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MACHINE LEARNING AS

PROBABILISTIC MODELLING

I A model describes data that one could observe
from a system

I If we use the mathematics of probability
theory to express all forms of uncertainty and
noise associated with our model...

I ...then inverse probability (i.e. Bayes rule)
allows us to infer unknown quantities, adapt
our models, make predictions and learn from
data.
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BAYES RULE

P(hypothesis|data) =
P(data|hypothesis)P(hypothesis)

P(data)

=
P(data|hypothesis)P(hypothesis)∑

h P(data|h)P(h)
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BAYESIAN MACHINE LEARNING

Everything follows from two simple rules:
Sum rule: P(x) =

∑
y P(x, y)

Product rule: P(x, y) = P(x)P(y|x)

Learning:

P(θ|D,m) =
P(D|θ,m)P(θ|m)

P(D|m)

P(D|θ,m) likelihood of parameters θ in model m
P(θ|m) prior probability of θ
P(θ|D,m) posterior of θ given data D

Prediction:
P(x|D,m) =

∫
P(x|θ,D,m)P(θ|D,m)dθ

Model Comparison:

P(m|D) =
P(D|m)P(m)

P(D)
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WHEN IS THE PROBABILISTIC APPROACH

ESSENTIAL?

Many aspects of learning and intelligence depend crucially on
the careful probabilistic representation of uncertainty:

I Forecasting
I Decision making
I Learning from limited, noisy, and missing data
I Learning complex personalised models
I Data compression
I Automating scientific modelling, discovery, and

experiment design
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CURRENT AND FUTURE DIRECTIONS

I Probabilistic programming
I Bayesian optimisation
I Rational allocation of computational resources
I Probabilistic models for efficient data compression
I The automatic statistician
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PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.

Solution:
I Develop Turing-complete Probabilistic Programming

Languages for expressing probabilistic models as
computer programs that generate data (i.e. simulators).

I Derive Universal Inference Engines for these languages
that sample over program traces given observed data.

Example languages: Church, Venture, Anglican, Stochastic
Python*, ones based on Haskell*, Julia*

Example inference algorithms: Metropolis-Hastings MCMC,
variational inference, particle filtering, slice sampling*, particle
MCMC, nested particle inference*, austerity MCMC*

Zoubin Ghahramani 7 / 24



PROBABILISTIC PROGRAMMING

Problem: Probabilistic model development and the derivation
of inference algorithms is time-consuming and error-prone.
Solution:

I Develop Turing-complete Probabilistic Programming
Languages for expressing probabilistic models as
computer programs that generate data (i.e. simulators).

I Derive Universal Inference Engines for these languages
that sample over program traces given observed data.

Example languages: Church, Venture, Anglican, Stochastic
Python*, ones based on Haskell*, Julia*

Example inference algorithms: Metropolis-Hastings MCMC,
variational inference, particle filtering, slice sampling*, particle
MCMC, nested particle inference*, austerity MCMC*

Zoubin Ghahramani 7 / 24



PROBABILISTIC PROGRAMMING
statesmean = [‐1, 1, 0]  # Emission parameters.

initial    = Categorical([1.0/3, 1.0/3, 1.0/3]) # Prob distr of state[1].

trans      = [Categorical([0.1, 0.5, 0.4]), Categorical([0.2, 0.2, 0.6]), 

              Categorical([0.15, 0.15, 0.7])]   # Trans distr for each state. 

data       = [Nil, 0.9, 0.8, 0.7, 0, ‐0.025, ‐5, ‐2, ‐0.1, 0, 0.13] 

@model hmm begin # Define a model hmm.

 states = Array(Int, length(data))

 @assume(states[1] ~ initial)

 for i = 2:length(data)

   @assume(states[i] ~ trans[states[i‐1]])

   @observe(data[i]  ~ Normal(statesmean[states[i]], 0.4))

 end

 @predict states

end

anglicanHMM :: Dist [n]

anglicanHMM = fmap (take (length values) . fst) $ score (length values ‐ 1) 

                                                  (hmm init trans gen) where

   states = [0,1,2]

   init = uniform states

   trans 0 = fromList $ zip states [0.1,0.5,0.4]

   trans 1 = fromList $ zip states [0.2,0.2,0.6]

   trans 2 = fromList $ zip states [0.15,0.15,0.7]

   gen 0 = certainly (‐1)

   gen 1 = certainly 1

   gen 2 = certainly 0

   values = [0.9,0.8,0.7] :: [Double]

   addNoise = flip Normal 1

   score 0 d = d

   score n d = score (n‐1) $ condition d (prob . (`pdf` (values !! n))

                                             . addNoise . (!! n) . snd) 

Example Probabilistic Program for a Hidden Markov Model (HMM)

Julia

HaskellAn example probabilistic pro-
gram in Julia implementing a
3-state hidden Markov model
(HMM).

states[1] states[2] states[3]

data[1] data[2] data[3]

initial trans

statesmean

...

...

Probabilistic programming could revolutionise scientific modelling.
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BAYESIAN OPTIMISATION
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Problem: Global optimisation of black-box functions that are
expensive to evaluate

Solution: treat as a problem of sequential decision-making and
model uncertainty in the function.

This has myriad applications, from robotics to drug design, to
learning neural networks, and speeding up model search in the
automatic statistician.
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BAYESIAN OPTIMISATION
Predictive Entropy Search with Unknown Constraints

tial and decay rate), 2 momentum parameters (initial and
final), 2 dropout parameters (input layer and other layers),
2 other regularization parameters (weight decay and max
weight norm), the number of hidden units in each of the 3
hidden layers, the activation function (RELU or sigmoid).
The network is trained on a using the deepnet package1,
and the prediction time is computed as the average time of
1000 predictions, each for a batch of size 128. The net-
work is trained on the MNIST digit classification task with
momentum-based stochastic gradient descent for 5000 iter-
ations. The objective is reported as the classification error
rate on the validation set. As above, we treat constraint
violations as the worst possible value (in this case a classi-
fication error of 1.0).

Figure 4 shows the results of 50 iterations of Bayesian opti-
mization. In this experiment and the next, the y-axis repre-
sents observed function values, �1 = 0.05, a Matérn 5/2 GP
covariance kernel is used, and GP hyperparameters are in-
tegrated out using slice sampling (Neal, 2000) as in Snoek
et al. (2012). Curves are the mean over 5 independent ex-
periments. We find that PESC performs significantly better
than EIC. However, when the noise level is high, report-
ing the best observation is an overly optimistic metric (due
to “lucky” evaluations); on the other hand, ground-truth is
not available. Therefore, to validate our results further, we
used the recommendations made at the final iteration of
Bayesian optimization for each method (EIC and PESC)
and evaluted the function with these recommended param-
eters. We repeated the evaluation 10 times for each of the 5
repeated experiments to compute a ground-truth score av-
eraged of 50 function evaluations. This procedure yields a
score of 0.45±0.06 for PESC and 0.79±0.03 for EIC (as in
the Figure, constraint violations are treated as a classifica-
tion error of 100%). This result is consistent with Figure 4
in that PESC performs significantly better than EIC, but
also demonstrates that, due to noise, Figure 4 is overly op-
timistic. While we may believe this optimism to affect both
methods equally, the ground-truth measurement provides a
more reliable result and a much clearer understanding of
the classification error attained by Bayesian optimization.

5.5. Tuning Markov chain Monte Carlo

Hybrid Monte Carlo, also known as Hamiltonian Monte
Carlo (HMC), is a popular Markov Chain Monte Carlo
(MCMC) technique that uses gradient information in a nu-
merical integration to select the next sample. However,
using numerical integration gives rise to new parameters
like the integration step size and the number of integration
steps. Following the experimental set up in Gelbart et al.
(2014), we optimize the number of effective samples pro-
duced by an HMC sampler limited to 5 minutes of com-

1https://github.com/nitishsrivastava/deepnet

Figure 4. Classification error of a 3-hidden-layer neural network
constrained to make predictions in under 2 ms.

putation time, subject to passing of the Geweke (Geweke,
1992) and Gelman-Rubin (Gelman & Rubin, 1992) conver-
gence diagnostics, as well as the constraint that the numer-
ical integration should not diverge. We tune 4 parameters
of an HMC sampler: the integration step size, number of
integration steps, fraction of the allotted 5 minutes spent in
burn-in, and an HMC mass parameter (see Neal, 2011). We
use the coda R package (Plummer et al., 2006) to compute
the effective sample size and the Geweke convergence di-
agnostic, and the PyMC python package (Patil et al., 2010)
to compute the Gelman-Rubin diagnostic over two inde-
pendent traces. Following Gelbart et al. (2014), we impose
the constraints that the absolute value of the Geweke test
score be at most 2.0 and the Gelman-Rubin score be at most
1.2, and sample from the posterior distribution of a logistic
regression problem using the UCI German credit data set
(Frank & Asuncion, 2010).

Figure 5 evaluates EIC and PESC on this task, averaged
over 10 independent experiments. As above, we perform a
ground-truth assessment of the final recommendations. The
average effective sample size is 3300± 1200 for PESC and
2300 ± 900 for EIC. From these results we draw a similar
conclusion to that of Figure 5; namely, that PESC outper-
forms EIC but only by a small margin, and furthermore that
the experiment is very noisy.

6. Discussion
In this paper, we addressed global optimization with un-
known constraints. We described existing methods and
discuss their weaknesses. We presented PESC, a method
based on the theoretically appealing expected information
gain heuristic. We showed in Figure 1 that the mathemat-
ical approximations involved in PESC are quite accurate,
and that PESC performs about equally well to a ground
truth method based on rejection sampling. In sections 5.2
to 5.5, we showed that PESC outperforms current methods

(work with J.M. Hernández-Lobato, M.A. Gelbart, M.W. Hoffman, & R.P. Adams)
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RATIONAL ALLOCATION OF COMPUTATIONAL

RESOURCES

Problem: Many problems in machine learning and AI require
the evaluation of a large number of alternative models on
potentially large datasets. A rational agent needs to consider the
tradeoff between statistical and computational efficiency.

Solution: Treat the allocation of computational resources as a
problem in sequential decision-making under uncertainty.
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RATIONAL ALLOCATION OF COMPUTATIONAL

RESOURCES

Movie Link
(work with James R. Lloyd)
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PROBABILISTIC DATA COMPRESSION

Problem: We often produce more data than we can store or transmit.
(E.g. CERN → data centres, or Mars Rover → Earth.)

Solution:

I Use the same resources more effectively by predicting the data
with a probabilistic model.

I Produce a description of the data that is (on average) cheaper to
store or transmit.

Example: "PPM-DP" is based on a probabilistic model that learns
and predicts symbol occurences in sequences. It works on arbitrary
files, but delivers cutting-edge compression results for human text.

Probabilistic models for human text also have many other
applications aside from data compression, e.g. smart text entry
methods, anomaly detection, sequence synthesis.

(work with Christian Steinruecken and David J. C. MacKay)
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PROBABILISTIC DATA COMPRESSION
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THE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

Problem: Data are now ubiquitous; there is great value from
understanding this data, building models and making
predictions... however, there aren’t enough data scientists,
statisticians, and machine learning experts.

Solution: Develop a system that automates model discovery
from data:

I processing data, searching over models, discovering a good
model, and explaining what has been discovered to the user.

Zoubin Ghahramani 15 / 24



THE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

I An open-ended language of models
I Expressive enough to capture real-world phenomena. . .
I . . . and the techniques used by human statisticians

I A search procedure
I To efficiently explore the language of models

I A principled method of evaluating models
I Trading off complexity and fit to data

I A procedure to automatically explain the models
I Making the assumptions of the models explicit. . .
I . . . in a way that is intelligible to non-experts

(work with J. R. Lloyd, D.Duvenaud, R.Grosse, and J.B.Tenenbaum)Zoubin Ghahramani 16 / 24



EXAMPLE: AN ENTIRELY AUTOMATIC ANALYSIS

Raw data

1950 1952 1954 1956 1958 1960 1962
100

200

300

400

500

600

700
Full model posterior with extrapolations

1950 1952 1954 1956 1958 1960 1962
0

100

200

300

400

500

600

700

Four additive components have been identified in the data

I A linearly increasing function.

I An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

I A smooth function.

I Uncorrelated noise with linearly increasing standard deviation.
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EXAMPLE REPORTS

An automatic report for the dataset : 02-solar

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362
Full model posterior with extrapolations

1650 1700 1750 1800 1850 1900 1950 2000 2050
1359.5

1360

1360.5

1361

1361.5

1362

1362.5

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4
additive components explain 92.3% of the variation in the data as shown by the coefficient of de-
termination (R2) values in table 1. The first 6 additive components explain 99.7% of the variation
in the data. After the first 5 components the cross validated mean absolute error (MAE) does not
decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term
trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the
additive components are as follows:

• A constant.
• A constant. This function applies from 1643 until 1716.
• A smooth function. This function applies until 1643 and from 1716 onwards.
• An approximately periodic function with a period of 10.8 years. This function applies until

1643 and from 1716 onwards.
• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-

wards.
• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-

tion applies until 1643 and from 1716 onwards.
• Uncorrelated noise. This function applies from 1643 until 1716.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed
statistically significant discrepancies between the data and model in component 8.

1

An automatic report for the dataset : 07-call-centre

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery
(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data
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Full model posterior with extrapolations
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Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified six additive components in the data. The first 2 additive
components explain 94.5% of the variation in the data as shown by the coefficient of determination
(R2) values in table 1. The first 3 additive components explain 99.1% of the variation in the data.
After the first 4 components the cross validated mean absolute error (MAE) does not decrease by
more than 0.1%. This suggests that subsequent terms are modelling very short term trends, uncor-
related noise or are artefacts of the model or search procedure. Short summaries of the additive
components are as follows:

• A linearly increasing function. This function applies until Feb 1974.
• A very smooth monotonically increasing function. This function applies from Feb 1974

onwards.
• A smooth function with marginal standard deviation increasing linearly away from Feb

1964. This function applies until Feb 1974.
• An exactly periodic function with a period of 1.0 years. This function applies until Feb

1974.
• Uncorrelated noise. This function applies until May 1973 and from Oct 1973 onwards.
• Uncorrelated noise. This function applies from May 1973 until Oct 1973.

Model checking statistics are summarised in table 2 in section 4. These statistics have not revealed
any inconsistencies between the model and observed data.

The rest of the document is structured as follows. In section 2 the forms of the additive components
are described and their posterior distributions are displayed. In section 3 the modelling assumptions
of each component are discussed with reference to how this affects the extrapolations made by the

1

See http://www.automaticstatistician.com
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GOOD PREDICTIVE PERFORMANCE AS WELL

Standardised RMSE over 13 data sets
1.
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I Tweaks can be made to the algorithm to improve accuracy
or interpretability of models produced. . .

I . . . but both methods are highly competitive at extrapolation
(shown above) and interpolation
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SUMMARY: THE AUTOMATIC STATISTICIAN

I We have presented the beginnings of an automatic
statistician

I Our system
I Defines an open-ended language of models
I Searches greedily through this space
I Produces detailed reports describing patterns in data
I Performs automatic model criticism

I Extrapolation and interpolation performance highly
competitive

I We believe this line of research has the potential to make
powerful statistical model-building techniques accessible
to non-experts
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CONCLUSIONS

Probabilistic modelling offers a framework for building
systems that reason about uncertainty and learn from data,
going beyond traditional pattern recognition problems.

I have reviewed some of the frontiers of research, including:
I Probabilistic programming
I Bayesian optimisation
I Rational allocation of computational resources
I Probabilistic models for efficient data compression
I The automatic statistician

Thanks!
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APPENDIX: MODEL CHECKING AND CRITICISM

I Good statistical modelling should include model criticism:
I Does the data match the assumptions of the model?
I For example, if the model assumed Gaussian noise, does a

Q-Q plot reveal non-Gaussian residuals?
I Our automatic statistician does posterior predictive checks,

dependence tests and residual tests
I We have also been developing more systematic

nonparametric approaches to model criticism using kernel
two-sample testing with MMD.

Lloyd, J. R., and Ghahramani, Z. (2014) Statistical Model Criticism using Kernel Two Sample

Tests. http://mlg.eng.cam.ac.uk/Lloyd/papers/kernel-model-checking.pdf
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