Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ . Given the parameters, future predictions, x, are independent of the observed data, \mathcal{D} :

$$P(x|\theta, \mathcal{D}) = P(x|\theta)$$

therefore θ capture everything there is to know about the data.

- So the complexity of the model is bounded even if the amount of data is unbounded. This makes them not very flexible.
- Non-parametric models assume that the data distribution cannot be defined in terms of such a finite set of parameters. But they can often be defined by assuming an *infinite dimensional* θ . Usually we think of θ as a *function*.
- ullet The amount of information that heta can capture about the data $\mathcal D$ can grow as the amount of data grows. This makes them more flexible.

Bayesian nonparametrics

A simple framework for modelling complex data.

Nonparametric models can be viewed as having infinitely many parameters

Examples of non-parametric models:

Parametric	Non-parametric	Application
polynomial regression	Gaussian processes	function approx.
logistic regression	Gaussian process classifiers	classification
mixture models, k-means	Dirichlet process mixtures	clustering
hidden Markov models	infinite HMMs	time series
factor analysis / pPCA / PMF	infinite latent factor models	feature discovery
•••		

Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:

You want to learn a function f with error bars from data $\mathcal{D} = \{\mathbf{X}, \mathbf{y}\}$

A Gaussian process defines a distribution over functions p(f) which can be used for Bayesian regression:

$$p(f|\mathcal{D}) = \frac{p(f)p(\mathcal{D}|f)}{p(\mathcal{D})}$$

Let $\mathbf{f} = (f(x_1), f(x_2), \dots, f(x_n))$ be an n-dimensional vector of function values evaluated at n points $x_i \in \mathcal{X}$. Note, \mathbf{f} is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset $\{x_1, \ldots, x_n\} \subset \mathcal{X}$, the marginal distribution over that subset $p(\mathbf{f})$ is multivariate Gaussian.

A picture

Kernel

Neural networks and Gaussian processes

Bayesian neural network

Data:
$$\mathcal{D} = \{(\mathbf{x}^{(n)}, y^{(n)})\}_{n=1}^{N} = (X, \mathbf{y})$$

Parameters heta are the weights of the neural net

parameter prior $p(\boldsymbol{\theta}|\boldsymbol{\alpha})$ parameter posterior $p(\boldsymbol{\theta}|\boldsymbol{\alpha},\mathcal{D}) \propto p(\mathbf{y}|X,\boldsymbol{\theta})p(\boldsymbol{\theta}|\boldsymbol{\alpha})$ prediction $p(y'|\mathcal{D},\mathbf{x}',\boldsymbol{\alpha}) = \int p(y'|\mathbf{x}',\boldsymbol{\theta})p(\boldsymbol{\theta}|\mathcal{D},\boldsymbol{\alpha})\,d\boldsymbol{\theta}$

A Gaussian process models functions $y = f(\mathbf{x})$

A multilayer perceptron (neural network) with infinitely many hidden units and Gaussian priors y on the weights \rightarrow a GP (Neal, 1996)

