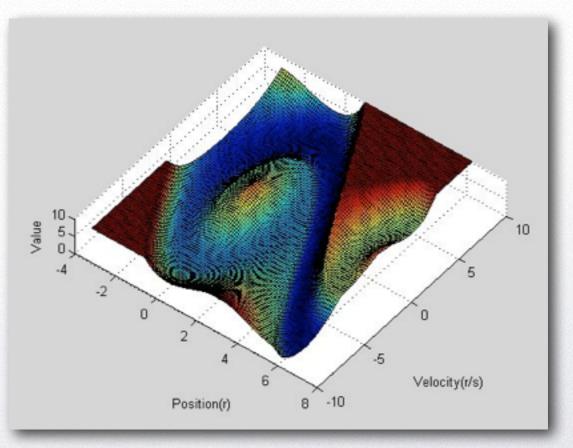


Example: Learning a Pendulum Swing-Up



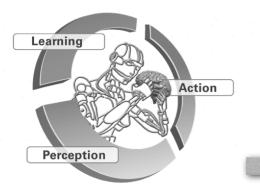
Note: Both policy and value function are rather complex landscapes with discontinuities!



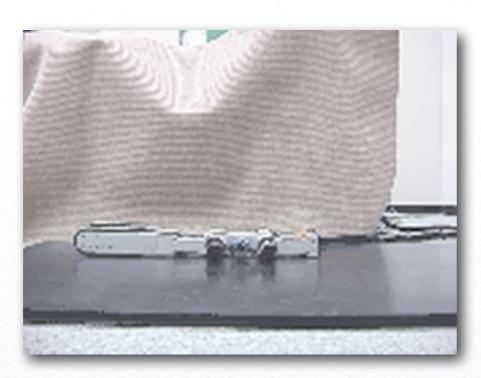


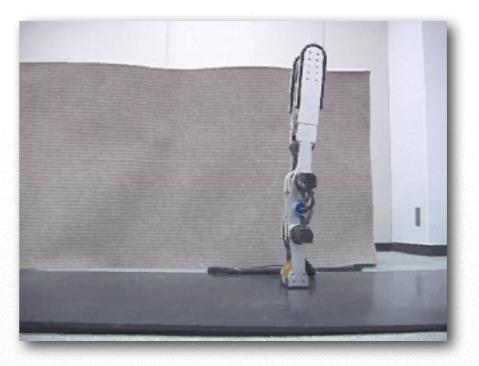
Policy

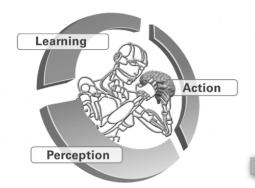
Value Function



Some More Exciting Examples







State-Based vs. Trajectory-based Reinforcement Learning

- From about 1980-2000, value function-based (i.e., state-based)
 reinforcement learning has been dominant (textbook Sutton&Barto)
 - Pros:
 - well-understood theory
 - convergence proofs for discrete state-action systems
 - a useful set of algorithms to work with (model-based and model-free)
 - ideally a globally optimal solution

— Cons:

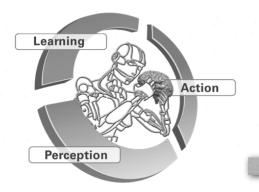
- problematic in continuous state-action spaces (max-operator in continuous spaces)
- curse of dimensionality in high-dimensional systems
- hard to combine with function approximation
- greed (= agressive) updating
- Trajectory-based reinforcement learning

- Pros:

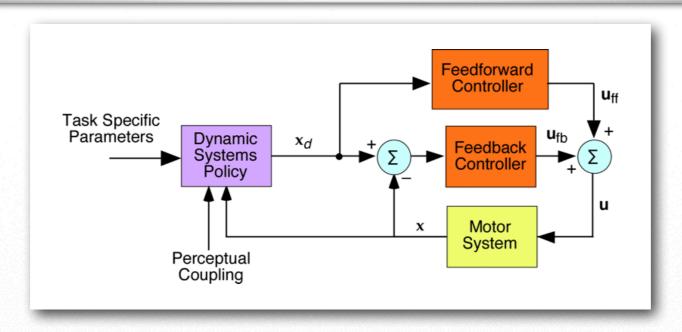
- can work in high dimensional continuous state-action spaces
- does not suffer from the curse of dimensionality

– Cons:

- Locally optimal solutions
- classical methods learn very slowly



Trajectory-based Reinforement Learning with Parameterized Policies



$$\mathbf{u}(t) = \pi(\mathbf{x}(t), t, \alpha)$$

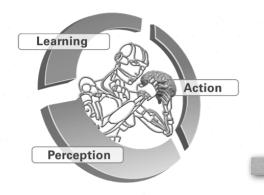
$$or$$

$$\dot{\mathbf{x}}_d(t) = \pi(\mathbf{x}_d(t), t, \alpha)$$

Example: Dynamic Systems Policies, initalized by imitation

$$\tau \ddot{y} = \alpha_z \left(\beta_z (g - y) - \dot{y} \right) + \frac{\sum_{i=1}^k w_i b_i x}{\sum_{i=1}^k w_i}$$

 $\tau \dot{x} = -\alpha_x x$



Trajectory-based Reinforcement Learning

Define a cost function <u>along the trajectory</u>:

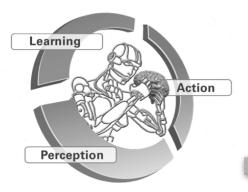
$$J = E_{\tau} \left\{ \sum_{i=0}^{T} r_i \right\}$$

 And a parameterized control policy (e.g., a movement primitive)

$$\tau \dot{\mathbf{y}} = f(\mathbf{y}, goal, \mathbf{b})$$

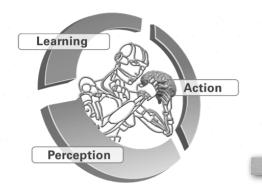
 Optimize J with respect to parameters b, e.g., by gradient descent

$$\mathbf{b}^{n+1} = \mathbf{b}^n + \alpha \frac{\partial J}{\partial \mathbf{b}}$$



Example: Learning with Natural Gradients

Goal: Hit ball to fly far Note: about 150-200 trials are needed.



Reinforcement Learning from Trajectories

- State-of-the-art of Reinforcement Learning from Trajectories:
 - Given the cost per trajectory au :

$$J = E_{\tau} \left\{ \sum_{i=0}^{T} r_i \right\}$$

- The motor primitives with parameters **b**:

$$\tau \dot{\mathbf{y}} = f(\mathbf{y}, goal, \mathbf{b})$$

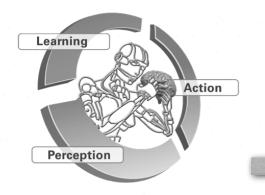
- RL with Natural Gradients

$$\mathbf{b}^{new} = \mathbf{b}^{old} + \alpha \frac{\partial J_{NAC}}{\partial \mathbf{b}}$$

Probabilistic RL with Reward-Weighted Regression

$$\mathbf{b}^{new} \propto \sum_{T} R_{\tau} \mathbf{b}_{\tau} / \sum_{T} R_{\tau}$$

- Trajectory-based Q-learning (fitted Q-iteration)
 - an actor-critic based method based on an action-value function over trajectories
- RL with path-integrals (a probabilistic, model-based/model-free approach derived from stochastic optimal control)



Reinforcement Learning Based on Path Integrals

Pre-requisites

System Dynamics (Control-Affine):

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t) + \mathbf{G}(\mathbf{x})(\mathbf{u}(t) + \mathbf{\varepsilon}(t)) = \mathbf{F}(\mathbf{x},\mathbf{u},t)$$

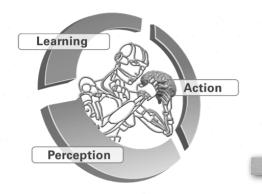
Cost Function:

$$r_{t} = q(\mathbf{x}_{t}) + \frac{1}{2} \mathbf{u}_{t}^{T} \mathbf{R} \mathbf{u}_{t}$$

$$J_{\mathbf{x}_{t}} = E_{\mathbf{x}_{t}} \left\{ q_{T} + \int_{t'=t}^{T} r_{t'} dt' \right\}$$

Note: this is a more $r_t = q(\mathbf{x}_t) + \frac{1}{2}\mathbf{u}_t^T\mathbf{R}\mathbf{u}_t$ structured approach to RL

Goal: find commands **u** that minimize this cost



Reinforcement Learning Based on Path Integrals

Sketch of the Path-Integral Derivation

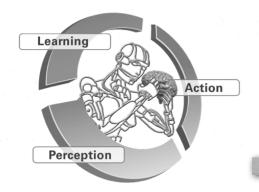
Stochastic HJB Equations:

$$-\partial_t V(\mathbf{x}_t, t) = \min_{\mathbf{u}_{t:t_m}} \left[r_t + \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{F}(\mathbf{x}, \mathbf{u}, t) + \frac{1}{2} Tr \left\{ \Omega(\mathbf{x}, \mathbf{u}, t) \partial_{\mathbf{x}}^2 V(\mathbf{x}_t, t) \right\} \right]$$

$$\min_{\mathbf{u}_{t:t_m}} \left[\frac{1}{2} \mathbf{u}_t^T \mathbf{R} \mathbf{u}_t + q_t + \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{f}(\mathbf{x}, t) + \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{G}(\mathbf{x}) \mathbf{u}(t) + \frac{1}{2} Tr \left\{ \mathbf{G}(\mathbf{x}) \mathbf{\Sigma} \mathbf{G}(\mathbf{x})^T \partial_{\mathbf{x}}^2 V(\mathbf{x}_t, t) \right\} \right] = 0$$

$$\mathbf{u}_t^T \mathbf{R} + \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{G}(\mathbf{x}_t) = 0$$

$$\mathbf{u}_{t} = -\mathbf{R}^{-1}\mathbf{G}(\mathbf{x}_{t})^{T} \partial_{\mathbf{x}} V(\mathbf{x}_{t}, t)$$



Reinforcement Learning Based on Path Integrals

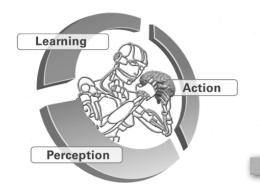
Sketch of the Path-Integral Derivation

$$-\partial_{t}V(\mathbf{x}_{t},t) = \min_{\mathbf{u}_{t,t_{m}}} \left[r_{t} + \partial_{\mathbf{x}}V(\mathbf{x}_{t},t)^{T} \mathbf{F}(\mathbf{x},\mathbf{u},t) + \frac{1}{2}Tr \left\{ \Omega(\mathbf{x},\mathbf{u},t) \partial_{\mathbf{x}}^{2}V(\mathbf{x}_{t},t) \right\} \right]$$

$$\mathbf{u}_{t} = -\mathbf{R}^{-1}\mathbf{G}(\mathbf{x}_{t})^{T} \partial_{\mathbf{x}}V(\mathbf{x}_{t},t)$$

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x},t) + \mathbf{G}(\mathbf{x})(\mathbf{u}(t) + \mathbf{\epsilon}(t))$$

$$-\partial_t V(\mathbf{x}_t, t) = -\frac{1}{2} \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{G}(\mathbf{x}) \mathbf{R}^{-1} \mathbf{G}(\mathbf{x})^T \partial_{\mathbf{x}} V(\mathbf{x}_t, t) + q_t + \partial_{\mathbf{x}} V(\mathbf{x}_t, t)^T \mathbf{f}(\mathbf{x}, t) + \frac{1}{2} Tr \left\{ \mathbf{G}(\mathbf{x}) \mathbf{\Sigma} \mathbf{G}(\mathbf{x})^T \partial_{\mathbf{x}}^2 V(\mathbf{x}_t, t) \right\}$$



Reinforcement Learning Based on Path Integrals

Sketch of the Path-Integral Derivation

$$-\partial_{t}V(\mathbf{x}_{t},t) = -\frac{1}{2}\partial_{\mathbf{x}}V(\mathbf{x}_{t},t)^{T}\mathbf{G}(\mathbf{x})\mathbf{R}^{-1}\mathbf{G}(\mathbf{x})^{T}\partial_{\mathbf{x}}V(\mathbf{x}_{t},t) + q_{t} + \partial_{\mathbf{x}}V(\mathbf{x}_{t},t)^{T}\mathbf{f}(\mathbf{x},t) + \frac{1}{2}Tr\{\mathbf{G}(\mathbf{x})\boldsymbol{\Sigma}\mathbf{G}(\mathbf{x})^{T}\partial_{\mathbf{x}}^{2}V(\mathbf{x}_{t},t)\}$$

Simplification:

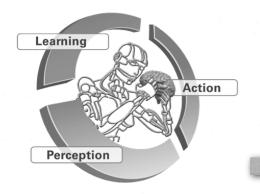
$$\lambda \mathbf{R}^{-1} = \mathbf{\Sigma}$$

Log-Transformation Trick:

$$V(\mathbf{x}_{t},t) = -\lambda \log \psi(\mathbf{x}_{t},t)$$

$$\partial_t \psi(\mathbf{x}_t, t) = \frac{1}{\lambda} \psi(\mathbf{x}_t, t) q_t - \partial_{\mathbf{x}} \psi(\mathbf{x}_t, t)^T \mathbf{f}(\mathbf{x}, t) - \frac{1}{2} Tr \left\{ \mathbf{G}(\mathbf{x}) \mathbf{\Sigma} \mathbf{G}(\mathbf{x})^T \partial_{\mathbf{x}}^2 \psi(\mathbf{x}_t, t) \right\}$$

Chapman Kolmogorov PDE: 2nd Order and Linear



Reinforcement Learning Based on Path Integrals

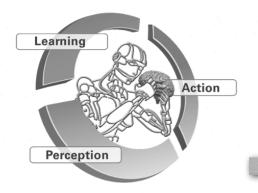
Sketch of the Path-Integral Derivation

$$\partial_t \psi(\mathbf{x}_t, t) = \frac{1}{\lambda} \psi(\mathbf{x}_t, t) q_t - \partial_{\mathbf{x}} \psi(\mathbf{x}_t, t)^T \mathbf{f}(\mathbf{x}, t) - \frac{1}{2} Tr \left\{ \mathbf{G}(\mathbf{x}) \mathbf{\Sigma} \mathbf{G}(\mathbf{x})^T \partial_{\mathbf{x}}^2 \psi(\mathbf{x}_t, t) \right\}$$

Application of Feynman-Kac Theorem:

A numerical method to solve certain PDEs

$$\psi(\mathbf{x}_{t},t) = E_{\tau} \left\{ \psi(\mathbf{x}_{T},T) \exp\left(-\int_{t'=t}^{t'=T} \frac{1}{\lambda} q_{t'} dt'\right) \right\}$$



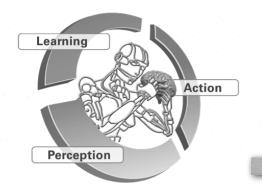
Reinforcement Learning Based on Path Integrals

Sketch of the Path-Integral Derivation

$$\psi(\mathbf{x}_{t},t) = E_{\tau} \left\{ \psi(\mathbf{x}_{T},T) \exp\left(-\int_{t'=t}^{t'=T} \frac{1}{\lambda} q_{t'} dt'\right) \right\}$$
$$\mathbf{u}_{t} = -\mathbf{R}^{-1} \mathbf{G}(\mathbf{x}_{t})^{T} \partial_{\mathbf{x}} V(\mathbf{x}_{t},t)$$

A bit of algebra ...

$$\mathbf{u}_{t} = E_{\tau} \left\{ w_{\tau} \mathbf{R}^{-1} \mathbf{G} (\mathbf{x}_{t})^{T} \left(\mathbf{G} (\mathbf{x}_{t}) \mathbf{R}^{-1} \mathbf{G} (\mathbf{x}_{t})^{T} \right)^{-1} \mathbf{G} (\mathbf{x}_{t}) \mathbf{\varepsilon}_{t} \right\}$$
Optimal Control Law

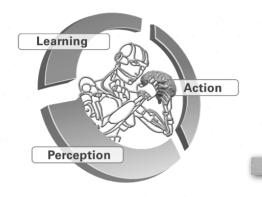


Path Integral RL Applied to Parameterized Policies (Motor Primitives)

 Note that a version of motor primitives can be written as control affine stochastic differential equations

$$\dot{\mathbf{x}} = f(\mathbf{x}) + \mathbf{g}^{T} (\theta + \varepsilon)$$

- ε is interpreted as intentionally injected exploration noise
- the parameters θ are the control vector
- f(x) is the spring-damper of the primitives
- g(x) are the basis functions of the function approximator
- It is also necessary to create a iterative version of path integral optimal control
 - the original path integral optimal control framework explores only based on the passive dynamics, i.e., u=0



Pl² Reinforcement Learning

- For parameterized policies like dynamic motor primitives, a beautifully simple algorithm results:
 - 1) Create K trajectories of the motor primitive for a given task with noise.
 - 2) We can write the cost to go from every time step t of the trajectory as:

$$R_t = q_T + \sum_{i=t}^T r_i$$

3) The probability of a trajectory becomes

$$P(\xi_t^k) = \frac{\exp\left(-\frac{1}{\lambda}R_t^k\right)}{\sum_{j=1}^K \exp\left(-\frac{1}{\lambda}R_t^j\right)}$$

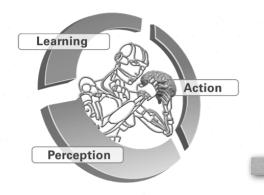
4) Update the parameter θ of the motor primitive as

$$\Delta \theta_t = \sum_{k=1}^K P(\xi_t^k) \frac{\mathbf{R}^{-1} \mathbf{g}^k(\mathbf{x}_t) \mathbf{g}^k(\mathbf{x}_t)^T}{\mathbf{g}^k(\mathbf{x}_t)^T \mathbf{R}^{-1} \mathbf{g}^k(\mathbf{x}_t)} \varepsilon_t^k$$

5) Final parameter update

$$\theta^{new} = \theta^{old} + \overline{\Delta \theta_t}$$

Note that there a NO open tuning parameters except for the exploration noise



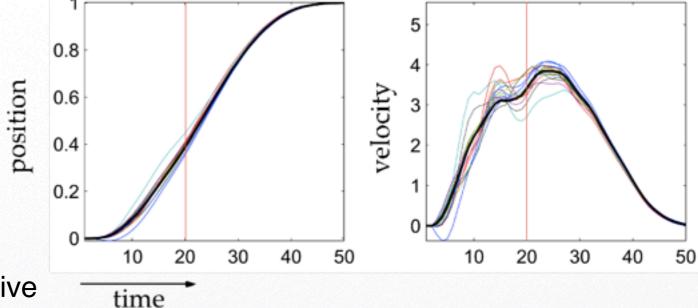
Pl² Reinforcement Learning

The Intuition of Path Integral Reinforcement Learning

- Generate multiple trials i with some variation, e.g., due to noise or exploration
- For every time t, compute the cost R_t^i for every trial:

$$R_t^i = q_T + \int_t^T q(\mathbf{x}_t) + \frac{1}{2} \mathbf{u}_t^T \mathbf{R} \mathbf{u}_t d\tau_t$$

Convert the cost into a positive weight

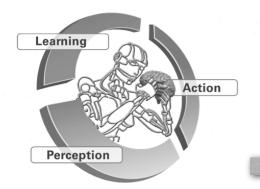


$$w_t^i = \exp(-\lambda R_t^i)$$

Update the motor command at every time step to be the reward weighted average of all experienced commands in the trial

$$\mathbf{u}_{t}^{new} = \frac{\sum_{i} w_{t}^{i} \mathbf{u}_{t}^{i}}{\sum_{i} w_{t}^{i}}$$

Surprisingly, this intuition turns out to be the optimal solution



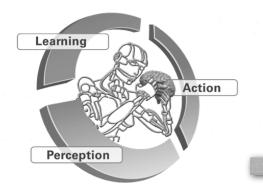
Pl² Reinforcement Learning: Some Remarks

Pl² can be model-based to model-free

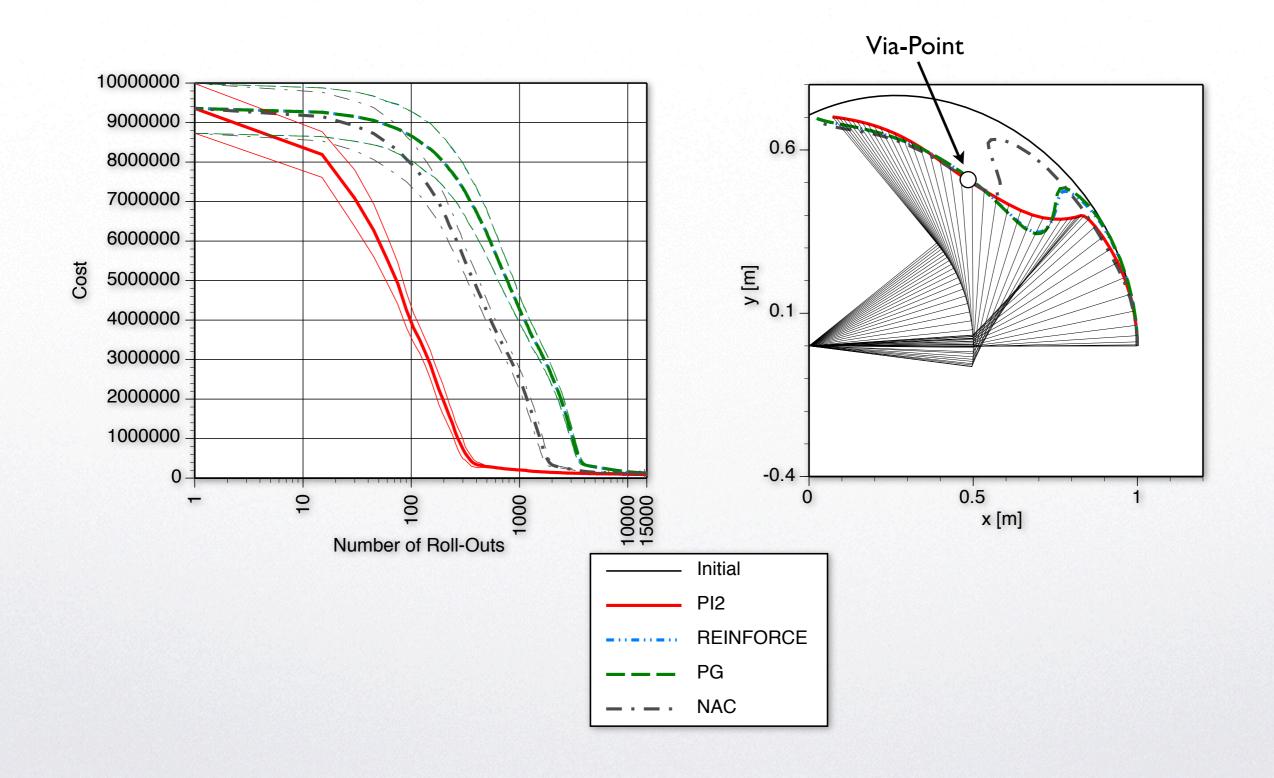
Rigid Body Dynamics:
$$\ddot{\mathbf{q}} = \mathbf{M}(\mathbf{q})^{-1} (\mathbf{u} - \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}}) \dot{\mathbf{q}} + \mathbf{G}(\mathbf{q}))$$

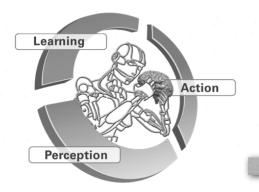
Control Law: $\mathbf{u} = \mathbf{u}_{ff} + \mathbf{K}_{p} (\mathbf{q}_{d} - \mathbf{q}) + \mathbf{K}_{D} (\dot{\mathbf{q}}_{d} - \dot{\mathbf{q}})$
Motor Primitives: $\ddot{q}_{d}^{i} = \alpha_{z} (\beta_{z} (g^{i} - q_{d}^{i}) - \dot{q}_{d}^{i}) + \mathbf{\psi}^{T} \mathbf{\theta}$

- Pl² can optimize trajectory plans, controllers, or both
- Pl² has only one open parameter, i.e., the level of exploration noise
- Pl² allows a rather simple derivation of inverse reinforcement learning

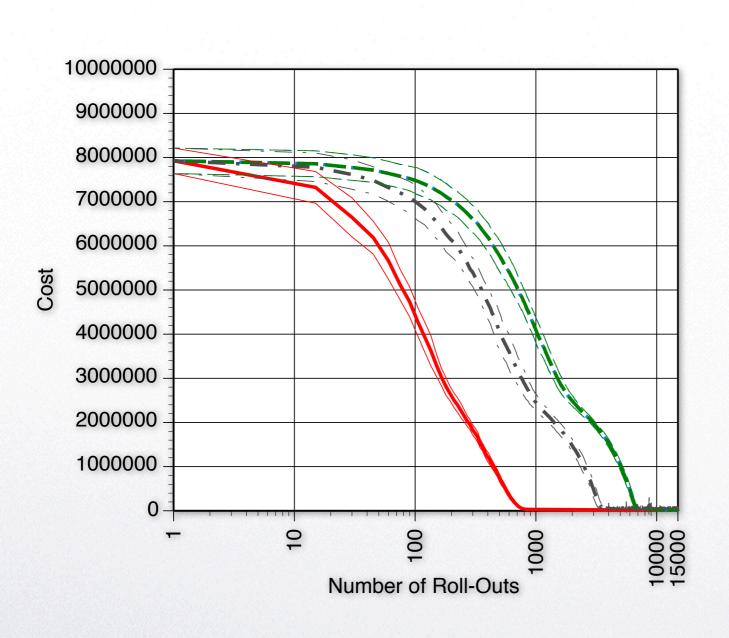


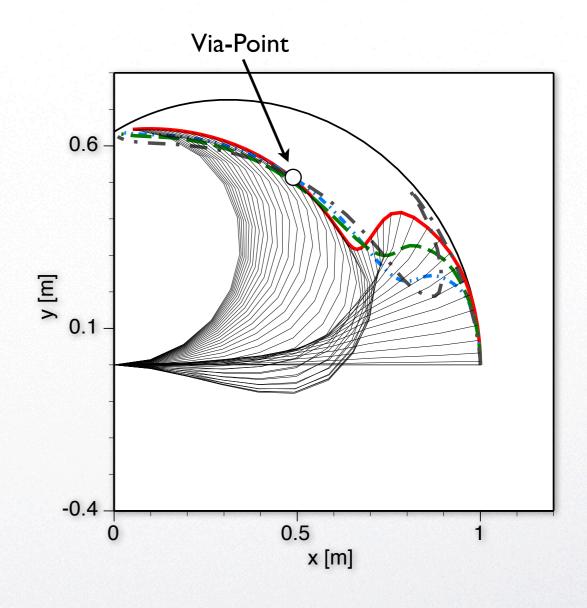
Example: Results on 2D Reaching Through a Via Point

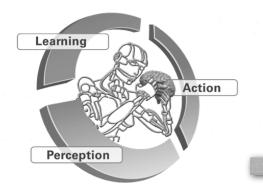




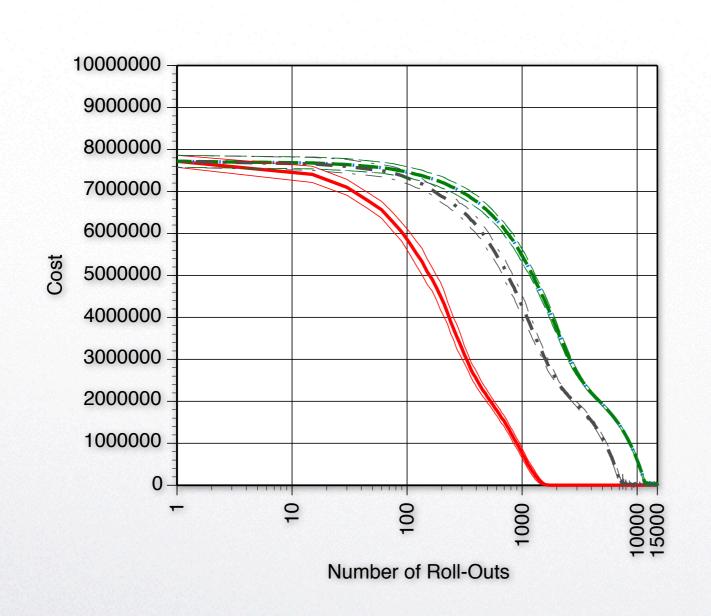
Example: Results on 20D Reaching Through a Via Point

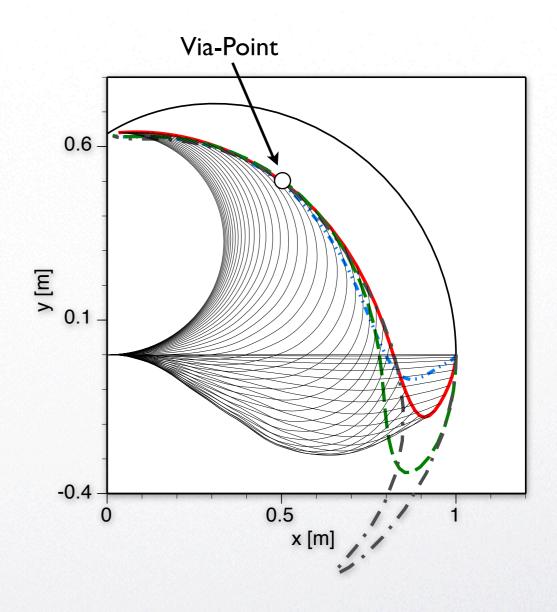


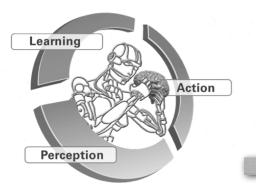




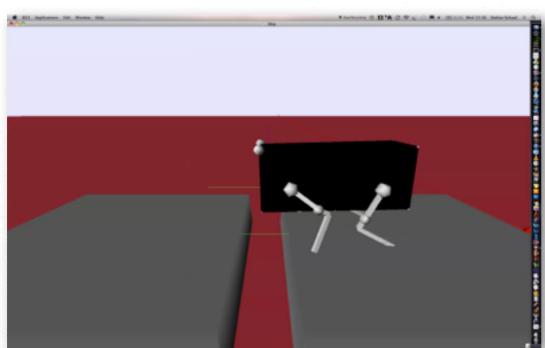
Example: Results on 50D Reaching Through a Via Point

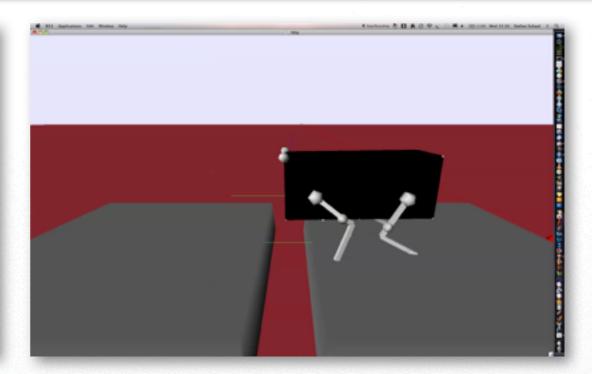




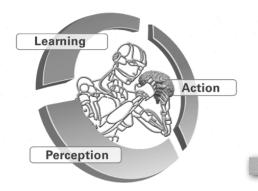


Example: Dog Jump





This is a 12 DOF motor system, using 50 basis functions per primitive. Learning converges after about 20-30 trial! Performance improved by 15cm (0.5 body lengths)



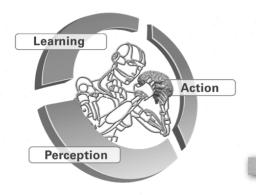
Reinforcement Learning in Manipulation

Learning Force Control Policies for Compliant Manipulation

Mrinal Kalakrishnan, Ludovic Righetti, Peter Pastor, Stefan Schaal

CLMC Lab, University of Southern California

www-clmc.usc.edu

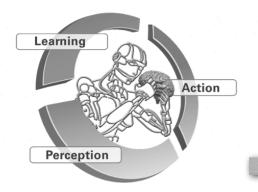


Learning Locomotion over Rough Terrain

Learning Locomotion with LittleDog

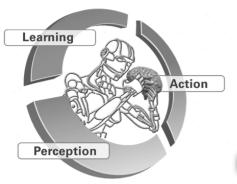
http://www-clmc.usc.edu

Mrinal Kalakrishnan, Jonas Buchli, Peter Pastor, Michael Mistry, and Stefan Schaal



- A Bit of Robotics History
- Foundations of Control
- Adaptive Control
- Learning Control
 - Model-based Robot Learning
 - Reinforcement Learning

What Comes Next?



Towards Truly Autonomous Robots

Big Robots

Very Little Robots

