
Probabilistic Numerics
– Part II –

Linear Algebra and Nonlinear Optimization

Philipp Hennig

MLSS 2015
20 / 07 / 2015

Emmy Noether Group on Probabilistic Numerics
Department of Empirical Inference
Max Planck Institute for Intelligent Systems

Tübingen, Germany

Probabilistic Numerics
Recap from Saturday

On Saturday
▸ computation is inference
▸ classic methods for integration and solution of differential equations

can be interpreted as MAP inference from Gaussian models
▸ customizing the implicit prior gives faster, tailored numerics
▸ probabilistic formulation allows propagation of uncertainty through

composite computations

1 ,

Linear Algebra

Ax = b A ∈ RN×N symmetric positive definite

A

b

\ x

2 ,

Why you should care about linear algebra
least-squares: a most basic machine learning task

AA−1

f̂(x) = kxX(kXX + σ2I)−1b = kxXA−1b

3 ,

Inference on Matrix Elements
generic Gaussian priors [Hennig, SIOPT, 2015]

▸ prior on elements of inverse H = A−1 ∈ RN×N with Σ ∈ RN2×N2

p(H) = N (Ð⇀H ;
Ð⇀
H0,Σ) = 1(2π)N2/2∣Σ∣1/2 exp [(ÐÐÐÐ⇀H −H0)⊺ Σ−1 (ÐÐÐÐ⇀H −H0)]

▸ can collect noise-free observations p(S,Y ∣H) = δ(S −HY)
AS = Y ⇔ S =HY ∈ RN×M

▸ a linear projection: (using the Kronecker product)

Ð⇀
S km =∑

ij

δkiYjmHij .
Ð⇀
S = (I ⊗ Y ⊺)Ð⇀H = CÐ⇀H C ∈ RNM×N2

▸ posterior:

p(H ∣S,Y) = N [Ð⇀H ;
Ð⇀
H0 +ΣC⊺(CΣC⊺)−1(ÐÐÐÐÐ⇀S − CH0),Σ −ΣC⊺(CΣC⊺)−1CΣ]

▸ requires O(N3M) operations! Need structure in Σ

4 ,

p(H ∣S,Y) = N [Ð⇀H ;
Ð⇀
H0 +ΣC⊺(CΣC⊺)−1(ÐÐÐÐÐ⇀S − CH0),Σ −ΣC⊺(CΣC⊺)−1CΣ]

▸ good probabilistic numerical methods must have both
▸ low computational cost
▸ meaningful prior assumptions

5 ,

A factorization assumption
with support on all matrices

= ⋅ +H C D⊺ H0

▸ cov(Hij ,Hk`) = VikWj`

⇒ p(H) = N (H;H0, V ⊗W)
▸ if V,W ≻ 0, this puts nonzero mass on all H ∈ RN×N

var(Hij) = ViiWjj

▸ draw n columns of C iid. from N (C∶i; 0, V /n)
▸ draw n columns of D iid. from N (D∶i; 0,W /n)

6 ,

A Structured Prior
computation requires trading expressivity and cost [Hennig, SIOPT, 2015]

▸ prior p(H) = N (Ð⇀H ;
Ð⇀
H0, V ⊗W) gives

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺WY)−1Y ⊺W,
V ⊗ (W −WY (Y ⊺WY)−1Y ⊺W)]

A SY

⇒

▸ two problems:
▸ still requires O(M3

) inversion just to compute mean
↝ would like diagonal Y ⊺WY (conjugate observations)
▸ how to choose H0, V,W to get well-scaled prior?
↝ ‘empirical Bayesian’ choice to include H

7 ,

A Structured Prior
computation requires trading expressivity and cost [Hennig, SIOPT, 2015]

▸ prior p(H) = N (Ð⇀H ;
Ð⇀
H0, V ⊗W) gives

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺WY)−1Y ⊺W,
V ⊗ (W −WY (Y ⊺WY)−1Y ⊺W)]

Y SA

⇒

▸ two problems:
▸ still requires O(M3

) inversion just to compute mean
↝ would like diagonal Y ⊺WY (conjugate observations)
▸ how to choose H0, V,W to get well-scaled prior?
↝ ‘empirical Bayesian’ choice to include H

7 ,

A Structured Prior
computation requires trading expressivity and cost [Hennig, SIOPT, 2015]

▸ prior p(H) = N (Ð⇀H ;
Ð⇀
H0, V ⊗W) gives

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺WY)−1Y ⊺W,
V ⊗ (W −WY (Y ⊺WY)−1Y ⊺W)]

Y SA

⇒
▸ two problems:

▸ still requires O(M3
) inversion just to compute mean

↝ would like diagonal Y ⊺WY (conjugate observations)
▸ how to choose H0, V,W to get well-scaled prior?
↝ ‘empirical Bayesian’ choice to include H

7 ,

A Scaled Prior
probabilistic computation needs meaningful priors [Hennig, SIOPT, 2015]

▸ using H0 = εI with ε≪ 1. It would be nice to have W = V =H :

var(H)ij = ViiWjj =HiiHjj

for symmetric positive definite matrices, Hii > 0, H2
ij ≤HiiHjj▸ if W = V =H ,

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺WY)−1Y ⊺W,
V ⊗ (W −WY (Y ⊺WY)−1Y ⊺W)]

▸ can choose conjugate directions S⊺AS = S⊺Y = diagi{gi}
using Gram-Schmidt process. Choose orthogonal set {u1, . . . , uN}

si = ui − i−1∑
j=1

y⊺j ui
y⊺j sj sj

then

E ∣S,Y [H] =H0 + M∑
i=1

(sm −H0ym)s⊺m
y⊺msm

8 ,

A Scaled Prior
probabilistic computation needs meaningful priors [Hennig, SIOPT, 2015]

▸ using H0 = εI with ε≪ 1. It would be nice to have W = V =H :

var(H)ij = ViiWjj =HiiHjj

for symmetric positive definite matrices, Hii > 0, H2
ij ≤HiiHjj▸ if W = V =H ,

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺S)−1S⊺,
W ⊗ (W − S(Y ⊺S)−1S⊺)]

▸ can choose conjugate directions S⊺AS = S⊺Y = diagi{gi}
using Gram-Schmidt process. Choose orthogonal set {u1, . . . , uN}

si = ui − i−1∑
j=1

y⊺j ui
y⊺j sj sj

then

E ∣S,Y [H] =H0 + M∑
i=1

(sm −H0ym)s⊺m
y⊺msm

8 ,

A Scaled Prior
probabilistic computation needs meaningful priors [Hennig, SIOPT, 2015]

▸ using H0 = εI with ε≪ 1. It would be nice to have W = V =H :

var(H)ij = ViiWjj =HiiHjj

for symmetric positive definite matrices, Hii > 0, H2
ij ≤HiiHjj▸ if W = V =H ,

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺S)−1S⊺,
W ⊗ (W − S(Y ⊺S)−1S⊺)]

▸ can choose conjugate directions S⊺AS = S⊺Y = diagi{gi}
using Gram-Schmidt process. Choose orthogonal set {u1, . . . , uN}

si = ui − i−1∑
j=1

y⊺j ui
y⊺j sj sj

then

E ∣S,Y [H] =H0 + M∑
i=1

(sm −H0ym)s⊺m
y⊺msm

8 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Active Learning of Matrix Inverses
Gaussian Elimination [C.F. Gauss, 1809]

which set of orthogonal directions should we choose?
▸ e.g. {u1, . . . , uN} = {e1, . . . , eN}

∣A ⋅HM ∣p(H)Htrue ∣S∣ ∣Y ∣

Gaussian eliminiation of A is maximum a-posteriori estimation of
H under a well-scaled Gaussian prior, if the search directions

are chosen from the unit vectors.

9 ,

Gaussian elimination as MAP inference:
▸ decide to use Gaussian prior
▸ factorization assumption (Kronecker structure) in covariance gives

simple update
▸ implicitly choosing “W =H” gives well-scaled prior
▸ conjugate directions for efficient bookkeeping
▸ construct projections from unit vectors

10 ,

What about Uncertainty?
calibrating prior covariance at runtime [Hennig, SIOPT, 2015]

under “W =H”

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺S)−1S⊺,W ⊗ (W − S(Y ⊺S)−1S⊺)]
just need WY = S. So choose

W = S(Y ⊺S)−1S⊺ + (I − Y (Y ⊺Y)−1Y ⊺)Ω(I − Y (Y ⊺Y)−1Y ⊺)

0 5 10 15 20 25 30

0.2

0.4

0.6

0.8

1

step m

y
⊺ m
s
m

11 ,

What about Uncertainty?
calibrating prior covariance at runtime [Hennig, SIOPT, 2015]

under “W =H”

p(H ∣S,Y) = N [H;H0 + (S −H0Y)(Y ⊺S)−1S⊺,W ⊗ (W − S(Y ⊺S)−1S⊺)]
just need WY = S. So choose

W = S(Y ⊺S)−1S⊺ + (I − Y (Y ⊺Y)−1Y ⊺)Ω(I − Y (Y ⊺Y)−1Y ⊺)
WM for W0 estimatedWM for W0 =H

11 ,

▸ scaled, structured prior, exploration along unit vectors gives Gaussian
elimination

▸ empirical Bayesian estimation of covariance gives scaled posterior
uncertainty, retains classic estimate, at very low cost overhead

12 ,

Can we do better than Gaussian Elimination?
encode symmetry H = H⊺ [Hennig, SIOPT, 2015]

▸ Using Γ
Ð⇀
H = 1/2(ÐÐÐÐ⇀H +H⊺), p(symm. ∣H) = limβ_0N (0; Γ

Ð⇀
H,β)

p(H ∣ symm.) = N (Ð⇀H ;
Ð⇀
H0,W⊗⊖W)(W⊗⊖W)ij,k`= 1/2(WikWj` +Wi`Wjk)

▸ p(S,Y ∣H) = δ(S −HY) now gives (∆ = S −H0Y , G = Y ⊺WY)

p(H ∣S,Y) = N [H;

H0 +∆G−1Y ⊺W +WYG−1∆⊺ −WYG−1∆⊺Y G−1Y ⊺W,
(W −WYG−1Y ⊺W)⊗⊖(W −WYG−1Y ⊺W)]

13 ,

Active Learning for a Single Linear Problem
choose ‘search directions’ from gradients

Ax = b ⇔ x = arg min
x̃

f(x̃) f(x) = [1/2x⊺Ax − x⊺b]
r(x) = ∇f(x) = Ax − b

Algorithm 1 Solve Ax = b under p(H ∣H0,W)
1: x0 =H0b, r0 = Ax0 − b, s0 = r0
2: for i = 1, . . . ,M do
3: yi = Asi // collect observation
4: p(H ∣S,Y) = N (H;Hi,Wi⊗⊖Wi) // inference (see previous slide)
5: xi =Hib // update mean estimate for x
6: ri = Axi − b // new gradient. ri ⊥ rj<i

7: si = ri −∑j<i y⊺j riy⊺j sj sj // next action (conjugate direction)

8: end for

14 ,

Conjugate Gradients
[Hestenes & Stiefel, 1952; Hennig, SIOPT 2015]

Set H0 = εI, ‘W =H ’ as before. Some simplifications give:

Algorithm 2 Conjugate Gradients (A, b) [Hestenes & Stiefel 1952]
1: r0 ^−b, p0 ^−r0, k^0
2: for k = 0, . . . ,M do
3: d^Apk
4: αk^ r⊺krk/p⊺kd
5: xk+1 ^xk + αkpk
6: rk+1 ^ rk + αkd
7: βk+1 ^ r⊺k+1rk+1/r⊺krk
8: pk+1 ^−rk+1 + βk+1pk
9: end for

15 ,

Conjugate Gradients as Inference
[Hestenes & Stiefel, 1952; Hennig, SIOPT 2015]

10 20 30
10−16

10−7

102

MV multiplications, m
10 20 30

0

2

4

6

MV multiplications, m

r
m

GJ
CG

The Method of Conjugate Gradients is maximum a-posteriori
inference of x =Hb under a well-scaled Gaussian prior on H , if
the search directions are chosen from the sequence of residuals

on ri = Axi − b.
16 ,

Conjugate Gradients as Inference
[Hestenes & Stiefel, 1952; Hennig, SIOPT 2015]

10 20 30
10−16

10−7

102

MV multiplications, m
10 20 30

0

2

4

6

MV multiplications, m

r
m

GJ
CG

The Method of Conjugate Gradients is maximum a-posteriori
inference of x =Hb under a well-scaled Gaussian prior on H , if
the search directions are chosen from the sequence of residuals

on ri = Axi − b.
16 ,

Conjugate Gradients as Inference
[Hestenes & Stiefel, 1952; Hennig, SIOPT 2015]

10 20 30
10−16

10−7

102

MV multiplications, m
10 20 30

0

2

4

6

MV multiplications, m

r
m

GJ
CG

The Method of Conjugate Gradients is maximum a-posteriori
inference of x =Hb under a well-scaled Gaussian prior on H , if
the search directions are chosen from the sequence of residuals

on ri = Axi − b.
16 ,

Transfer Learning in Computation
“recycling Krylov sequences” [Parks et al., SISC 2006; Hennig, Osborne, Girolami, 2015]

y1 y2 y3 y4

f1 f2 f3 f4

∗ ∗ ∗ ∗x
Xf i = yi +ni

eigen-vectors of inferred approximation to X−1 :
. . .

0 50 100 150 200 250 300 350 400
10−7
10−4
10−1

steps

resi
dua

l 0 50 100 150 200 250 300 350 400
10−7
10−4
10−1

resi
dua

l

17 ,

Summary: Linear Algebra

▸ basic algorithms have probabilistic interpretation as MAP inference
from Gaussian priors on H

▸ Gaussian Elimination: inference along unit vector projections
▸ Conjugate-Gradients: inference along gradients of specific linear

problem

▸ structured (factorization) assumptions required to achieve low
computational cost

▸ calibrated uncertainty can be added at low cost, from regularity of
collected numbers

▸ information can be shared between related computations through
covariance models

18 ,

Nonlinear Optimization
(just a quick aside)

f ∶ RN _R 0
!=∇f(x∗)

∇f

x0

min x∗

19 ,

BFGS is a filter
just a marginal remark [Hennig & Kiefel, ICML/JMLR 2013]

−2 −1 0 1 2

0

1

2

x1

x
2

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1/2(x − xt)⊺A(xt)(x − xt)
xt+1 = xt − αHM∇f(xt) ≈ xt − αA−1∇f(xt)

20 ,

BFGS is a filter
just a marginal remark [Hennig & Kiefel, ICML/JMLR 2013]

−2 −1 0 1 2

0

1

2

x1

x
2

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1/2(x − xt)⊺A(xt)(x − xt)
xt+1 = xt − αHM∇f(xt) ≈ xt − αA−1∇f(xt)

20 ,

BFGS is a filter
just a marginal remark [Hennig & Kiefel, ICML/JMLR 2013]

−2 −1 0 1 2

0

1

2

x1

x
2

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1/2(x − xt)⊺A(xt)(x − xt)
xt+1 = xt − αHM∇f(xt) ≈ xt − αA−1∇f(xt)

20 ,

BFGS is a filter
just a marginal remark [Hennig & Kiefel, ICML/JMLR 2013]

−2 −1 0 1 2

0

1

2

x1

x
2

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1/2(x − xt)⊺A(xt)(x − xt)
xt+1 = xt − αHM∇f(xt) ≈ xt − αA−1∇f(xt)

20 ,

BFGS is a filter
just a marginal remark [Hennig & Kiefel, ICML/JMLR 2013]

−2 −1 0 1 2

0

1

2

x1

x
2

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1/2(x − xt)⊺A(xt)(x − xt)
xt+1 = xt − αHM∇f(xt) ≈ xt − αA−1∇f(xt)

20 ,

Global Optimization

f ∶ RN _R 0
!=∇f(x∗)

f

D
min x∗

21 ,

Bayesian Optimization
using a GP surrogate [Kushner, 1964; Jones, Schonlau, Welch, 1998]

−4 −2 0 2 4

−2

0

2

x

f

22 ,

Bayesian Optimization
using a GP surrogate [Kushner, 1964; Jones, Schonlau, Welch, 1998]

−4 −2 0 2 4

−2

0

2

x

f

22 ,

Local Objectives
Expected Improvement and Probability of Improvement [Jones, Schonlau, Welch, 1998; Lizotte, 2008]

−4 −2 0 2 4

−2

0

2

x

f

▸ p(f(x) < η) Probability of Improvement [Lizotte, 2008]
▸ Ep[min(0, η − f(x))] Expected Improvement [Jones et al., 1998]

23 ,

Probabilistic Objectives
Entropy Search [Hennig & Schuler, 2012]

▸ p(f(x) < η) Probability of Improvement [Lizotte, 2008]
▸ Ep[min(0, η − f(x))] Expected Improvement [Jones et al., 1998]
▸ p[x = arg min(f)] [Hennig & Schuler, 2012]

24 ,

Probabilistic Objectives
Entropy Search [Hennig & Schuler, 2012]

▸ p(f(x) < η) Probability of Improvement [Lizotte, 2008]
▸ Ep[min(0, η − f(x))] Expected Improvement [Jones et al., 1998]
▸ p[x = arg min(f)] [Hennig & Schuler, 2012]

24 ,

Probabilistic Objectives
Entropy Search [Hennig & Schuler, 2012]

−4 −2 0 2 4

−4

−2

0

2

x

f

▸ E[∆H[p(x = arg min(f))]]
▸ expected information gain about location of minimum
▸ e.g. combine with evaluation cost to get cost-efficient exploration

[K. Swersky, J. Snoek, R. Adams, 2013]
24 ,

Automated Machine Learning
[M. Feurer, A. Klein, Katharina Eggensperger, J. Springenberg, M. Blum, F. Hutter, AutoML@ICML 2015]

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

AutoML
system

ML framework

{Xtrain, Ytrain,
Xtest, b, L}

meta-
learning

data pre-
processor

feature
preprocessor

classifier
build

ensemble
Ŷtest

Bayesian optimizer

Figure 1: auto-sklearn workflow: our approach to AutoML. We add 2 components to Bayesian hyperparameter
optimization of a ML framework: meta-learning for initializing Bayesian optimization and automated ensemble
construction from configurations evaluated by Bayesian optimization.

experimented with numerically optimizing these weights, but found this fine-grained optimization to
overfit to the validation set. Instead, the previous method of ensemble selection [24] worked very
well: starting from an empty set E, greedily add models to E (with uniform weight, but allowing for
repetitions) to optimize ensemble performance (Procedure 1 in the supplementary material provides
pseudocode). Figure 1 summarizes the overall workshop of an AutoML system including both of our
improvements.

3 A Practical Automated Machine Learning System

data
preprocessor

estimatorfeature
preprocessor classifier

AdaBoost· · ·RF kNN

estimatorslearning rate max. depth

preprocessing

· · ·NonePCA fast ICA

rescaling

· · · min/maxstandard

imputation

most freq. mean median

balancing

weighting None

Figure 2: Structured configuration space. Squared boxes denote
parent hyperparameters whereas boxes with rounded edges are leaf
hyperparameters. Grey colored boxes mark active hyperparame-
ters which form an example configuration and machine learning
pipeline. Each pipeline comprises one feature preprocessor, clas-
sifier and up to three data preprocessor methods plus respective
hyperparameters.

To study the performance of our new
AutoML methods based on a state-of-
the-art machine learning framework,
we implemented a new AutoML sys-
tem based on scikit-learn [6], one of
the best known and most widely used
machine learning libraries. scikit-
learn offers a large range of well es-
tablished and efficiently-implemented
machine learning algorithms and is
easy to use for both experts and non-
experts. Due to its relationship to
scikit-learn, we dub our resulting Au-
toML system auto-sklearn.

Figure 2 depicts auto-sklearn’s over-
all components. It comprises 16 clas-
sification algorithms, 11 preprocess-
ing methods, and 3 data preprocessing
methods, each of them parameterized,
giving rise to a hyperparameter space of 132 hyperparameters with mostly conditional hyperparame-
ters (hyperparameters that are only active if their respective component is selected); our Bayesian
optimizer SMAC [8] can handle this conditionality natively. All of these components are described in
more detail in Section A of the supplementary material.

The 16 well-established classification algorithms in auto-sklearn are depicted in Table ??. They fall
into different categories, such as general linear models (3 algorithms), support vector machines (2),
discriminant analysis (2), nearest neighbors (1), naı̈ve Bayes (3), decision trees (1) and ensemble
methods (4). In contrast to Auto-WEKA [2], we focused our configuration space on base classifiers
and did not include meta-models (such as Boosting and Bagging with arbitrary base classifiers)
or ensemble methods with several different arbitrary base classifiers (such as voting and stacking
with up to 5 base classifiers in [2]). While these ensembles increased Auto-WEKA’s number of
hyperparameters by almost a factor of five (to 786), auto-sklearn “only” features 132 hyperparameters.
We instead construct ensembles using our new method from Section 2.2. Compared to Auto-WEKA’s
solution, this is much more data-efficient: in Auto-WEKA, evaluating the performance of an ensemble
with 5 components requires the construction and evaluation of 5 models; in constrast, in auto-sklearn,
ensembles come for free, and it is also possible to mix and match models evaluated at arbitrary times
during the optimization.

Preprocessing methods in auto-sklearn, depicted in Table ??, comprise data preprocessors (which
change the feature values and which are always used when they apply) and feature preprocessors
(which change the actual set of features, and only one of which [or none] is used). Data preprocessing

4

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

(a) Classifiers on dataset sick (dataset id 38) (b) Classifiers on dataset kropt (dataset id 184)

Figure 4: Performance of different subspaces compared to auto-sklearn over time. We show test performance
over time for optimizing three classifiers with all preprocessing methods separately with optimizing the joint
space. A plot with all classifiers can be found in Section G of the supplementary material. On the two datasets a
different method works best (kernel SVM and random forests). Whereas auto-sklearn is inferior in the beginning
but in the end achieves a close performance as the best method on this dataset.

showed the most robust performance, and SVMs showed strong peak performance for some datasets.
Besides seeing a lot of strong and diverse classifiers, there are also several models which could
not compete: The decision tree, passive aggressive, kNN, Gaussian NB and QDA were statistically
significantly inferior to the best classifier on all 13 datasets. Finally, the table clearly shows that no
single method was the best choice for all datasets. As also visualized for two example datasets in
Figure 4, optimizing the joint configuration space of auto-sklearn led to the most robust performance.
A plot of ranks over time (Figure 5 in the supplementary material) quantifies this across all 13 datasets,
showing that auto-sklearn starts with reasonable but not optimal performance and effectively searches
its more general configuration space to converge to the best overall performance over time.

Table 5 compares the results of the various preprocessor methods against auto-sklearn. As for the
comparison of classifiers above, auto-sklearn showed very robust performance: On 10 of the 13
datasets there was no statistically significant difference between it and the single best preprocessor.
Surprisingly, disabling preprocessing worked best on 4 of the 13 datasets and was not statistically
significantly worse than the best on another 4 datasets. Nevertheless, it was still prone to outliers
with poor performance (as for dataset 293, where its test error was more than 7 times larger than the
best). Our own experience in the human track of the AutoML challenge also showed that in some
cases aggressive feature selection is crucial for strong performance.

7 Discussion and Conclusion

We have demonstrated that our new auto-sklearn system performs favourably against the previous
state of the art in AutoML, and that our meta-learning and ensemble improvements for AutoML
substantially improve its efficiency and robustness further. This finding is backed by the fact that
auto-sklearn won the first place in the auto-track of ChaLearn’s ongoing AutoML challenge. In this
paper, we have not evaluated the use of auto-sklearn for interactive machine learning with an expert
in the loop and weeks of CPU power, but we note that that mode has also led to a third place in the
human track of the same challenge. As such, we believe that auto-sklearn is a very promising system
for use by both machine learning novices and experts. We will release the source code of auto-sklearn
under an open source license.

Our auto-sklearn system also has some shortcomings, which we would like to remove in future work.
As one example, we have not yet tackled regression or semi-supervised problems. Most importantly,
though, the focus on scikit-learn implied a focus on small to medium-sized datasets, and an obvious
direction for future work will be to apply our new AutoML methods to modern deep learning systems
that yield state-of-the-art performance on large datasets; we expect that in that domain especially
automated ensemble construction will lead to tangible performance improvements over Bayesian
optimization.

8

25 ,

Bayesian Optimization is usually sort of as a “top-level” method,
because it can be very expensive.
Numerical methods must be fast.

But Bayesian Optimization can still help in low-level computations!

26 ,

Optimization with Noisy Gradients
A huge Problem in ML

▸ xt+1 ^xt − αt∇f(xt)

▸ not invariant under even linear transformations

x_Ax ↝ ∇f(x)_A−1∇f(x)
f(x) = 9.81

m

s2
⋅ h(x) = 4 473

kJ

kg
(@ 456m) ∇f(x) = 5

J

kg ⋅m
f(x) = 32.19

ft

s2
⋅ h(x) = 30.31

Cal

oz
(@ 1496ft) ∇f(x) = 1.03 ⋅ 10−5 Cal

oz ⋅ ft

27 ,

Optimization with Noisy Gradients
A huge Problem in ML

▸ xt+1 ^xt − αt∇f(xt)
▸ not invariant under even linear transformations

x_Ax ↝ ∇f(x)_A−1∇f(x)
f(x) = 9.81

m

s2
⋅ h(x) = 4 473

kJ

kg
(@ 456m) ∇f(x) = 5

J

kg ⋅m
f(x) = 32.19

ft

s2
⋅ h(x) = 30.31

Cal

oz
(@ 1496ft) ∇f(x) = 1.03 ⋅ 10−5 Cal

oz ⋅ ft

27 ,

Line Searches
choosing meaningful step-sizes, at very low overhead [Wolfe, SIAM Review, 1969]

0 0.2 0.4 0.6 0.8 1 1.2 1.4

5.5

6

6.5

À

Á

Â
Ã

Ä

Ï

distance t in line search direction

fun
ctio

nva
lue

f
(t)

▸ Wolfe conditions: accept when

f(t) ≤ f(0) + c1tf ′(0) (W-I) and f ′(t) ≥ c2f ′(0) (W-II)

28 ,

What about Noisy Gradients?
stochastic gradient descent

▸ mini-batching gives noisy gradients

L(x) ∶= 1

M

M∑
i=1 `(x, yi) ≈

1

m

m∑
j=1 `(x, yj) =∶ L̂(x) m≪M.

▸ for iid. batches, noise is approximately Gaussian

L̂(x) ≈ L(x) + ε ε ∼ N [0,O (N −m
m

)])

29 ,

Building a Probabilistic Line Search
Step 1: robust surrogate [Mahsereci & Hennig, in review, arXiv 1502.02846]

0 2 4

0

5

x

p(f)

0 2 4

−5
0

5

x

p(∂f)

0 2 4 6

−5
0

5

x

∂3µ(f)

0 2 4 6
−10
−5
0

5

x

∂2µ(f)

p(f) = GP(f(t),0;k) k(t, t′) = [1/3min3(t, t′) + 1/2∣t − t′∣min2(t, t′)]
▸ robust cubic spline posterior

30 ,

Building a Probabilistic Line Search
Step 2: Bayesian Optimization for Exploration [Mahsereci & Hennig, in review, arXiv 1502.02846]

5.5

6

6.5

t

f
(t)

▸ analytically compute at most N local minima
▸ choose the one maximizing expected improvement

31 ,

Building a Probabilistic Line Search
Step 3: Probabilistic Wolfe Termination Conditions [Mahsereci & Hennig, in review, arXiv 1502.02846]

f(t) ≤ f(0) + c1tf ′(0) (W-I) and

f ′(t) ≥ c2f ′(0) (W-II)

[at
bt
] = [1 c1t −1 0

0 −c2 0 1
]
⎡⎢⎢⎢⎢⎢⎢⎢⎣

f(0)
f ′(0)
f(t)
f ′(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
≥ 0.

p(at, bt) = N ([at
bt
] ; [ma

t

mb
t
] , [Caat Cabt

Cbat Cbbt
]) ,

with ma
t = µ(0) − µ(t) + c1tµ′(0) and mb

t = µ′(t) − c2µ′(0)
and Caat = k̃00 + (c1t)2 k̃∂ ∂

00 + k̃tt + 2[c1t(k̃∂00 − k̃∂ 0t) − k̃0t]
Cbbt = c22 k̃∂ ∂

00 − 2c2 k̃∂ ∂
0t + k̃∂ ∂

tt

Cabt = Cbat = −c2(k̃∂00 + c1t k̃∂ ∂
00) + (1 + c2) k̃∂ 0t + c1t k̃∂ ∂

0t − k̃∂tt.
32 ,

Probabilistic Line Searches
fast univariate Bayesian optimization [Mahsereci & Hennig, in review, arXiv 1502.02846]

0

1

p
a
(t)

−101ρ
(t)

0

1

p
b
(t)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2
0.4
0.6
0.8
1

distance t in line search direction

p
W

ol
fe
(t) weak

strong

À Á Â ÃÄ Ï

5.5

6

6.5

f
(t)

▸ Wolfe conditions: accept when

f(t) ≤ f(0) + c1tf ′(0) (W-I) and f ′(t) ≥ c2f ′(0) (W-II)

▸ Probabilistic Wolfe conditions: accept when p(W-I ∧W-II) > 1 − ε
33 ,

Probabilistic Line Searches in Action
some curated snapshots [Mahsereci & Hennig, in review, arXiv 1502.02846]

0 0.5 1 1.5
0

1

t – constraining

p
W

ol
fe
(t
)

−0.2

0

0.2

f
(t
)

σf = 0.0028

σf′ = 0.0049

0 2 4
0

1

t – extrapolation

−2

0

2

σf = 0.28

σf′ = 0.0049

0 0.5 1 1.5
0

1

t – interpolation

−0.2

0

0.2

σf = 0.082

σf′ = 0.014

0 0.5 1 1.5
0

1

t – immediate accept

−0.5

0

0.5

σf = 0.17

σf′ = 0.012

0 0.5 1 1.5
0

1

t – high noise interpolation

−0.2

0

0.2

σf = 0.24

σf′ = 0.011

34 ,

Forget about Learning Rates
probabilistic line searches automatically tune SGD [M. Mahsereci & P.H., in review, arXiv 1502.02846]

10−3 10−1 101

0.6

0.7

0.8

0.9

intial learning rate

te
st

er
ro

r
CIFAR10 2layer neural net

SGD fixed α SGD decaying α Line Search

10−3 10−1 101
10−2

10−1

100

intial learning rate

MNIST 2layer neural net

0 2 4 6 8100 2 4 6 810

epoch
0 2 4 6 810

0.6

0.8

1

te
st

er
ro

r

0 2 4 6 8100 2 4 6 810

epoch
0 2 4 6 810

0

0.2

0.4

0.6

0.8

1

35 ,

Probabilistic Numerics
— the big picture —

▸ Computation is Inference. Performing a computation means collecting
information about the value of a latent quantity

▸ some basic algorithms are equivalent to Gaussian MAP inference
▸ Gaussian Quadrature rules for Integration
▸ Runge-Kutta solvers for ODEs
▸ Conjugate Gradients for linear algebra
▸ BFGS et al. for nonlinear optimization

▸ probabilistic formulations of computation offer opportunities for gains
in efficiency and functionality

Do not think of numerical sub-routines as black boxes. They are active
learning machines, and a primary source of efficiency gains.

36 ,

Probabilistic Numerics
— applications —

▸ sampling for visualization
▸ customized numerics using structured priors to add information
▸ multi-task numerics using covariance models to share information
▸ uncertainty propagation using message passing

▸ numerical methods for noisy inputs
▸ identification of error / failure sources

ML has focussed on uncertainty from data;
it is time to consider uncertainty from computation.

37 ,

Probabilistic Numerics
— a young community —

Uncertainty over the result of a computation at runtime
is an exciting paradigm, with a wealth of applications

and many, even fundamental, open questions.

Join us at
http://probabilistic-numerics.org

See you soon at a PN workshop?

38 ,

	anm0:
	anm1:
	anm2:
	anm3:
	anm4:
	anm5:
	anm6:
	anm7:
	anm8:
	anm9:
	anm10:
	anm11:
	anm12:
	anm13:
	anm14:
	anm15:

