Perception

Robotics

Part |l: From Learning Model-based Control

to Model-free Reinforcement Learning

Stefan Schaal

Mas-Planck-Institute for Intelligent Systems

Tiibingen, Germany

&

Computer Science, Neuroscience, & Biomedical Engineering
University of Southern California, Los Angeles

sschaal@is.mpg.de
http://www-amd.is.tuebingen.mpg.de



mailto:sschaal@usc.edu
http://www-clmc.usc.edu

Where Did We Stop ...
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* A Bit of Robotics History
 Foundations of Control

 Adaptive Control
e Learning Control
- Model-based Robot Learning

- Reinforcement Learning
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Learning Internal Mo

o

e Forward Models

- models the causal functional relationship
y =f(x)

i=B"(q)(r-C(q,4)q9—-G(q))

- for example:

e |nverse Models

- models the inverse of the causal functional relationship

X:f_l(y)

- for example:

B(q)i+C(q,q9)q+G(q)=7

- NOTE: inverse models are not necessarily functions any more!




Inverse Models May Not

Be Trivially
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Inverse Models May Not
Be Trivially Learnable

t="£(6,.6;)
t="£(67.6;)
what is 7' (t)?




Characteristics of Function

* Incremental Learning

— large amounts of data
— continual learning

— to be approximated
functions of growing and
unknown complexity

e Fast Learning

— data efficient
— computationally efficient
— real-time

* Robust Learning

— minimal interference
— hundreds of inputs




Recall the simple adaptive control model with:f(x)

find the line through all
data points

Imagine a spring
attached between the
line and each data point

all springs have the
same spring constant
points far away generate
more “force” (danger of
outliers)

springs are vertical
solution is the minimum

energy solution achieved
by the springs

= 0x




Linear Regression: One of the Simplest
Function Approximation Methods

* The data generating model:  y_§"g4+w +e=wix+e

where X = I:XT ,1]T W =

 The Least Squares cost function

‘. X|
where : t = - X = X,
; -
* Minimizing the cost gives s - L
the least-square solution %:0:;’_va(%(t_XW)T(t_Xw)):_(t_XW)TX

= X (Xw) X (XXX
thus: t'X=w'X'X or X't=X"Xw
result : w= (XTX)_1 X't




Recursive Least Squares:

An Incremental Version of Linear Regression

T b
e e

e Based on the matrix inversion theorem:
(A-BC)'=A"'+A'B(I+CA'B) CA™

* |ncremental updating of a linear regression model

Initialize: P" = Il where ¥ << 1 (note P = (XTX)_1

)

For every new data point (x,t)

(note that x includes the bias):

P'xx'P" | 1ifno forgetting

A+x P'x

Pn+1 g l(Pn S
A

j where A =<

<1 1f forgetting

Wn+1 — W' + Pn+1X(t S WnTX)T

- NOTE: RLS gives exactly the same solution as linear regression if no forgetting




Making Linear Regression Nonlinear:
Locally Weighted Regression

> - / Region of Validity
\ 29,(1 /
4 %
Receptive Field P

Activationw  1- f

s

i >
J = Zwi (yi = XZTB)
7

Note: Using GPs, SVR, Mixture Models, etc., are other ways to nonlinear regression

Linear
Model




Locally Weighted Regression

/, \ predictions from

- different linear models
\“-‘-‘fé/\\

SN

/
= g

Few Linear Models _| Many linear Models
(no overlap) (strong overlap)

® Piecewise linear function approximation,
® Fach local model is learned from only local data
® No over-fitting due to too many local models (unlike RBFs, ME)




Locally VWeighted Regressigfgﬂ

Recursive weighted least squares:

learned with - Br gy ka”“x(y KB )T

( 3
nzTpn
P,f“zl P — P'xx P,
A Aoisna
T Tm i r T —kxe P ox
y=B."x+8,=p"%x where x=[x"1] \ w

Gradient descent in penalized leave-one-out

Weighting Kernel:

learned with  local cross-validation (PRESS) cost function:

m—— - n 3]
Mk = Mk o OCa—M
w= exp(—l(x —¢) D(x— c)) where D=M'M ] & : :
2 J= EWk,i HYi _yk,i,—iH e 2 Dlg,ij
i=1

X W, AT
i=1
2 WeN.

Combined i= |
y = 4= add model when f mkm(wk) S

Prediction: iw —

createnew RFat ¢, , =X

= T
S :._‘_;__,:_:;“—-l"?ﬂ‘“_
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Locally VVeighted Regression
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Locally VWeighted I}egression

Trial 1

Learn forward model of task dynamics,
then computer controller




A Locally Weighted Regression

[ Perception |

Model-based Reinforcement
Learning of Devilsticking

Stefan Schaal & Chris Atkeson
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Learn forward model of task dynamics,
then computer controller




_ Criticism of Locally Weighted Learning

]
.
Fe

* Breaks down in high-dimensional spaces

 Computationally expensive and numerically brittle due
to (incremental) dxd matrix inversion

* Not compatible with modern probabillistic statistical
learning algorithms

 Too many “manual tuning parameters”




* The power of local learning comes from exploiting the
discriminative power of local neighborhood relations.

e But the notion of a “local” breaks down in high dim.
spaces!




The Curse of Dimensionality
Movement Data is Locally Low Dimensional

;I._._I e
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A Bayesian Approach to
Locally Weighted Learning

e Linear F

egression as a Graphical Model

Vi :XiT:B+8

- N(O’l//y)

B=(X"X) Xy




A Bayesian Approach to
Locally Weighted Learning

* |nserting a Partial-Least-Squares-like projection as a
set of hidden variables

ﬁl ﬁz 163 ﬁd Zi = == : _|_ n




A Bayesian Approach to Locally Weighted
Learning

 Robust linear regression with automatic relevance
detection (ARD, sparsification)

566




A Full Bayesian Treatment of Locally
VVeighted Learning

* The final model for full Bayesian parameter adaptation
for regression and locality




Locally Weighted Learning In High

Dimensional Spaces




* |Learning the “cross” function in 20-dimensional space
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Locally Weighted Learning In High
Dimensional Spaces
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Locally Weighted Learning In High
Dimensional Seaces

» SKkill learning
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* A Bit of Robotics History
 Foundations of Control
e Adaptive Control

e |Learning Control

- Reinforcement Learning




Given: A Parameterized Policy

and a Ctoller

Task Specific

Parameters Dynamic

—p| Systems

olicy

Xd

i

Perceptual
Coupling

Motor
System < |

Note: we are now starting to address planning,
i.e,. where do desired trajectories come from?




Trial & Error Learning
Reinforcement Learning from Trajectg_

 Problem:

— How can a motor system learn a
novel motor skill?

— Reinforcement learning is a
general approach to this
problem, but little work has been
done to scale to the high-
dimensional continuous state-
action domains of humans

* Approach:

— Teach with imitation learning the
initial skill using a parameterized
control policy

— Provide an objective function for
the skill

— Perform trial-and-error learning
from exploratory trajectories




Reinforcement Learning Terminolog

e Policies

— perceived state to action
mapping (can be probabilistic

) ® - g
« Reward functions Policy: what ’[O. do
— maps the perceived state- ® Reward: What IS QOOd

action pair into a a single

number, an immediate reward ° Valu_e: what Is QOOd because It
(stochastic) predicts reward

* Value functions e Model: what follows what

— maps the state into the
accumulated expected reward
that would be received if
starting in the state

e Models Obijective: Optimize Reward!

— predicts the next state given
the current state and action
(can be probabilistic)




Value Fgﬁions

* The value of a state is the expected return starting from
that state; depends on the agent’s policy:

State - value function for policy 7 :

VE(X) - ETE {Rt ‘ Xt = X} = En {i}/kr}+k+l ‘ Xt = X}
k=0

* The value of taking an action in a state under policy 1
IS the expected return starting from that state, taking
that action, and thereafter following 1t :

Action - value function for policy 7 :

Qﬂ(Xau) — Eﬂ: {Rt ‘ Xt — X7ut — u} — Eyt {Zykrt+k+l ‘ Xt R
k=0




Bellman Equation for a Policy 1

The basic idea:

R r+] T y t+2 y t+3 y Y e
Vit +Y( V2 T y t+3 y t+4 )
t+l y t+1

So: Vi(x)=E,_ {R, |x, = X}

= En {rt+1 + }/V(XHI)‘ Xt = X}




* The value of a state under an optimal policy must

equal the expected return for the best action from that
state:

V *(x)= max Q" (x,u)

ueA(x)

= max Eyr
ueA(x) il

V" is the unique solution of this system of equations. l

tyy - (XH1 X, =x,u, = u)}




Bellman Optimality Equation fo

* The value of a state/action under an optimal policy

must equal the expected return for this action from that
state, and then following the optimal policy:

0’ (x,u) = E{;;+1 FymaxQ’(x,.,.u)| X, =X,u, = u}

Q' is the unique solution of this system of equations. I




P

Note: Both policy and value function are

rather complex landscapes with
discontinuities!

Torque(Nm)

Velocity(r/s
Posttion(r) -10 yie)




Some More Exciting Examples

Learning
Perception |




State-Based vs. Trajectory-based
Reinforcement Learning

e -
o 2
R 3

 From about 1980-2000, value function-based (i.e., state-based)
reinforcement learning has been dominant (textbook Sutton&Barto)

— Pros:

- well-understood theory

- convergence proofs for discrete state-action systems

- a useful set of algorithms to work with (model-based and model-free)
- ideally a globally optimal solution

— Cons:

- problematic in continuous state-action spaces (max-operator in continuous spaces)
- curse of dimensionality in high-dimensional systems

- hard to combine with function approximation

- greed (= agressive) updating

» Trajectory-based reinforcement learning

— Pros:
- can work in high dimensional continuous state-action spaces
- does not suffer from the curse of dimensionality

— Cons:

- Locally optimal solutions
- classical methods learn very slowly




Trajectory-based Reinforement Learning
with Parameterized Policies

Feedforward

Controller | u
ff
Task Specific l
Parameters Ush +

Dynamic Xd + F
eedback
> S,!gﬁ%;;s Controller '+
u
X Motor

System

Perceptual
Coupling

Example: Dynamic Systems Policies,

initalized by imitation

zk:wl.bl.x

=0 (B.(g-y)-)+}
Zwl.
=1

TX=—0 X




* Define a cost function along the trajectory:

* And a parameterized control policy (e.g., a movement
primitive)

Ty — f(y,goal,b)

* Optimize J with respect to parameters b, e.g., by
gradient descent




Goal: Hit ball to fly far  Note: about 150-200 trials are needed.




~>%{ Reinforcement Learning from Trajectories

« State-of-the-art of Reinforcement Learning from
Trajectories:

T
- Given the cost per trajectory 7 : J=E, {Z”z}
i=0
- The motor primitives with parameters b: Ty = f(y,goal,b)

— RL with Natural Gradients AJ yc

db
— Probabilistic RL with Reward-Weighted Regression

b - MEh (YR
T T

— Trajectory-based Q-learning (fitted Q-iteration)
- an actor-critic based method based on an action-value function over trajectories

bnew A bold + o

— RL with path-integrals (a probabilistic, model-based/model-free
approach derived from stochastic optimal control)




Reinforcement Learning
Based on Path Inte;

* Pre-requisites
System Dynamics (Control-Aftfine):
x =f(x,t)+G(x)(u(z)+&(r)) = F(x,u,z)

Cost Function: .
Note: this is 2 more

1 ;
r=qx)+-u Ru, structured approach
G T ) tO RL
J. =E sq. t J r.dt'y

— Goal: find commands u that minimize this cost




Reinforcement Learning
Based on Path Integrals

e Sketch of the Path-Integral Derivation

Stochastic HIB Equations:

—0,V(x,.t)= min{rz +V(x,.1) F(x.ur)+ lTr{Q(X,u,l‘)aiV(XZ ,t)}}

: ;

min{%ufRut +q,+0.V(x,.t) £(x,0)+0,V(x,.t) G(x)u(t)+ %TF{G(X)Z G(x) aV(x, ,t)}} =0

m

W' R+9,V(x,.) G(x,)=0




Reinforcement Learning
Based on Path Integrals

e Sketch of the Path-Integral Derivation

_atV(Xt ,t) = min{rt + BXV(Xt ,t)T F(x,u,z)+ %Tr{ﬂ(x,u,t)aiV(xt ,t)}}
u = —R‘lG(xt )T BXV(Xt ,t)

x =f(x,1)+G(x)(u(r)+€(1))




Reinforcement Learning
Based on Path Integrals

e Sketch of the Path-Integral Derivation

—9,V(x,,t)= —%BXV(Xt 1) G(x)RT'G(x) 0V (x,.t)+q,+0,V(x,.t) f(x,0)+ %TF{G(X)Z G(x) aV(x, ,t)}

Simplification: Log-Transtormation Trick:
IR =3 V(x,,t)=-Alogw(x,,t)

Chapman Kolmogorov PDE: 2nd Order and Linear




Reinforcement Learning
Based on Path Integrals

e Sketch of the Path-Integral Derivation

(%, = 1w (x,1)a, - (x,) £(60) =217 {G (%)% G(x)" 22 (x,.1)]

Application of Feynman-Kac Theorem:
A numerical method to solve certain PDEs




Reinforcement Learning
Based on Path Integrals

» Sketch of the Path-Integral Derivation
l//(Xt,t) =E. {l//(XT ,T)exp[—t jT%qf dt']}

t'=t

u, =-R'G(x,) o V(x,.1)

; A bit of algebra ...




Path Integral RL Applied to

* Note that a version of motor primitives can be written as
control affine stochastic differential equations

x=f(x)+g (0+¢)
e is interpreted as intentionally injected exploration noise
the parameters 6 are the control vector
f(x) is the spring-damper of the primitives
g(x) are the basis functions of the function approximator

* |t is also necessary to create a iterative version of path
integral optimal control

- the original path integral optimal control framework explores only based on the
passive dynamics, i.e., u=0
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) PI? Reinforcement Learning

 For parameterized policies like dynamic motor
primitives, a beautifully simple algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.

2) We can write the cost to go from every time step t of the trajectory as:
T
R =g + Zri
3) The probability of a trajectory becomes
1
cXp (— 1 tk j
P( fk ) K J e
Z exp (— i )
j=1 A

4) Update the parameter 6 of the motor primitive as

< R'g' (x)g'(x)
A Y Rie - Note that there a NO open
k=1 g (Xt) R g (Xt) .
tuning parameters except for

5) Final parameter update N | ; ;
R the exploration noise
Onew =5 Oold B Aet P




* The Intuition of Path Integral Reinforcement Learning

- Generate multiple trials i 1 ;
with some variation, e.g., 08
due to noise or exploration -
- For every time t, compute = oal ks ,
the cost R/ for every trial: & Y 1
T |
; 1 0.2
R =q, + jq(xt)+ EutTRutht o/
t 10 20 30 40 50
- Co_nvert the cost into a positive B
weight
wi = exp(-AR!) Surprisingly, this

- Update the motor command at every time stepto  INtUItiON turns out
be the reward weighted average of all experienced to be the optimal

commands in the trial Z G
w0 solution

new __

ut
i
2V

i




PI? Reinforcement Learning:
Some Remarks

 PI2 can be model-based to model-free

Rigid Body Dynamics: §=M(q)" (u-C(q.q)q+G(q))
Control Law: u=u, + K (a,-q)+K,(q,-q)
Motor Primitives: ¢, = o, (ﬁz (gi -q, ) - q;) +y'0

* PI2 can optimize trajectory plans, controllers, or both

 PI2 has only one open parameter, i.e., the level of
exploration noise

 PI2 allows a rather simple derivation of inverse
reinforcement learning
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Example: Results on 2D Reaching
Through a Via Point
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Example: Results on 20D Reaching
Through aVii Pot
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Learning
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This is a |2 DOF motor system, 1N
using 50 basis functions per 400 \
primitive. Learning converges after & \
about 20-30 trial! Performance 5 \ B
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Reinforcement Learning
in Manipulation

Learning Force Control
Policies for Compliant
Manipulation

Mrinal Kalakrishnan, Ludovic Righetti,
Peter Pastor, Stefan Schaal

CLMC Lab, University of Southern California
WWw-Cclmc.usc.edu




Learning Locomotion over Rough Terrain

Learning Locomotion
with LittleDog

http://www-clmc.usc.edu

Mrinal Kalakrishnan, Jonas Buchli,
Peter Pastor, Michael Mistry, and
Stefan Schaal
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* A Bit of Robotics History
 Foundations of Control
e Adaptive Control

e Learning Control
- Model-based Robot Learning

- Reinforcement Learning

What Comes Next!?




Towards Truly Autonomous Robots

Big Robots

Very Little Robots




