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What about ML computations?
Contemporary computational tasks are more challenging

What happens with
▸ a neural net if we stop the “training” of a neural network after four

steps of sgd?
▸ . . . on only 1% of the data set?
▸ a GP regressor if we stop the Gauss-Jordan elemination after three

steps?
▸ a DP mixture model if we only run MCMC for ten samples?
▸ a robotic controller built using all these methods?

As data-sets becomes infinite, ML models increasingly complex,
and their applications permeate our lives,

we need to model effects of approximations more explicitly
to achieve fast, reliable AI.
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Machine learning methods are chains of numerical computations
▸ linear algebra (least-squares)
▸ optimization (training & fitting)
▸ integration (MCMC, marginalization)
▸ solving differential equations (RL, control)

Are these methods just black boxes on your shelf?
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Numerical methods perform inference
an old observation [Poincaré 1896, Diaconis 1988, O’Hagan 1992]

A numerical method
estimates a function’s latent property

given the result of computations.

integration estimates ∫ ba f(x)dx given {f(xi)}
linear algebra estimates x s.t. Ax = b given {As = y}

optimization estimates x s.t. ∇f(x) = 0 given {∇f(xi)}
analysis estimates x(t) s.t. x′ = f(x, t), given {f(xi, ti)}

▸ computations yield “data” / “observations”
▸ non-analytic quantities are “latent”
▸ even deterministic quantities can be uncertain.
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If computation is inference, it should be possible to build
probabilistic numerical methods

that take in probability measures over inputs,
and return probability measures over outputs,

which quantify uncertainty arising from the uncertain input
and the finite information content of the computation.

i compute o
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Classic methods identified as maximum a-posteriori
probabilistic numerics is anchored in established theory

quadrature [Diaconis 1988]
Gaussian quadrature Gaussian process regression

linear algebra [Hennig 2014]
conjugate gradients Gaussian conditioning

nonlinear optimization [Hennig & Kiefel 2013]

BFGS autoregressive filtering

ordinary differential equations [Schober, Duvenaud & Hennig 2014]
Runge-Kutta Gauss-Markov extrapolation
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Integration

F = ∫ b

a
f(x)dx

f ∫ F
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Integration
a toy problem
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f(x) = exp (− sin2(3x) − x2) F = ∫ 3

−3 f(x)dx =?

≤ exp(−x2) ∫ exp(−x2) = √
π
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Monte Carlo
(almost) no assumptions, stochastic convergence
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≈ Z 1

N

N∑
i

f(xi)
g(xi) = F̂ xi ∼ g(x)

Z
var F̂ = varg(f/g)

N

▸ adding randomness enforces stochastic convergence
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The probabilistic approach
integration as nonparametric inference [P. Diaconis, 1988, T. O’Hagan, 1991]

p(f) = GP(f ; 0, k) k(x,x′) = min(x,x′) + b
p(z) = N (z;µ,Σ) ⇒ p(Az) = N (Az;Aµ,AΣA⊺)

p(∫ b

a
f(x)dx) = N [∫ b

a
f(x)dx;∫ b

a
m(x)dx,∬ b

a
k(x,x′)dxdx′]

= N (F ; 0,−1/6(b3 − a3) + 1/2[b3 − 2a2b + a3] − (b − a)2c)
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Active Collection of Information
choise of evaluation nodes [T. Minka, 2000]

xt = arg min [varp(F ∣x1,...,xt−1)(F )]

active node placement for maximum expected error reduction
gives regular grid.
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Posterior Mean is a Linear Spline. . .
A classic numerical method, derived as a learning machine [P. Diaconis, 1988, T. O’Hagan, 1991]
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p(f ∣y,x) = GP(f ;my, ky) k(x,xi) = min(x,xi) + b
my(x) =∑

i

k(x,xi)αi αi = kXX−1y

Ep(f ∣y)[F ] = ∫ my(x) dx = N−1∑
i=1 (xi+1 − xi)1

2
(f(xi+1) + f(xi))
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We just re-discovered the Trapezoid Rule!
A classic numerical method, derived as a learning machine [P. Diaconis, 1988, T. O’Hagan, 1991]
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▸ The trapezoid rule is the maximum a-posteriori estimate for F under a
Wiener process prior on f .

▸ Node placement by information maximization under this prior.
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▸ introducing random numbers into a deterministic problem may not be
a good strategy

▸ recipe for a probabilistic numerical method estimating x from y(t):
▸ choose model p(x, y(t))
▸ choose action rule / policy / strategy[t1, . . . , ti−1, y(t1), . . . , y(ti−1)]_ ti

▸ some classic numerical methods can be derived entirely from an
inference perspective, using classic statistical methods

▸ the trapezoid rule is a MAP estimate under a Wiener process prior on
the integrand; regular node placement arises from
information-greediness

▸ the probabilistic interpretation as such does not ensure the posterior
distribution is well calibrated
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Customized Numerics
machine learning providing new numerics [Hennig, Osborne, Girolami, RSPA 2015]

k(x,x′) = exp(−(x − x′)2
2λ2

)
Encodes

▸ smooth (infinitely differentiable) f▸ exponentially decaying Fourier power spectrum
But ignores

▸ non-stationarity▸ positivity
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No Such Thing as a Free Lunch!
incorrect assumptions give arbitrarily bad performance [Hennig, Osborne, Girolami, RSPA 2015]
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Computations collect information about a latent quantity.
The more valid prior information is available, the cheaper the

computation—if the algorithm uses the prior information!
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Model Mismatch can be Detected at Runtime
“a numerical conscience”

−2 0 2
0

0.2
0.4
0.6
0.8
1

f
(x)

−2 0 2
0

0.2
0.4
0.6
0.8

f
(x)

10−10
10−5
100

F
−F̂

10−10
10−5
100

F
−F̂

100 101 102 103
−400−2000
200
400

# samples
r

100 101 102 103
−400−2000
200
400

# samples

r

r = log
Ef̃ [p(f̃(x))]
p(f(x)) = (f(x) − µ(x))⊺K−1(f(x) − µ(x)) −N

16 ,



▸ including tangible prior information in the prior can give tailored
numerics that drastically improve computational efficiency

▸ in contrast to physical data sources, in numerical problems, prior
assumptions can be rigorously verified, because the problem is stated
in a formal (programming) language!

▸ incorrect prior assumptions can catastrophically affect performance
▸ model assumptions can be adapted at runtime, using established

statistical techniques, e.g. “type-II maximum likelihood”
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So why is everyone (in ML) using MCMC?
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Warped Sequential Active Bayesian Integration (WSABI)
[Gunther, Osborne, Garnett, Hennig, Roberts, NIPS 2014]

√
f(x) ⋅ exp(−x2/2) ∼ GP [0, k = exp(−1/2(x − x′)⊺Λ−1(x − x′))]

▸ encodes positivity
▸ encodes nonstationarity
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Warped Sequential Active Bayesian Integration (WSABI)
[Gunther, Osborne, Garnett, Hennig, Roberts, NIPS 2014]
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▸ select evaluation nodes at arg max var[f(x) ⋅ exp(−x2)]
▸ this scales to higher input dimensionality

more formal analysis in arXiv 1410.2392 [Oates et al.] & 1506.02681 [Briol et al.]
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Probabilistic Numerics Need Not Be Expensive
WSABI is time-competititive with MCMC [Gunther, Osborne, Garnett, Hennig, Roberts, NIPS 2014]
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end of Integration part

▸ computation is inference
▸ there is a deep formal connection between basic numerical methods

and basic statistical models
▸ ignoring salient prior information causes drastic computational cost

increase. Black boxes may be convenient, but they are not efficient
▸ machine learning can help numerics, and vice versa
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Ordinary Differential Equations

x′(t) = f(x(t), t) x(t0) = x0 x ∶ R_RN

f

x0

ode x
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Runge-Kutta Methods
iterative linear extrapolation

t0 t0 + c1 t0 + c2 t0 + h
t

x
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ys+1 = f (1x0 +∑s
i wsiyi, t0 + cs)

x̂(t0 + h) = 1x0 +∑i biyi

▸ RK choose (c,w, b) such that ∥x̂(t0 + h) − x(t0 + h)∥ = O(hp)
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Gauss-Markov inference on ODEs
a probabilistic model matching Runge-Kutta [Schober, Duvenaud, Hennig, NIPS 2014]
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Gauss-Markov inference on ODEs
a probabilistic model matching Runge-Kutta [Schober, Duvenaud, Hennig, NIPS 2014]

▸ Linear extrapolation suggests Gaussian process model▸ polynomial form suggests Wiener state-space model

dz = F dt +Ldω
d
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▸ inference through filtering 24 ,



Calibrating Uncertainty
within the parametrized class

▸ posterior mean µ ∣y = kK−1y invariant under k_ θ2k

▸ posterior covariance k ∣y = k − kK−1k scaled by θ2

▸ connection to local error estimation in existing methods

25 ,



▸ as in integration, classic families of ODE solvers can be interpreted as
MAP inference

▸ for each classic solver, whole family of probabilistic solvers with same
point estimate, different uncertainties

▸ probabilistic solvers need not be expensive. Can even have exact
same cost as classic methods
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Visualizing Computational Uncertainty
Neural Pathways [M. Schober, N. Kasenburg, A. Feragen, P.H., S. Hauberg, MICCAI 2014]
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Propagating Uncertainty
geodesics on an uncertain Riemannian metric [Hauberg, Schober, Liptrot, P.H., Feragen, MICCAI 2015]
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Fig. 2. Top row: The density of a single GP geodesic under the random metric. The
density heatmap is projected into axis-aligned slices; the background image is the
expected metric trace; and the outline is where at least one expert annotated the CST.
Bottom row: Standard deviation of �d at the same slices as the top row.

Dijkstra in CST GP in CST Dijkstra in ILF GP in ILF

Fig. 3. Example shortest paths in the CST and ILF using both Dijkstra’s algorithm
on a deterministic metric, and a GP solver with a random Riemannian metric.
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Fig. 4. Agreement with at least one expert in the Catani atlas as estimated by Dijkstras
algorithm and the GP solver.
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▸ Shortest paths (geodesics) on Riemannian manifold of metric M obey

x′′(t) = −1/2M−1(x(t)) ⎡⎢⎢⎢⎢⎣
∂
Ð⇀
M(x(t))
∂x(t)

⎤⎥⎥⎥⎥⎦
⊺
(x′(t)⊗x′(t)) = f(x(t), x′(t), t)

▸ what if M N (m,V ) is uncertain (inferred from data)?
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geodesics on an uncertain Riemannian metric [Hauberg, Schober, Liptrot, P.H., Feragen, MICCAI 2015]
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Uncertainty Across Composite Computations
interacting information requirements [Hennig, Osborne, Girolami, Proc. Royal Society A 2015]
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▸ numerical methods able to deal with uncertain (probabilistic) inputs,
and returning uncertain (probabilistic) outputs, allow control of
computational effort▸ (this is not the same as probabilistic programming!)
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Summary
Probabilistic Numerics – Part I [Hennig, Osborne, Girolami, Proc. Royal Society A 2015]

The probabilistic view of computation
▸ computation is (active) inference
▸ several classic method can be interpreted precisely as MAP inference

▸ Gaussian Quadrature—Gaussian process regression
▸ Runge-Kutta Methods—Autoregressive Filtering
▸ [more to come on Monday]

▸ correct prior information can reduce runtime
▸ prior assumptions can be tested at runtime
▸ probabilistic uncertainty can be propagated between different

numerical computations, allowing control of cost

“[PN is] a re-emerging area of very active research”
Z. Ghahramani, Nature 521, 452–459 (28 May 2015)

http://probabilistic-numerics.org
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— Backup —
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Monte Carlo is not all that Different
MC as a ‘cautious’ limit

p(f) = GP(f ; 0;kOUλ + c) kOUλ (x,x′) = exp(− ∣x − x′∣
λ

)
λ_∞ ⇒ k(x,x′)△= ∣x − x′∣ _ trapezoid rule

λ_0 ⇒ k(x,x′)_ δ(x − x′) _averaging
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Monte Carlo is not all that Different
MC as a ‘cautious’ limit

MC is optimal for totally unstructured (but integrable) f . But
▸ random node placement is not necessary!

Introducing randomness to a deterministic problem is generally a bad
idea.

▸ no integrand is totally unstructured. Prior knowledge is available!
Computations should use as much available prior information as
possible.
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What is a Random Number?
What is a sequence of random numbers?

▸ 662244111144334455553366666666

dice, doubled

▸ 169399375105820974944592307816

41-70th digits of π

▸ 712904263472610590208336044895

von Neumann method, seed 908344

▸ 100011111101111111100101000001

bits from G. Marsaglia’s ‘diehard CD’

▸ 01110000011100100110111101100011

deterministic sequence,

corrupted by horizontal coin drop from unknown height

▸ for use in Monte Carlo, the important property is freedom from
patterns (because it implies anytime unbiasedness)

▸ in fact, use for MC only really requires the right density, disorder is
just helpful for the argument

▸ for use in cryptography, the important property is unpredictability
▸ randomness is a philosophically dodgy concept
▸ uncertainty is a much clearer idea

http://www.stat.fsu.edu/pub/diehard/
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How Expensive is a Computation?
Ex: Riemannian Statistics [Schober, Hauberg,Lawrence, Hennig; in prep.]
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▸ Shortest paths (geodesics) on Riemannian manifold of metric M obey

x′′(t) = −1/2M−1(x(t)) ⎡⎢⎢⎢⎢⎣
∂
Ð⇀
M(x(t))
∂x(t)

⎤⎥⎥⎥⎥⎦
⊺
(x′(t)⊗x′(t)) = f(x(t), x′(t), t)

▸ Karcher mean µ of data set {xi}i=1,...,N is point minimizing∑Ni Distance(µ,xi)
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How Expensive is a Computation?
Ex: Riemannian Statistics [Schober, Hauberg,Lawrence, Hennig; in prep.]
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▸ to find Karcher mean, do gradient descent from initial guess µ0

µk+1 = µk − α∇µ N∑
i

Distance(µ,xi)
▸ requires solving N initial value problems, over and over.
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How Much Information is Needed?
Ex: Riemannian Statistics [Schober, Hauberg,Lawrence, Hennig; in prep.]
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