Causality

Bernhard Schölkopf and Jonas Peters MPI for Intelligent Systems, Tübingen

MLSS, Tübingen 21st July 2015

	Overall
Treatment A: Open surgery	78% (273/350)
Treatment B: Percutaneous nephrolithotomy	83 % (289/350)

Charig et al.: "Comparison of treatment of renal calculi by open surgery, (...)", British Medical Journal, 1986

	Overall	Patients with small stones	Patients with large stones
Treatment A: Open surgery	78% (273/350)	93 % (81/87)	73 % (192/263)
Treatment B: Percutaneous nephrolithotomy	83 % (289/350)	87% (234/270)	69% (55/80)

Charig et al.: "Comparison of treatment of renal calculi by open surgery, (...)", British Medical Journal, 1986

J. Mooij et al.: Distinguishing cause from effect using observational data: methods and benchmarks, submitted

Assume $P(X_1, ..., X_4)$ has been induced by

$$X_1 = f_1(X_3, N_1)$$

 $X_2 = N_2$
 $X_3 = f_3(X_2, N_3)$
 $X_4 = f_4(X_2, X_3, N_4)$

- N_i jointly independent
- G₀ has no cycles

Functional causal model. Can the DAG be recovered from $P(X_1, ..., X_4)$?

Assume $P(X_1, ..., X_4)$ has been induced by

$$X_1 = f_1(X_3, N_1)$$

 $X_2 = N_2$
 $X_3 = f_3(X_2, N_3)$
 $X_4 = f_4(X_2, X_3, N_4)$

- N_i jointly independent
- G₀ has no cycles

Functional causal model.

Can the DAG be recovered from $P(X_1, ..., X_4)$? **No.**

Assume $P(X_1, ..., X_4)$ has been induced by

$$X_1 = f_1(X_3) + N_1$$

 $X_2 = N_2$
 $X_3 = f_3(X_2) + N_3$
 $X_4 = f_4(X_2, X_3) + N_4$

- $N_i \sim \mathcal{N}(0, \sigma_i^2)$ jointly independent
- Go has no cycles

Additive noise model with Gaussian noise. Can the DAG be recovered from $P(X_1, ..., X_4)$? Yes iff f_i nonlinear.

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Bühlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
S. Shimizu, P. Hoyer, A. Hyvärinen, A. Kerminen: A linear non-Gaussian acyclic model for causal discovery. JMLR, 2006

Consider a distribution generated by

$$Y = f(X) + N_Y$$
with $N_Y, X \stackrel{ind}{\sim} \mathcal{N}$

Consider a distribution generated by

$$Y = f(X) + N_Y$$
 $X \stackrel{ind}{\sim} \mathcal{N}$ with $N_Y, X \stackrel{ind}{\sim} \mathcal{N}$

Then, if f is nonlinear, there is no

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

Consider a distribution corresponding to

$$Y = X^{3} + N_{Y}$$
with $N_{Y}, X \stackrel{ind}{\sim} \mathcal{N}$

with

$$X \sim \mathcal{N}(1, 0.5^2)$$

 $N_Y \sim \mathcal{N}(0, 0.4^2)$

Surprise (under some assumptions):

2 variables $\Rightarrow p$ variables

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

Surprise (under some assumptions):

2 variables $\Rightarrow p$ variables

JP, J. Mooij, D. Janzing and B. Schölkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

Let $P(X_1, \ldots, X_p)$ be induced by a ...

		conditions	identif.
structural equation model:	$X_i = f_i(X_{\mathbf{PA}_i}, N_i)$	-	X
additive noise model:	$X_i = f_i(X_{\mathbf{PA}_i}) + N_i$	nonlin. fct.	✓
causal additive model:	$X_i = \sum_{k \in \mathbf{PA}_i} f_{ik}(X_k) + N_i$	nonlin. fct.	✓
linear Gaussian model:	$X_i = \sum_{k \in \mathbf{PA}_i} \beta_{ik} X_k + N_i$	linear fct.	×

(results hold for Gaussian noise)

see also
D. Lopez-Paz, K. Muandet, B. Schölkopf, I. Tolstikhin: *Towards a Learning Theory of Cause-Effect Inference*, ICML 2015
E. Sgouritsa, D. Janzing, P. Hennig, B. Schölkopf: Inf. of Cause and Effect with Unsupervised Inverse Regr., AISTATS 2015

- p = 6170 genes
- $n_{obs} = 160$ wild-types
- $n_{int} = 1479$ gene deletions (targets known)

- p = 6170 genes
- $n_{obs} = 160$ wild-types
- $n_{int} = 1479$ gene deletions (targets known)
- ullet true hits: pprox 0.1% of pairs

- *p* = 6170 genes
- $n_{obs} = 160$ wild-types
- $n_{int} = 1479$ gene deletions (targets known)
- ullet true hits: pprox 0.1% of pairs

• "Invariant prediction" method: $\mathcal{E} = \{obs, int\}$

- *p* = 6170 genes
- $n_{obs} = 160$ wild-types
- $n_{int} = 1479$ gene deletions (targets known)
- ullet true hits: pprox 0.1% of pairs

• "Invariant prediction" method: $\mathcal{E} = \{obs, int\}$

JP, P. Bühlmann, N. Meinshausen: Causal inference using inv. pred.: identification and conf. intervals, arXiv, 1501.01332 D. Rothenhaeusler, C. Heinze et al.: backShift: Learning causal cyclic graphs from unknown shift interv., arXiv 1506.02494 M. Rojas-Carulla et al.: A Causal Perspective on Domain Adaptation, arXiv 1507.05333

most significant pair

2nd most significant pair

3rd most significant pair

http://xkcdsw.com/3039

B. Watterson: It's a magical world, Andrews McMeel Publishing, 1996