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MACHINE LEARNING AS
PROBABILISTIC MODELLING

» A model describes data that one could observe
from a system

» If we use the mathematics of probability
theory to express all forms of uncertainty and
noise associated with our model...

» ...then inverse probability (i.e. Bayes rule)
allows us to infer unknown quantities, adapt
our models, make predictions and learn from
data.
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Everything follows from two simple rules:
Sum rule: P(x) =3 P(x,y)
Product rule:  P(x,y) = P(x)P(y|x)

Learning:
P(D|O. m\P(0|\m P(D|0,m) likelihood of parameters € in model m
P(9|D, m) = ( | ’ ) ( | ) P(0|m) prior probability of 6
P(Dlm) P(0|D,m)  posterior of 0 given data D
Prediction:

P(x|D,m) = /P(x]Q,D,m)P(Qﬂ),m)dG

Model Comparison:
P(D|m)P(m
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Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

>

>

>

Forecasting

Decision making

Learning from limited, noisy, and missing data
Learning complex personalised models

Data compression

Automating scientific modelling, discovery, and
experiment design
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v

Probabilistic programming

v

Bayesian optimisation

v

Rational allocation of computational resources

v

Probabilistic models for efficient data compression
The automatic statistician

v

Zoubin Ghahramani 6/24



Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
Solution:

» Develop Turing-complete Probabilistic Programming
Languages for expressing probabilistic models as
computer programs that generate data (i.e. simulators).

» Derive Universal Inference Engines for these languages
that sample over program traces given observed data.

Example languages: Church, Venture, Anglican, Stochastic
Python*, ones based on Haskell*, Julia*

Example inference algorithms: Metropolis-Hastings MCMC,
variational inference, particle filtering, slice sampling*, particle
MCMC, nested particle inference*, austerity MCMC*
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statesmean = [-1, 1, ©] # Emission parameters.

initial = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].
trans = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]),

Categorical([0.15, 0.15, ©.7])] # Trans distr for each state.
data = [Nil, .9, ©.8, 0.7, @, -0.025, -5, -2, -0.1, @, 6.13]

@model hmm begin # Define a model hmm.

states = Array(Int, length(data))

@assume(states[1] ~ initial)

for i = 2:length(data)
@assume(states[i] ~ trans[states[i-1]])
@observe(data[i] ~ Normal(statesmean[states[i]], ©.4))

end

@predict states

end

An example probabilistic pro-
gram in Julia implementing a
3-state hidden Markov model
(HMM).

iy

Probabilistic programming could revolutionise scientific modelling.
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Problem: Global optimisation of black-box functions that are
expensive to evaluate
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Problem: Global optimisation of black-box functions that are
expensive to evaluate

Solution: treat as a problem of sequential decision-making and
model uncertainty in the function.

This has myriad applications, from robotics to drug design, to
learning neural networks, and speeding up model search in the

~automatic statistician.
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Figure 4. Classification error of a 3-hidden-layer neural network
constrained to make predictions in under 2 ms.

(work with J.M. Hernandez-Lobato, M.A. Gelbart, M.W. Hoffman, & R.P. Adams)
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Problem: Many problems in machine learning and Al require
the evaluation of a large number of alternative models on
potentially large datasets. A rational agent needs to consider the
tradeoff between statistical and computational efficiency.
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RATIONAL ALLOCATION OF COMPUTATIONAL
RESOURCES

Problem: Many problems in machine learning and Al require
the evaluation of a large number of alternative models on
potentially large datasets. A rational agent needs to consider the
tradeoff between statistical and computational efficiency.

Solution: Treat the allocation of computational resources as a
problem in sequential decision-making under uncertainty.
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Movie Link
(work with James R. Lloyd)
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http://mlg.eng.cam.ac.uk/lloyd/temp3/c-ft-s-03.mp4

Problem: We often produce more data than we can store or transmit.
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PROBABILISTIC DATA COMPRESSION

Problem: We often produce more data than we can store or transmit.

Solution:

» Use the same resources more effectively by predicting the data
with a probabilistic model.

» Produce a description of the data that is (on average) cheaper to
store or transmit.

Example: "PPM-DP" is based on a probabilistic model that learns
and predicts symbol occurences in sequences. It works on arbitrary
files, but delivers cutting-edge compression results for human text.

Probabilistic models for human text also have many other
applications aside from data compression, e.g. smart text entry
methods, anomaly detection, sequence synthesis.

(work with Christian Steinruecken and David J. C. MacKay)
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alice29.txt
asyoulik.txt
cp.html
fields.c
grammar.lsp
kennedy.xls
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sum
xargs.1

bib

book1
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THE AUTOMATIC STATISTICIAN

e
Checking

Problem: Data are now ubiquitous; there is great value from
understanding this data, building models and making
predictions... however, there aren’t enough data scientists,
statisticians, and machine learning experts.

Solution: Develop a system that automates model discovery
from data:

» processing data, searching over models, discovering a good
model, and explaining what has been discovered to the user.

Zoubin Ghahramani
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THE AUTOMATIC STATISTICIAN

@& |-G
Checking

» An open-ended language of models
» Expressive enough to capture real-world phenomena. . .
» ...and the techniques used by human statisticians
A search procedure
» To efficiently explore the language of models
A principled method of evaluating models
» Trading off complexity and fit to data
> A procedure to automatically explain the models
» Making the assumptions of the models explicit. . .
» ...in a way that is intelligible to non-experts

v

v

Joubin Ghan(Work with J. R. Lloyd, D.Duvenaud, R.Grosse, and J.B.Tenenbaum)
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Raw data Full model posterior vith extrapolations

1950 1952 1954 1956 1958 1960 1962 1950 1952 1954 1956 1958 1960 1962

Four additive components have been identified in the data
» A linearly increasing function.

> An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

» A smooth function.

» Uncorrelated noise with linearly increasing standard deviation.

Zoubin Ghahramani 17/24



An automatic report for the dataset : 02-solar

‘The Automatic Statistician

Abstract

port was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

Figure 1: po

“The structure search algorithm has identifid cight additive comy the data. The first 4
e Sompenents e 5235 o e s b s o shown bt cofcion o
{eminion (7 values n bl 1 itive components explain 99.7% of the variation
in the data. After the firs 5 components the cross validated mean absolute error (MAE) does not
 more than 0.17%. This suggests that subsequent terms are modelling very short term
tends uncoreltd e of r artfets of he o the

An automatic report for the dataset : 07-call-centre

‘The Automatic Statistician

Abstract
report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.
1 Executive summary
“The raw data and full model posterior with extrapolations are shown in figure |

[TTTIIIT]
[TTTIIIT]

Figure 12 ight)

components cplin 94.5% fhe vristion n he dta 1 she by thecofiint of determination
) values in table 1. The ive companents explain 99.1% of

e e e 4 omponets e o Ve e Sholte cor (MAED dos o s by

‘more than 0.1%. This suggests that ol ery short term trends, uncor.

related noise or are artefacts of the model or search procedure.  Short summarics of the additive

additive components are as fol
o Aconstant
‘A constant. This function applics from 1643 unil 1716,
‘A smooth function. This function applies until 1643 and from 1716 onwards.

© Alinearly increasing function. This function applies unil Feb 1974.
+ A very smooth monotonically increasing function. This function applies from Feb 1974
onwards.

+ A smooth function with marginal standard deviation increasing linearly away from Feb
3 Fe 1974,

. 108 years
1643 and from 1716 onwards,

A rapidiy varying smooth function. This function applies until 1643 and from 1716 on-
wards.

1837, This func-

ton applies unil 1643 and from 1716 onwards.

1964,
« An exactly periodic function with a period of 1.0 years. This function applis until Feb
1974.

‘+ Uncorrelated noise. This function applis unil May 1973 and from Oct 1973 onwards.
« Uncorrelated noise. This function applies from May 1973 until Oct 1973,

. 1952, This func-
tion applics unil 1643 and from 1716 onwards.

« Uncorrelated noise. This function appli from 1643 until 1716.

Model checking statistics are summarised in table 2 in scetion 4. These statstis have revealed

See http://www.automaticstatistician.com
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2in scetion 4. Th
any inconsistencies between the model and observed data.

“The rest of the document i structured as follows. In section 2 the forms of the additive components
described displayed. In section 3

of with his affects the




GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
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» Tweaks can be made to the algorithm to improve accuracy
or interpretability of models produced. . .

.. but both methods are highly competitive at extrapolation
(shown above) and interpolation
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SUMMARY: THE AUTOMATIC STATISTICIAN

» We have presented the beginnings of an automatic
statistician

» Our system
» Defines an open-ended language of models
» Searches greedily through this space
» Produces detailed reports describing patterns in data
» Performs automatic model criticism

» Extrapolation and interpolation performance highly
competitive

» We believe this line of research has the potential to make
powerful statistical model-building techniques accessible
to non-experts
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CONCLUSIONS

Probabilistic modelling offers a framework for building
systems that reason about uncertainty and learn from data,
going beyond traditional pattern recognition problems.

I have reviewed some of the frontiers of research, including:

v

Probabilistic programming

v

Bayesian optimisation

v

Rational allocation of computational resources

v

Probabilistic models for efficient data compression

The automatic statistician

v

Thanks!
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APPENDIX: MODEL CHECKING AND CRITICISM

» Good statistical modelling should include model criticism:
» Does the data match the assumptions of the model?
» For example, if the model assumed Gaussian noise, does a
Q-Q plot reveal non-Gaussian residuals?
» Our automatic statistician does posterior predictive checks,
dependence tests and residual tests

» We have also been developing more systematic
nonparametric approaches to model criticism using kernel
two-sample testing with MMD.

Lloyd, J. R., and Ghahramani, Z. (2014) Statistical Model Criticism using Kernel Two Sample
Tests. http://mlg.eng.cam.ac.uk/Lloyd/papers/kernel-model-checking.pdf
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