Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional . Usually we think of 6 as a function.

The amount of information that 6 can capture about the data D can grow as
the amount of data grows. This makes them more flexible.




Bayesian nonparametrics

A simple framework for modelling complex data.

Nonparametric models can be viewed as having infinitely many parameters

Examples of non-parametric models:

Parametric

Non-parametric

Application

polynomial regression
logistic regression
mixture models, k-means
hidden Markov models

factor analysis / pPCA / PMF

Gaussian processes
Gaussian process classifiers
Dirichlet process mixtures

infinite HMMs
infinite latent factor models

function approx.
classification
clustering

time series
feature discovery




Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:
You want to learn a function f with error bars from data D = {X,y}

A Gaussian process defines a distribution over functions p(f) which can be used for
Bayesian regression:

_ p(f)p(D|f)
Let £ = (f(x1), f(x2),..., f(x,)) be an n-dimensional vector of function values

evaluated at n points x; € X. Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,2,} C X,
the marginal distribution over that subset p(f) is multivariate Gaussian.
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Neural networks and Gaussian processes

y Bayesian neural network

outputs

Data: D = {(X(”’),y(n)) 2[:1 = (X,y)
Parameters 0 are the weights of the neural net

weights

hidden
units

weights parameter prior p(0|a)
e parameter posterior p(0|a, D) x p(y|X,0)p(0|)
X prediction p(y'|D,x", ) = [p(y'|x',0)p(0|D, o) dO

A Gaussian process models functions y = f(x)

A multilayer perceptron (neural network) with
infinitely many hidden units and Gaussian priors ¥
on the weights — a GP (Neal, 1996)

See also recent work on Deep Gaussian Processes X
(Damianou and Lawrence, 2013)



