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Overall

Treatment A:
Open surgery

Treatment B: 83% (289/350)

Percutaneous nephrolithotomy

78% (273/350)

Charig et al.: “Comparison of treatment of renal calculi by open surgery, (...) ", British Medical Journal, 1986
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Patients with Patients with
small stones large stones

78% (273/350)  93% (81/87) 73% (192/263)

Overall

Treatment A:
Open surgery

Treatment B: 83% (289/350) 87% (234/270)  69% (55/80)

Percutaneous nephrolithotomy

Charig et al.: “Comparison of treatment of renal calculi by open surgery, (...) ", British Medical Journal, 1986
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J. Mooij et al.: Distinguishing cause from effect using observational data: methods and benchmarks, submitted
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Assume P(Xi,...,Xs) has been induced by

Xl - fl(X3aN1) @

X2 = N2 \
X3 = f3(X2, N3)

X = fo(Xo, X3, Ng) Ce)——)

e \; jointly independent

e Gp has no cycles

Functional causal model.
Can the DAG be recovered from P(Xi,...,Xs)?

B. Scholkopf & J. Peters (MPI) Causality 21st July 2015



Assume P(Xi,...,Xs) has been induced by

Xl - fl(X3aN1) @

X2 = N2 \
X3 = f3(X2, N3)

X = fo(Xo, X3, Ng) Ce)——)

e \; jointly independent

e Gp has no cycles

Functional causal model.
Can the DAG be recovered from P(Xi,...,Xs)? No.
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Assume P(Xi,...,Xs) has been induced by

X1 =h(X3)+ Ny @
Xo =Ny

X3 = f(X2)+ N3 \

Xy = ﬁ;(Xz,X3) + Ny @ : @

e N;~ N(0,0?) jointly independent

e Gp has no cycles

Additive noise model with Gaussian noise.
Can the DAG be recovered from P(Xi,...,Xs)? Yes iff f; nonlinear.

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
P. Biihlmann, JP, J. Ernest: CAM: Causal add. models, high-dim. order search and penalized regr., Annals of Statistics 2014
S. Shimizu, P. Hoyer, A. Hyvarinen, A. Kerminen: A linear non-Gaussian acyclic model for causal discovery. JMLR, 2006
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Consider a distribution generated by

Y = f(X) + Ny XO—>®)

with Ny, X 29 A7
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Consider a distribution generated by

Y = f(X) + Ny XO—>®)

with Ny, X 29 A7

Then, if f is nonlinear, there is no
N

X =g(Y)+ My @%@

. d
with v SN

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
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Consider a distribution corresponding to

Y = X3+ Ny @é@

with Ny, X 29 A7

with

X ~ N (1,0.5%)
Ny ~ N(0,0.4?)
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Surprise (under some assumptions):
2 variables = p variables

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014
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Surprise (under some assumptions):
2 variables = p variables

JP, J. Mooij, D. Janzing and B. Schélkopf: Causal Discovery with Continuous Additive Noise Models, JMLR 2014

Let P(Xi,...,X,) be induced by a ...

| conditions | identif.

structural equation model: X = f,'(XpA’_, N;) - X
additive noise model: X = f,’(XpAl_) + N; nonlin. fct. v
causal additive model: Xi = kepa. fix(Xk) + N; | nonlin. fct. v
linear Gaussian model:  X; = Y, cpp BiXk + Ni | linear ft. X

(results hold for Gaussian noise)
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see also
D. Lopez-Paz, K. Muandet, B. Schélkopf, |. Tolstikhin: Towards a Learning Theory of Cause-Effect Inference, ICML 2015
E. Sgouritsa, D. Janzing, P. Hennig, B. Schélkopf: Inf. of Cause and Effect with Unsupervised Inverse Regr., AISTATS 2015
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Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=06170 genes
@ nyps = 160 wild-types
@ nj,y = 1479 gene deletions (targets known)
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Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=06170 genes

@ nyps = 160 wild-types

@ nj,y = 1479 gene deletions (targets known)

@ true hits: ~ 0.1% of pairs

interventional test data point
(intervention on gene 5954)
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Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
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@ ‘“Invariant prediction” method: £ = {obs, int}
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Real data: genetic perturbation experiments for yeast (Kemmeren et al.,
2014)

@ p=06170 genes

@ nyps = 160 wild-types

@ nj,y = 1479 gene deletions (targets known)

@ true hits: ~ 0.1% of pairs

interventional test data point
(intervention on gene 5954)
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e
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@ ‘“Invariant prediction” method: £ = {obs, int}

JP, P. Biihimann, N. Meinshausen: Causal inference using inv. pred.: identification and conf. intervals, arXiv, 1501.01332
D. Rothenhaeusler, C. Heinze et al.: backShift: Learning causal cyclic graphs from unknown shift interv., arXiv 1506.02494
M. Rojas-Carulla et al.: A Causal Perspective on Domain Adaptation, arXiv 1507.05333
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observational training data interventional training data interventional test data point
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most significant pair
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observational training data interventional training data o~ interventional test data point

° (interv. on genes other than 3729 and 3730) (intervention on gene 3729)
(=3 = o 1
I g .
= R
w v w
zo z
w . W
[0} Gl
> >
E E
s3 S 9 O]
= =
Q Q
< <o

0 I

S

T <]

I
-0.5 0.0 0.5 1.0 -0.5 0.0 0.5 1.0 -4 -3 -2 -1 0 1 2
ACTIVITY GENE 3729 ACTIVITY GENE 3729 ACTIVITY GENE 3729

2nd most significant pair
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observational training data interventional training data o~ interventional test data point
(interv. on genes other than 3672 and 1475) (intervention on gene 3672)
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PERFECT
INVARIANT
HIDDEN-INVARIANT

PC

RFCI

REGRESSION (CV-Lasso)
GES and GIES

RANDOM (99% prediction—
interval)

# INTERVENTION PREDICTIONS

Causality
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T USED @ THINK, THEN A STUDY SOUNDS LIKE You

CORRELATIONDIDN'T | [SHOVED CHANGING YOUR

(MPLY CAUSATION CORRELATIONAND | |MIND CHANGED THE
' CAUSATION WERE RESULT.

\~ " EXACTLY!

% IFalrd

http://xkcdsw.com /3039
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B. Watterson: [It's a magical world, Andrews McMeel Publishing, 1996
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