
Overview	  for	  today	  
•  Natural Language Processing with NNs [~15m] 

– Supervised models 
 

•  Unsupervised Learning [~45m] 

•  Memory in Neural Nets [~30m] 



Natural Language 
Processing 

Antoine Bordes Jason Weston Tomas Mikolov 

Slides from:  

Wojciech Zaremba 



NLP 

•  Many different problems 
– Language modeling 
– Machine translation 
– Q & A 

•  Recent attempts to address with neural nets 
– Yet to achieve same dramatic gains as vision/speech 



Language modeling 

●  Natural language is a sequence of 
sequences 

●  Some sentences are more likely than others: 
o  “How are you ?” has a high probability 
o  “How banana you ? “ has a low probability 

[Slide: Wojciech Zaremba] 



Results Training

Neural Network Language Models

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).

Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
31 / 68[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ] 



Results Training

Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

Recurrent neural network based language model. Mikolov et al., Interspeech, ’10.
33 / 68
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Recurrent neural networks - schema  

My 

name 

is 

name 

is 

Wojciech 

[Slide: Wojciech Zaremba] 



• The intuition is that we unfold the RNN in time

• We obtain deep neural network with shared
weights U and W

Tomas Mikolov, COLING 2014

Backpropagation through time

99

[Slide: Thomas Mikolov, COLING 2014 ] 



• We train the unfolded RNN using normal
backpropagation + SGD

• In practice, we limit the number of
unfolding steps to 5 – 10

• It is computationally more efficient to
propagate gradients after few training
examples (batch mode)

Tomas Mikolov, COLING 2014

Backpropagation through time
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[Slide: Thomas Mikolov, COLING 2014 ] 



Results Training

NNLMS vs. RNNS: Penn Treebank Results (Mikolov)

Recent uses of NNLMs and RNNs to improve machine translation:
Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL ’14.

Also Kalchbrenner ’13, Sutskever et al., ’14., Cho et al., ’14. .

34 / 68
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Language modelling – RNN samples 

the meaning of life is that only if an end would 
be of the whole supplier. widespread rules are 
regarded as the companies of refuses to 
deliver. in balance of the nation’s information 
and loan growth associated with the carrier 
thrifts are in the process of slowing the seed 
and commercial paper. 

[Slide: Wojciech Zaremba] 



More depth gives more power 

[Slide: Wojciech Zaremba] 



LSTM - Long Short Term Memory 

●  Ad-hoc way of modelling 
long dependencies 

●  Many alternative ways of 
modelling it 

●  Next hidden state is 
modification of previous 
hidden state (so 
information doesn’t decay 
too fast). 

 
 

[Hochreiter and Schmidhuber, Neural Computation 1997] 

[Slide: Wojciech Zaremba] 

For simple explanation, see [Recurrent Neural Network Regularization, 
Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014] 



RNN-LSTMs for Machine Translation 

Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014  

Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, 
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP 
2014 

[Sutskever et. al. (2014)] 

[Slide: Wojciech Zaremba] 



Visualizing Internal Representation 

Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014  

t-SNE projection of network state at end of input sentence 



Translation - examples 
● FR: Les avionneurs se querellent au sujet de la largeur des sièges alors que 
de grosses commandes sont en jeu 
 
● Google Translate: Aircraft manufacturers are quarreling about the seat width 
as large orders are at stake 
 
● LSTM: Aircraft manufacturers are concerned about the width of seats while 
large orders are at stake 
 
● Ground Truth: Jet makers feud over seat width with big orders at stake 
 

[Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014]  

[Slide: Wojciech Zaremba] 



Image Captioning: Vision + NLP 

 
Many recent works on this: 
•  Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks 
•  Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models 
•  Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description 
•  Google: Show and Tell: A Neural Image Caption Generator 
•  Stanford: Deep Visual-Semantic Alignments for Generating Image Description 
•  UML/UT:  Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
•  Microsoft/CMU:  Learning a Recurrent Visual Representation for Image Caption Generation 
•  Microsoft:  From Captions to Visual Concepts and Back 

From Captions to Visual Concepts and Back

Hao Fang⇤ Saurabh Gupta⇤ Forrest Iandola⇤ Rupesh K. Srivastava⇤
Li Deng Piotr Dollár† Jianfeng Gao Xiaodong He

Margaret Mitchell John C. Platt‡ C. Lawrence Zitnick Geoffrey Zweig

Microsoft Research

Abstract

This paper presents a novel approach for automatically
generating image descriptions: visual detectors, language
models, and multimodal similarity models learnt directly
from a dataset of image captions. We use multiple instance
learning to train visual detectors for words that commonly
occur in captions, including many different parts of speech
such as nouns, verbs, and adjectives. The word detector
outputs serve as conditional inputs to a maximum-entropy
language model. The language model learns from a set of
over 400,000 image descriptions to capture the statistics
of word usage. We capture global semantics by re-ranking
caption candidates using sentence-level features and a deep
multimodal similarity model. Our system is state-of-the-art
on the official Microsoft COCO benchmark, producing a
BLEU-4 score of 29.1%. When human judges compare the
system captions to ones written by other people on our held-
out test set, the system captions have equal or better quality
34% of the time.

1. Introduction
When does a machine “understand” an image? One def-

inition is when it can generate a novel caption that summa-
rizes the salient content within an image. This content may
include objects that are present, their attributes, or their re-
lations with each other. Determining the salient content re-
quires not only knowing the contents of an image, but also
deducing which aspects of the scene may be interesting or
novel through commonsense knowledge [51, 5, 8].

This paper describes a novel approach for generating im-
age captions from samples. We train our caption generator

⇤H. Fang, S. Gupta, F. Iandola and R. K. Srivastava contributed equally
to this work while doing internships at Microsoft Research. Current af-
filiations are H. Fang: University of Washington; S. Gupta and F. Iandola:
University of California at Berkeley; R. K. Srivastava: IDSIA, USI-SUPSI.

†P. Dollár is currently at Facebook AI Research.
‡J. Platt is currently at Google.

Figure 1. An illustrative example of our pipeline.

from a dataset of images and corresponding image descrip-
tions. Previous approaches to generating image captions re-
lied on object, attribute, and relation detectors learned from
separate hand-labeled training data [47, 22].

The direct use of captions in training has three distinct
advantages. First, captions only contain information that is
inherently salient. For example, a dog detector trained from
images with captions containing the word dog will be bi-
ased towards detecting dogs that are salient and not those
that are in the background. Image descriptions also contain
variety of word types, including nouns, verbs, and adjec-
tives. As a result, we can learn detectors for a wide vari-
ety of concepts. While some concepts, such as riding or
beautiful, may be difficult to learn in the abstract, these
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•  Generate short text descriptions of  
image, given just picture. 

•  Use Convnet to extract image features 

•  RNN or LSTM model takes image 
features as input, generates text 



Image Captioning Examples 

From Captions to Visual Concepts and Back, Hao Fang∗ Saurabh Gupta∗ Forrest Iandola∗ Rupesh K. Srivastava∗, Li Deng Piotr 
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015. 



Unsupervised Learning 



Motivation 

•  Most successes obtained with supervised 
models, e.g. Convnets  

•  Unsupervised learning methods less successful 

•  But likely to be very important in long-term 
23 June 2014 /  
CVPR DL for Vision Tutorial ･ Unsupervised Learning/ G Taylor 
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• Most impressive results in deep learning have been obtained with 
purely supervised learning methods (see previous talk) 

• In vision, typically classification (e.g. object recognition) 

• Though progress has been slower, it is likely that unsupervised 
learning will be important to future advances in DL

Motivation

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.

5

Image: Krizhevsky (2012) - AlexNet, the “hammer” of DL



Historical Note 

•  Deep Learning revival started in ~2006 
– Hinton & Salakhudinov Science paper on RBMs 

•  Unsupervised Learning was focus from 
2006-2012 

•  In ~2012 great results in vision, speech with 
supervised methods appeared 
– Less interest in unsupervised learning 



Arguments for Unsupervised Learning 

•  Want to be able to exploit unlabeled data 
– Vast amount of it often available 
– Essentially free 

•  Good regularizer for supervised learning 
– Helps generalization 
– Transfer learning 
– Zero / one-shot learning 



Another Argument for  
Unsupervised Learning 

When we’re learning to see, nobody’s telling us what the right 
answers are — we just look. Every so often, your mother says 
“that’s a dog”, but that’s very little information. 
 
You’d be lucky if you got a few bits of information — even one 
bit per second — that way. The brain’s visual system has 1014 
neural connections. And you only live for 109 seconds.  
 
So it’s no use learning one bit per second. You need more like 
105 bits per second. And there’s only one place you can get that 
much information: from the input itself. 

     
              — Geoffrey Hinton, 1996 



Taxonomy of Approaches 

•  Autoencoder (most unsupervised Deep Learning 
methods) 
– RBMs / DBMs    
– Denoising autoencoders   
– Predictive sparse decomposition  

•  Decoder-only 
–  Sparse coding    
– Deconvolutional Nets  

•  Encoder-only  
–  Implicit supervision, e.g. from video 

•  Adversarial Networks   

Loss involves 
some kind  
of reconstruction 
error	  



Auto-Encoder 

Encoder Decoder 

Input (Image/ Features) 

Output Features 

e.g. Feed-back / 
generative / 
top-down 
path 

Feed-forward / 
bottom-up path 



Auto-Encoder Example 1 

σ(Wx) σ(WTz) 

(Binary) Input x 

(Binary) Features z 

e.g. 

•  Restricted Boltzmann Machine [Hinton ’02] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters WT 

 
Sigmoid 

function σ(.) 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

•  Predictive Sparse Decomposition  [Ranzato et al., ‘07] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters D 

 
 

L1 
Sparsity 



Auto-Encoder Example 2 

σ(Wx) Dz 

Input Patch x 

Sparse Features z 

e.g. 

•  Predictive Sparse Decomposition  [Kavukcuoglu et al., ‘09] 

Encoder 
filters W 
 
Sigmoid 
function σ(.) 

Decoder 
filters D 

 
 

L1 
Sparsity 

Training 



Stacked Auto-Encoders 

Encoder Decoder 

Input Image 

Class label 

e.g. 

Features 

Encoder Decoder 

Features 

Encoder Decoder 

[Hinton & Salakhutdinov  
Science ‘06]  

Two phase training: 
 
1. Unsupervised  

layer-wise 
pre-training 

2. Fine-tuning with 
labeled data 



•  Remove decoders 
•  Use feed-forward path 

•  Gives 
standard(Convolutional) 
Neural Network 

•  Can fine-tune with 
backprop 

Training phase 2: Supervised Fine-Tuning 

Encoder 

Input Image 

Class label 

e.g. 

Features 

Encoder 

Features 

Encoder 

[Hinton & Salakhutdinov  
Science ‘06]  



Effects of Pre-Training 

Supporting figures
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Fig. S1: The average squared reconstruction error per test image during fine-tuning on the curves
training data. Left panel: The deep 784-400-200-100-50-25-6 autoencoder makes rapid progress after
pretraining but no progress without pretraining. Right panel: A shallow 784-532-6 autoencoder can learn
without pretraining but pretraining makes the fine-tuning much faster, and the pretraining takes less time
than 10 iterations of fine-tuning.
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Fig. S2: The average squared reconstruction error per image on the test dataset is shown during the
fine-tuning on the curves dataset. A 784-100-50-25-6 autoencoder performs slightly better than a shal-
lower 784-108-6 autoencoder that has about the same number of parameters. Both autoencoders were
pretrained.
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•  From [Hinton & Salakhudinov, Science 2006] 
Big network                     Small network 

See also: Why Does Unsupervised Pre-training Help Deep Learning? 
Dumitru Erhan, Yoshua Bengio ,Aaron Courville, Pierre-Antoine Manzagol 
PIERRE-Pascal Vincent, Sammy Bengio, JMLR  2010 



Deep Boltzmann Machines 

Encoder Decoder 

Input Image 

Class label 

e.g. 

Features 

Encoder Decoder 

Features 

Encoder Decoder 
Undirected model 
 
 
 
 
Both pathways 
used at train & 
test time 
 
 
TD modulation 
of 
BU features 

Salakhutdinov & Hinton 
AISTATS’09 



Shape Boltzmann Machine 

but these potentials fall short of capturing all such properties
so as to make realistic-looking samples.

Other approaches represent shape using a level set or
parameterized contour. These have different strengths and
weaknesses, but all share the fundamental challenge of im-
posing sufficient constraints to limit the model to valid
shapes while allowing for the right degree of flexibility to
capture all possible shapes. For example, a common ap-
proach when using a contour (or an image) is to use a mean
shape in combination with some principal directions of vari-
ation, as captured by a Principal Components Analysis [7]
or Factor Analysis [5, 8]. Such models capture the typical
global shape of an object and global variations on this shape
(such as changes in the aspect ratio of a face). However, they
cannot capture multimodal shape distributions, and tend to
be poor at learning about local variations which affect only
part of the shape (e.g. the angle of a horse’s front legs).

Non-parametric approaches employ what is effectively a
large database of template shapes [12] or shape fragments
[3, 15]. In the former case, because no attempt is made to
understand the composition of the shape, it is impossible to
generalize to novel shapes not present in the database. In the
latter case, the challenge lies in how to compose the shape
fragments to form valid shapes. To date, no method has been
proposed which can generate a variety of realistic looking
whole shapes by composing fragments.

Table 1 and Fig. 1 summarize why these existing ap-
proaches do not meet the criteria for a strong shape model.

In this paper, we consider a class of models from the
machine learning community, known as Deep Boltzmann
Machines (DBMs, [22]). The main contribution of this pa-
per is to show how a strong model of binary shape can be
constructed using a form of DBM, which we call the Shape
Boltzmann Machine (ShapeBM). We demonstrate that a
ShapeBM trained on a relatively small dataset is both able
to generate realistic samples and to generalize to generate
samples that differ from images in the training dataset.

2. Undirected models of shape
In this section we will review several undirected models

suitable for modeling binary shape images. We will start with
the commonly used grid-structured MRF and describe how
it can be modified to form an undirected model known as the
Restricted Boltzmann Machine (RBM). We then describe
how RBMs can be stacked to form the hierarchical structure
of the Deep Boltzmann Machine (DBM).

Grid MRFs: A binary grid-structured MRF defines a distri-
bution over binary images v whose energy function is:

E(v) =

X

i

f

i

(v

i

; b

i

) +

X

(i,j)

f

ij

(v

i

, v

j

;w

ij

), (1)

where i ranges over image pixels, (i, j) ranges over grid

b
N

v v

h

v

h1

h2

v

h1

h2

v

h1

h2

(a) MRF (b) RBM

(c) DBM (d) ShapeBM (e) ShapeBM

Figure 2. Undirected models of shape: (a) 1D slice of a Markov
Random Field. (b) Restricted Boltzmann Machine in 1D. (c) Deep
Boltzmann Machine in 1D. (d) 1D slice of a Shape Boltzmann
Machine. (e) Shape Boltzmann Machine in 2D.

edges between pixels i and j and the potentials are parame-
terized by b

i

and w

ij

. The grid structure of the MRF arises
from the pairwise potentials f

ij

shown in Fig. 2(a). These
potentials induce dependencies between neighboring pixels
that can favor local shape properties such as connectedness
or smoothness. In an attempt to capture more complex or
global shape properties, much recent research has focused
on constructing higher-order potentials (HOPs), which take
the configuration of larger groups of image pixels into ac-
count (cf. Sec. 1), but remain computationally tractable. The
higher order potentials in [19], for instance, are defined in
terms of a set of ‘reference patterns’ and penalize deviations
of groups of pixels from these patterns. Such HOPs can be
considered to be introducing an auxiliary hidden variable
connected through pairwise potentials to multiple image pix-
els. The introduction of such hidden variables provides a
powerful way to capture and learn complex properties of
multiple image pixels. Yet, because the model only contains
pairwise potentials, learning and inference remain tractable.

Restricted Boltzmann Machines: A model that makes
heavy use of hidden variables is the Restricted Boltzmann
Machine (RBM, e.g. [10]). In an RBM, a number of hidden
variables h are used, each of which is connected to all image
pixels as shown in Fig. 2(b). However, unlike a grid MRF,
there are no direct connections between the image pixels.
There are also no direct connections between the hidden
variables. Hence, the energy function takes the form:

E(v,h) =
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where i now ranges over pixels and j ranges over hidden vari-
ables. The key points to note are that the potential functions
are all simple products and that the only pairwise potentials
are those between each visible and each hidden variable. By
learning the parameters of the potentials {w

ij

, b

i

, c

j

}, the
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model can learn about high-order constraints in the data set.
The distribution over v is given by marginalizing over

the hidden variables: p(v) =

P
h exp{�E(v,h)}/Z(⇥),

where ⇥ denotes all parameters of the model. This marginal-
ization allows the model to capture high-order dependencies
between the visible units. In fact, the hidden units can be
summed out analytically [10], giving rise to an alternative
formulation of the RBM in terms of high-order potentials
that no longer includes latent variables.

Because the RBM has edges only between hidden and
visible variables, all hidden units are conditionally indepen-
dent given the visible units (and vice versa). This property
can be exploited to make inference exact and efficient. The
conditional probabilities are:

p(v
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), (4)

where �(y) = 1/(1 + exp(�y)) is the sigmoid function.
This property allows for efficient implementations of block-
Gibbs sampling where all v and all h are sampled in parallel
in an alternating manner, which can be exploited during
approximate learning [23].

Deep Boltzmann Machines: RBMs can, in principle, ap-
proximate any binary distribution [10], but this can require
an exponential number of hidden units and a similarly large
amount of training data. The DBM provides a richer model
by introducing additional layers of latent variables as shown
in Fig. 2(c). The additional layers capture high-order de-
pendencies between the hidden variables of previous layers
and so can learn about complex structure in the data using
relatively few hidden units. The energy of a DBM with two
layers of latent variables is given by:
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Although exact inference is no longer possible in this
model, the conditional distributions p(v|h1

), p(h1|v,h2
),

and p(h2|h1
) remain independent due to the layering (taking

forms analogous to Eqs. 3, 4). This allows for computation-
ally efficient inference, either by layerwise block-Gibbs sam-
pling from the posterior p(h1

,h2|v) (Fig. 3), or by using
a mean field procedure with a fully factorized approximate
posterior as described in [22]. The layering further admits
a layer-wise pre-training procedure that makes it less likely
that learning will get stuck in local optima. Hence the DBM
is both a rich model of binary images and a tractable one.

v

h1

h2

...

image reconstruction sample 1 sample n

Figure 3. DBM MCMC. Block-Gibbs MCMC sampling scheme,
in which v, h1 and h2 variables are sampled in turn. Note that
each sample of h1 is obtained conditioned on the current state of
v and h2. For sufficiently large values of n, sample n will be
uncorrelated with the original image.

3. The Shape Boltzmann Machine

RBMs and DBMs are powerful generative models, but
also have many parameters. Since they are typically trained
on large amounts of unlabeled data (thousands or tens of
thousands of examples), this is usually less of a problem
than in supervised settings. Segmented images, however, are
expensive to obtain and datasets are typically small (hun-
dreds of examples). In order to learn a model that accurately
captures the properties of binary shapes, but also generalizes
even when trained on small datasets, we use a form of DBM
but additionally impose carefully chosen connectivity and
capacity constraints (in a similar vein to [16, 18]).

The ShapeBM used below has two layers of latent vari-
ables: h1 and h2. The visible units v are the pixels of a
binary image of size N ⇥ N . In the first layer we enforce
local receptive fields by connecting each hidden unit in h1

only to a subset of the visible units, corresponding to one
of four square patches, as shown in Fig. 2(d,e). Each patch
overlaps its neighbor by b pixels and so has a side length of
N/2 + b/2. We furthermore share weights between the four
sets of hidden units and patches. These modifications reduce
the number of first layer parameters by a factor of about 16
which reduces the amount of data needed for training by a
similar factor. At the same time these modifications take
into account two important properties of shapes: first, the re-
stricted receptive field size reflects the fact that the strongest
dependencies between pixels are typically local, while dis-
tant parts of an object often vary more independently (the
small overlap allows boundary continuity to be learned pri-
marily at the lowest layer); second, weight sharing takes
account of the fact that many generic properties of shapes
(e.g. smoothness) are independent of the image position.

For the second layer we choose full connectivity between
h1 and h2, but restrict the relative capacity of h2: we use
4 ⇥ 500 hidden units for h1 vs. 50 or 100 for h2 in our
single class experiments. While the first layer is primarily
concerned with generic, local properties, the role of the
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second layer is to impose global constraints, e.g. with respect
to the class of an object shape or its overall posture. The
second layer mediates dependencies between pixels that are
far apart (not in the same local receptive field), but these
dependencies will be weaker than between nearby pixels
that share first-level hidden units. Limiting the capacity of
the second-layer encourages this separation of concerns and
helps to prevent the model from overfitting to small training
sets. Note that this is in contrast to [22] which use a top-most
layer that is at least as large as all of the preceding layers.

Learning: Learning of the model involves maximizing
log p(v; ⇥) of the observed data v with respect to its param-
eters ⇥ = {b, W

1
, W

2
, c1

, c2} (cf. Eq. 5). This is difficult
for three reasons: (1) the intractability of the normalization
constant Z (which depends on the parameters); (2) the pres-
ence of latent variables; and (3) the tendency of learning to
get stuck in poor local optima. The procedure proposed in
[22] minimizes these difficulties and we follow it closely.

Learning proceeds in two phases. In the pre-training
phase we greedily train the model bottom up, one layer at
a time. The purpose of this phase is to find good initial
values for all parameters of the model. We begin by training
an RBM on the observed data using stochastic maximum
likelihood learning (SML, also referred to as ‘persistent CD’,
[23, 22]). The number of hidden units of this RBM is the
same as the size of h1 in the full ShapeBM model and it
obeys the same connectivity constraints as the ShapeBM’s
first layer. Once this RBM is trained, we infer the conditional
mean of the hidden units using Eq. 4 for each training image.
The resulting vectors then serve as the training data for a
second RBM with the same number of hidden units as h2,
which is again trained using SML.

We use the parameters of these two RBMs to initialize the
parameters of the full ShapeBM model as described in [22].
In the second phase we perform approximate stochastic gra-
dient ascent in the likelihood of the full model to fine-tune
the parameters in an expectation-maximization-like scheme.
This involves the same sample-based approximation to the
gradient of the normalization constant used for learning the
RBMs [23, 22], as well as a mean-field approximation to the
posterior p(h1

,h2|v) of training images. This joint training
is essential to separate out learning of local and global shape
properties into the two hidden layers.

4. Experiments
We performed both qualitative and quantitative experi-

ments to assess whether the ShapeBM can act as a strong
model of object shape.

4.1. Weizmann horses

The first dataset we investigated was the Weizmann horse
dataset [3] which contains 327 images, all of horses facing
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Figure 4. Sampled shapes. (a) A selection of images from the
Weizmann horse dataset. (b) A collection of samples from a dis-
crete Factor Analysis model. The Gaussianity assumption forces
the model to allocate probability mass to unlikely horse shapes.
(c) Samples from an RBM. (d) Samples from a ShapeBM. The
model generates samples of varying pose, with the correct numbers
of legs and details are preserved (samples are arranged l-r, u-d in
decreasing order of generalization).

to the left, but in a variety of poses. The binary images are
cropped and normalized to 32⇥32 pixels (see Fig. 4(a)). This
dataset is challenging, because in addition to their overall
pose variation, the positions of the horses’ heads, tails and
legs change considerably from image to image. Compared
to the amount of variability seen in the data, the number of
training images is relatively small.

We trained a ShapeBM with overlap b = 4, and 2000
and 100 units for h1 and h2 respectively. The first layer
was pre-trained for 3000 epochs (iterations) and the second
layer for 1000 epochs. After pre-training, joint training was
performed for 1000 epochs. Our MATLAB implementation
completed training in around 4 hours, running on a dual-core,
3GHz PC with 4GB of memory.

For comparison, we trained a Factor Analysis (FA) model
with 10 latent dimensions, and an RBM with 500 hidden
units on the same data1. The FA model was modified to work
on discrete binary images, similarly to the Clipped Factor
Analysis model described in [5].

Realism: To assess the Realism requirement, we sampled
a set of shapes2 from each model, as shown in Fig. 4. FA

1We obtained the best results with these settings of the parameters.
2In the sampling figures, we display the (grayscale) conditional proba-

bility of each pixel given a particular hidden configuration. Binary samples
can be generated per-pixel from a Bernoulli distribution where the gray
level specifies the distribution mean.
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“The Shape Boltzmann Machine: a Strong Model of Object 
Shape”, Ali Eslami, Nicolas Heess and John Winn, CVPR 2012 
 



Variational Auto-Encoder 

•  [Kingma & Welling, ICLR 2014] 

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Variational Autoencoder
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(Kingma and Welling, 2014, Rezende et al 2014)
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Decoder-Only Models 

•  Examples: 
– Sparse coding 
– Deconvolutional Networks [Zeiler & Fergus, ‘10] 

 
•  No encoder to compute features 

•  So need to perform optimization 
– Can be relatively fast 



Sparse Coding (Patch-based) 

•  Over-complete linear decomposition 
of input       using dictionary     

Dictionary  

Input	  

•       regularization yields solutions 
with few non-zero elements 

•  Output is sparse vector: 



Deconvolutional Network Layer 
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•  Convolutional form of sparse coding 
 [Zeiler & Fergus, CVPR 2010].  
Also Kavukcuoglu et al. NIPS 2010 



Overall Architecture (2 layers) 



•  Learning to Generate Chairs with Convolutional Neural 
Networks, Alexey Dosovitskiy, Jost Tobias Springenberg and 
Thomas Brox, 1411.5928, 2014 

•  Supervised training of convnet to draw chairs  

Generative Models using Convnets 

Figure 6. Output layer filters of the 128⇥128 network. Top: RGB
stream. Bottom: Segmentation stream.

proximately 16 and 8 million, respectively. This is by far
fewer than the approximately 400 million foreground pixels
in the training data even when augmentation is not applied.
When augmentation is applied, the training data size be-
comes virtually infinite. These calculations show that learn-
ing all samples by heart is not an option.

4.2. Activating single units

One way to analyze a neural network (artificial or real)
is to visualize the effect of single neuron activations. Al-
though this method does not allow us to judge about the
network’s actual functioning, which involves a clever com-
bination of many neurons, it still gives a rough idea of what
kind of representation is created by the different network
layers.

Activating single neurons of uconv-3 feature maps (last
feature maps before the output) is equivalent to simply look-
ing at the filters of these layers which are shown in Figure 6.
The final output of the network at each position is a linear
combination of these filters. As to be expected, they include
edges and blobs.

Our model is tailored to generate images from high-level
neuron activations, which allows us to activate a single neu-
ron in some of the higher layers and forward-propagate
down to the image. The results of this procedure for dif-
ferent layers of the network are shown in Figures 7 and 9.
Each row corresponds to a different network layer. The left-
most image in each row is generated by setting all neurons
of the layer to zero, and the other images – by activating
one randomly selected neuron.

In Figure 7 the first two rows show images produced
when activating neurons of FC-1 and FC-2 feature maps
of the class stream while keeping viewpoint and transfor-
mation inputs fixed. The results clearly look chair-like but
do not show much variation (the most visible difference is
chair vs armchair), which suggests that larger variations are
achievable by activating multiple neurons. The last two
rows show results of activating neurons of FC-3 and FC-
4 feature maps. These feature maps contain joint class-
viewpoint-transformation representations, hence the view-
point is not fixed anymore. The generated images still re-
semble chairs but get much less realistic. This is to be ex-
pected: the further away from the inputs, the less semantic
meaning there is in the activations. One interesting finding
is that there is a ’zoom neuron’ in layer FC-4 (middle image
in the last row of Figure 7). When its value is increased, the

Figure 7. Images generated from single unit activations in feature
maps of different fully connected layers of the 128⇥128 network.
From top to bottom: FC-1 and FC-2 of the class stream, FC-3,
FC-4.

Figure 8. The effect of increasing the activation of the ’zoom neu-
ron’ we found in the layer FC-4 feature map.

Figure 9. Images generated from single neuron activations in fea-
ture maps of some layers of the 128 ⇥ 128 network. From top
to bottom: uconv-2, uconv-1, FC-5 of the RGB stream. Relative
scale of the images is correct. Bottom images are 57 ⇥ 57 pixel,
approximately half of the chair size.

output chair image gets zoomed. This holds not only for the
case in which all other activations are zero, but also if the
hidden representation contains the information for generat-
ing an actual chair, see Figure 8 for an example.

Images generated from single neurons of the convolu-
tional layers are shown in Figure 9. A somewhat disappoint-
ing observation is that while single neurons in later layers
(uconv-2 and uconv-3) produce edge-like images, the neu-
rons of higher deconvolutional layers generate only blurry
’clouds’, as opposed to the results of Zeiler and Fergus [31]
with a classification network and max-unpooling. Our ex-
planation is that because we use naive regular-grid unpool-



Some other interesting  
generative models 

•  "Generative Image Modeling Using Spatial LSTMs”, L. Theis and M. 
Bethge, arXiv 1506.03478, 2015 

•  “Texture synthesis and the controlled generation of natural stimuli using 
convolutional neural networks”, Leon A. Gatys, Alexander S. Ecker, 
Matthias Bethge, . arXiv:1505.07376, 2015 

Figure 2: Generated stimuli. Each row corresponds to a different processing stage in the network.
When only constraining the texture representation on the lowest layer, the synthesised textures have
little structure, similarly to spectrally matched noise (first row). With increasing number of layers on
which we match the texture representation we find that we generate images with increasing degree of
naturalness (rows 2–5; labels on the left indicate the top-most layer included). The source textures in
the first three columns were previously used by Portilla and Simoncelli [15]. For better comparison
we also show their results (last row). The last column shows textures generated from a non-texture
image to give a better intuition about how the texture model represents image information.
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•  Unsupervised feature learning by augmenting single images, 
Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas 
Brox, NIPS 2014 

Encoder-Only Models 

•  In vision setting, essentially a convnet trained 
without explicit class labels 

•  Learn invariances 

•  Learn from video 
•  Unsupervised Learning of Visual Representations using Videos, 

Xiaolong Wang, Abhinav Gupta, arXiv 1505.00687, 2015 



Unsupervised Learning of 
Transformations 

Figure 1: Random patches sampled from
the STL-10 unlabeled dataset which are later
augmented by various transformation to ob-
tain surrogate classes for the neural network
training.

Figure 2: Random transformations applied to
one of the patches extracted from the STL-10
unlabeled dataset. Original patch is in the top
left corner.

2.1 Data acquisition

The input to our algorithm is a set of unlabeled images, which come from roughly the same distribu-
tion as the images we later aim to classify. We randomly sample N 2 [50, 32000] random patches
of size 32⇥ 32 pixels from different images, at varying positions and scales. We only sample from
regions with considerable gradient energy to avoid getting uniformly colored patches. Then we ap-
ply K 2 [1, 100] random transformations to each of the sampled patches. Each of these random
transformations is a composition of four random ’elementary’ transformations from the following
list:

• Translation: translate the patch by a distance within 0.25 of the patch size vertically and
horizontally.

• Scale: multiply the scale of the patch by a factor between 0.7 and 1.4.
• Color: multiply the projection of each patch pixel onto the principal components of the

set of all pixels by a factor between 0.5 and 2 (factors are independent for each principal
component and the same for all pixels within a patch).

• Contrast: raise saturation and value (S and V components of the HSV color representation)
of all pixels to a power between 0.25 and 4 (same for all pixels within a patch).

We do not apply any preprocessing to the obtained patches other than subtracting the mean of each
pixel over the whole training dataset. Examples of patches sampled from the STL-10 unlabeled
dataset are shown in Fig. 1. Examples of transformed versions of one patch are shown in Fig. 2.

2.2 Training

As a result of the procedure described above, to each patch x

i
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}. We then declare each of these sets to be
a class by assigning label i to the class S

xi and train a convolutional neural network to discriminate
between these surrogate classes. Formally, we minimize the following loss function:
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STL-10 CIFAR-10-reduced CIFAR-10 Caltech-101
K-means [6] 60.1± 1 70.7± 0.7 82.0 —
Multi-way local pooling [5] — — — 77.3± 0.6

Slowness on videos [25] 61.0 — — 74.6

Receptive field learning [16] — — [83.11]1 75.3± 0.7

Hierarchical Matching Pursuit (HMP) [3] 64.5± 1 — — —
Multipath HMP [4] — — — 82.5± 0.5

Sum-Product Networks [8] 62.3± 1 — [83.96]1 —
View-Invariant K-means [15] 63.7 72.6± 0.7 81.9 —
This paper 67.4± 0.6 69.3± 0.4 77.5 76.6± 0.7 2

Table 1: Classification accuracy on several popular datasets (in %).
1As mentioned, we do not compare to the methods which use supervised information for learning features

on the full CIFAR-10 dataset
2There are two ways to compute the accuracy on Caltech-101: simply averaging the accuracy over the

whole test set or calculating the accuracy for each class separately and then averaging these values. These
methods differ because for many classes less than 50 test samples are available. It seems that most researchers
in the machine learning field use the first method, which is what we report in the table. When using the second
method, our performance drops to 74.1%± 0.6%

distribution of the test dataset is closest to the surrogate samples our algorithm reaches 67.4%±0.6%

accuracy outperforming all other approaches by a large margin.

3.2 Influence of the data acquisition on classification performance

Our pipeline lets us easily vary the number of surrogate classes in the training data and the number
of training samples per surrogate class. We use this to measure the effect of these factors on the
quality of the resulting features. We vary the number of surrogate classes between 50 and 32000

and the number of training samples per surrogate class between 1 and 100. The results are shown in
Fig. 3 and 4. In Fig. 4 we also show, as a baseline, the classification performance of random filters
(all weights are sampled from a normal distribution with standard deviation 0.001, all biases are set
to zero). Initializing the random filters does not require any training data and can hence be seen as
using 0 samples per surrogate class. Error bars in Fig. 3 show the standard deviations computed
when testing on 10 folds of the STL-10 dataset.

An apparent trend in Fig. 3 is that increasing the number of surrogate classes results in an increase
in classification accuracy until it reaches an optimum at around 8000 surrogate classes. When the
number of surrogate classes is further increased the classification results do not change or slightly
decrease. One explanation for this behavior is that the larger the number of surrogate classes be-
comes, the more these classes overlap. As a result of this overlap the classification problem becomes
more difficult and adapting the network to the surrogate task no longer succeeds. To check the valid-
ity of this explanation we also plot in Fig. 3 the classification error on the validation set (taken from
the surrogate data) computed after training the network. It rapidly grows as the number of surrogate
classes increases, supporting the claim that the task quickly becomes more difficult as the number
of surrogate classes increases.

Fig. 4 shows that classification accuracy increases with increasing number of samples per surrogate
class and saturates around 100 samples. It can also be seen that when training with small numbers
of samples per surrogate class, there is no clear indication that having more classes lead to better
performance. We hypothesize that the reason may be that with few training samples per class the
surrogate classification problem is too simple and hence the network can severely overfit, which
results in poor and unstable generalization to real classification tasks. However, starting from around
8�16 samples per surrogate class, the surrogate task gets sufficiently complicated and the networks
with more diverse training data (more surrogate classes) perform consistently better.

5

[Unsupervised feature learning by augmenting single images, Alexey 
Dosovitskiy, Jost Tobias Springenberg and Thomas Brox, NIPS 2014] 
 
 
 •  Take patches from images 

•  For each patch, make lots of 
 peturbed versions 

•  Treat each patch + peturbed copies as a 
separate classs 

•  Train supervised convnet 



Unsupervised Learning from Video 

•  Unsupervised Learning of Visual Representations using Videos, 
Xiaolong Wang, Abhinav Gupta, arXiv 1505.00687, 2015 

Unsupervised Learning of Visual Representations using Videos

Xiaolong Wang, Abhinav Gupta
The Robotics Institute, Carnegie Mellon University

{xiaolonw, abhinavg}@cs.cmu.edu

Abstract

Is strong supervision necessary for learning a good
visual representation? Do we really need millions of
semantically-labeled images to train a ConvNet? In this
paper, we present a simple yet surprisingly powerful ap-
proach for unsupervised learning of ConvNets. Specifically,
we use hundreds of thousands of unlabeled videos from the
web to learn visual representations. Our key idea is that
we track millions of patches in these videos. Visual track-
ing provides the key supervision. That is, two patches con-
nected by a track should have similar visual representation
in deep feature space since they probably belong to same
object or object part. We design a Siamese-triplet network
with a ranking loss function to train this ConvNet represen-
tation. Without using a single image from ImageNet, just us-
ing 100K unlabeled videos and the VOC 2012 dataset, we
train an ensemble of unsupervised networks that achieves
52% mAP (no bounding box regression). This performance
comes tantalizingly close to its ImageNet-supervised coun-
terpart, an ensemble which achieves a mAP of 54.4%. We
also show that our unsupervised network can perform com-
petitive in other tasks such as surface-normal estimation.

1. Introduction
What is a good visual representation and how can we

learn it? At the start of this decade, most computer vision
research focused on “what” and used hand-defined features
such as SIFT [29] and HOG [5] as the underlying visual
representation. Learning was often the last step where these
low-level feature representations were mapped to seman-
tic/3D/functional categories. However, the last three years
have seen the resurgence of learning visual representations
directly from pixels themselves using the deep learning and
ConvNets [25, 21, 20]. At the heart of ConvNets is a com-
pletely supervised learning paradigm. Often millions of ex-
amples are first labeled using Mechanical Turk followed by
data augmentation to create tens of millions of training in-
stances. ConvNets are then trained using gradient descent

… … … … 

Learning to Rank 

Conv 
Net 

Conv 
Net 

Conv 
Net 

Query 
(First Frame) 

Tracked 
(Last Frame) 

Negative  
(Random) 

(a) Unsupervised Tracking in Videos  

𝐷 , 𝐷 , 

𝐷 , 𝐷 , 

𝐷: Distance in deep feature space 

(b) Siamese-triplet Network (c) Ranking Objective  

Figure 1. Overview of our approach. (a) Given unlabeled videos,
we perform unsupervised tracking on the patches in them. (b)
Triplets of patches including query patch in the initial frame of
tracking, tracked patch in the last frame, and random patch from
other videos are fed into our siamese-triplet network for train-
ing. (c) The learning objective: Distance between the query and
tracked patch in feature space should be smaller than the distance
between query and random patches.

and back propagation. But one question still remains: is
strong-supervision necessary for training these ConvNets?
Do we really need millions of semantically-labeled images
to learn a good visual representation? It seems humans can
learn visual representations using little or no semantic su-
pervision but our current learning approaches still remain
completely supervised.

In this paper, we explore the alternative: how we can ex-
ploit the unlabeled visual data on the web to train ConvNets
(e.g. AlexNet [21])? In the past, there have been several at-
tempts at unsupervised learning using millions of static im-
ages [23, 41] or frames extracted from videos [50, 44, 31].
The most common architecture used is an auto-encoder
which learns representations based on its ability to recon-
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Generative Adversarial Networks 

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Adversarial nets framework

16
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[Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014] 

[Slide: Ian 
Goodfellow, Deep 
Learning workshop, 
ICML 2015] 



Generative Adversarial Networks 
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• Minimax value function:

Zero-sum game

17

In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3
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[Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014] 

[Slide: Ian Goodfellow, Deep Learning workshop, 
ICML 2015] 
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In other words, D and G play the following two-player minimax game with value function V (G,D):

min

G

max

D

V (D,G) = E
x⇠pdata(x)[logD(x)] + E

z⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p

x

from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D

⇤(x) =
pdata(x)

pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution p

g

as the distribution of the samples
G(z) obtained when z ⇠ p

z

. Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for p
g

= pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.

3

Poorly fit model After updating D After updating G Mixed strategy
equilibrium

Data distribution
Model distribution

D(x)

[Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, 
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014] 

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015] 



Adversarial Network Samples 

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Visualization of model samples 

25

MNIST TFD

CIFAR-10 (fully connected) CIFAR-10 (convolutional)



Adversarial Network using 
 Laplacian Pyramid 

Deep Learning Workshop, ICML 2015 --- Ian Goodfellow

Laplacian Pyramid

37

(Denton + Chintala, et al 2015)

•  [Denton + Chintala, et al. arXiv 1506.05751, 2015]  



Adversarial Network using 
 Laplacian Pyramid 

•  [Denton + Chintala, et al. arXiv 1506.05751, 2015]  

Figure 5: 64 ⇥ 64 samples from three different LSUN LAPGAN models (top: tower, middle: bed-
room, bottom: church front). The first column shows the 4⇥ 4 validation set image used to start the
generation process, with subsequent columns showing different draws from the model.
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Memory in Neural Networks 

Sainbayar Sukhbaatar 



Introduction 

•  Recently, there has been lot of  interest in 
incorporating memory and attention to neural 
networks 
– Memory Networks, NTM, Learning to attend … 

•  Neural networks are not good at remembering 
things, especially when input is large but only 
part of  it is relevant 

•  Adding external memory and learning to attend 
on important part is key 



Outline 

•  Implicit Internal memory 
– RNN, LSTM 

•  Explicit External memory 
– MemNN, NTM 

•  Attention models 
– MT, Speech, Image, Pointer Network 



Implicit Internal Memory 

•  Internal state of  the model can be used for memory 
– Recurrent Neural Networks (RNNs) 

•  Computation and memory is mixed 
– Complex computation requires many layers of  non-

linearity 
– But some information is lost with each non-linearity 
– Gradient vanishing, Catastrophic forgetting 

tanh + ht-1 ht 

xt 

linear 



Ways to Prevent Forgetting in RNNs 

•  Split state into fast and slow changing parts:  structurally 
constrained recurrent nets (Mikolov et al., 2014) 
–  Fast changing part is good for computation 
–  Slow changing part is good for storing information 

•  Gated units for internal state 
–  Control when to forget/write using gates 
–  Long-short term memory (LSTM) (see Graves, 2013) 
–  Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014) 

•  Other problems 
–  Memory capacity is fixed and limited by the dimension of  state 

vector (computation is O(N2) where N is memory capacity)  
–  Vulnerable to distractions in inputs 
–  Restricted to sequential inputs 



Stack memory for RNN 
(Joulin et al., 2014) 

•  Added a stack module to RNN, which can hold a list of  
vectors 

•  Action on stack: push, pop and no-op 
•  More powerful with multiple stacks 
•  Stack are updated in continuous manner à differentiable 
à trainable by backpropagation + search 

•  Applied to counting, memorization, binary addition 



External Global Memory 
•  Separate memory from computation  

– Add separate memory module for storage 
– Memory contains list/set of  items 

•  Main module can read and write to the memory 
•  Advantage: long-term, scalable, flexible 

Memory 
module 

Main 
module 

read 

write 

input 

output 



Selective Addressing is Key for Memory 

•  Often, you only want to interact with few items in 
memory at once 
–  Memory needs some addressing mechanism 

•  Memory addressing types 
–  Soft or hard addressing 

•  Soft addressing can be trained by backpropagation 
•  Hard addressing is not differentiable (e.g. can be trained with 

reinforcement learning or additional training signal for where to 
attend) 

–  Context and Location based addressing 
•  When input is ordered in some way, location based addressing is 

useful 
•  Location addressing is same as context if  location is embedded in the 

context (e.g. MemN2N) 



Memory Networks  
(Weston et al., 2014) 

•  Neural network with large external memory 
•  Writes everything to the memory, but reads only relative 

information 
•  Hard addressing: max of  the inner product between then 

internal state and memory contents 
•  Location based addressing: can compare two memory items 

by their relative location 
•  Can perform multiple memory lookups (hops) before 

producing an output 
•  Requires additional training signals for training hard 

addressing 
•  Applied to toy and large-scale QA tasks 



MAX 

Embed 

Input text 

output 

Decoder 

Addressing 

Internal 
state vector 

Where is John John is in office Bob is in kitchen Mary is in garden 
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End-to-end Memory Networks 
(Sukhbaatar et al., 2015) 

•  Soft addressing: replaced hard max with 
softmax 

•  End-to-end training: softmax is differentiable à 
can train with backpropagation 

•  Location addressing: location/time is embedded 
into the context (special words for “Time=4”) 

•  Applied to toy QA and language modeling  



words. The model writes all x to the memory up to a fixed buffer size, and then finds a continuous
representation for the x and q. The continuous representation is then processed via multiple hops
to output a. This allows back-propagatation of the error signal through multiple memory accesses
back to the input during training.

2.1 Single Layer
We start by describing our model in the a single layer case, which implements a single memory hop
operation. We then show it can be stacked to give multiple hops in memory.

Input memory representation: Suppose we are given an input set x1, .., xi to be stored in memory.
The memory vector mi of dimension d is computed by first embedding each xi in a continuous
space, in the simplest case, using an embedding matrix A (of size d ⇥ V ). Thus, the entire set of
{xi} are converted into memory vectors {mi}. The query q is also embedded (again, in the simplest
case via another embedding matrix B with the same dimensions as A) to obtain an internal state
u. In the embedding space, we compute the match between u and each memory mi by taking the
inner product followed by a softmax:

pi = Softmax(uTmi). (1)

where Softmax(zi) = ezi/
P

j e
zj . Defined in this way p is a probability vector over the inputs.

Output memory representation: Each xi has a corresponding output vector ci (given in the
simplest case by another embedding matrix C). The response vector from the memory o is then a
sum over the ci, weighted by the probability vector from the input:

o =
X

i

pici. (2)

Because the function from input to output is smooth, we can easily compute gradients and back-
propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:

2

Single Memory Lookup 

End-to-end Memory Networks 
(Sukhbaatar et al., 2015) 
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propagate through it. Other recently proposed forms of memory or attention take this approach,
notably Bahdanau et al. [2] and Graves et al. [8], see also [9].

Generating the final prediction: In the single layer case, the sum of the output vector o and the
input embedding u is then passed through a final weight matrix W (of size V ⇥ d) and a softmax
to produce the predicted label:

â = Softmax(W (o+ u)) (3)

The overall model is shown in Fig. 1(a). During training, all three embedding matrices A, B and C,
as well as W are jointly learned by minimizing a standard cross-entropy loss between â and the true
label a. Training is performed using stochastic gradient descent (see Section 4.2 for more details).
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Figure 1: (a): A single layer version of our model. (b): A three layer version of our model. In
practice, we can constrain several of the embedding matrices to be the same (see Section 2.2).
2.2 Multiple Layers
We now extend our model to handle K hop operations. The memory layers are stacked in the
following way:
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End-to-end Memory Networks 
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RNN viewpoint of  End-to-End MemNN 

RNN 

RNN 

Memory 

All input 

Place all inputs in the memory. Let the 
model decide which part it reads next. 

Input sequence 

Inputs are fed to RNN one-by-one in 
order. RNN has only one chance to 
look at a certain input symbol. 

Plain RNN Memory Network 

Addressing signal 

Selected input 



Attention during memory lookups 

6WRU\�������VXSSRUWLQJ�IDFW� 6XSSRUW +RS�� +RS�� +RS�� 6WRU\�������VXSSRUWLQJ�IDFWV� 6XSSRUW +RS�� +RS�� +RS��
'DQLHO�ZHQW�WR�WKH�EDWKURRP� ���� ���� ���� -RKQ�GURSSHG�WKH�PLON� ���� ���� ����
0DU\�WUDYHOOHG�WR�WKH�KDOOZD\� ���� ���� ���� -RKQ�WRRN�WKH�PLON�WKHUH� \HV ���� ���� ����
-RKQ�ZHQW�WR�WKH�EHGURRP� ���� ���� ���� 6DQGUD�ZHQW�EDFN�WR�WKH�EDWKURRP� ���� ���� ����
-RKQ�WUDYHOOHG�WR�WKH�EDWKURRP� \HV ���� ���� ���� -RKQ�PRYHG�WR�WKH�KDOOZD\� \HV ���� ���� ����
0DU\�ZHQW�WR�WKH�RIILFH� ���� ���� ���� 0DU\�ZHQW�EDFN�WR�WKH�EHGURRP� ���� ���� ����

6WRU\������EDVLF�LQGXFWLRQ� 6XSSRUW +RS�� +RS�� +RS�� 6WRU\������VL]H�UHDVRQLQJ� 6XSSRUW +RS�� +RS�� +RS��
%ULDQ�LV�D�IURJ� \HV ���� ���� ���� 7KH�VXLWFDVH�LV�ELJJHU�WKDQ�WKH�FKHVW� \HV ���� ���� ����
/LO\�LV�JUD\� ���� ���� ���� 7KH�ER[�LV�ELJJHU�WKDQ�WKH�FKRFRODWH� ���� ���� ����
%ULDQ�LV�\HOORZ� \HV ���� ���� ���� 7KH�FKHVW�LV�ELJJHU�WKDQ�WKH�FKRFRODWH� \HV ���� ���� ����
-XOLXV�LV�JUHHQ� ���� ���� ���� 7KH�FKHVW�ILWV�LQVLGH�WKH�FRQWDLQHU� ���� ���� ����
*UHJ�LV�D�IURJ� \HV ���� ���� ���� 7KH�FKHVW�ILWV�LQVLGH�WKH�ER[� ���� ���� ����

:KHUH�LV�-RKQ"���$QVZHU��EDWKURRP����3UHGLFWLRQ��EDWKURRP :KHUH�LV�WKH�PLON"���$QVZHU��KDOOZD\����3UHGLFWLRQ��KDOOZD\

:KDW�FRORU�LV�*UHJ"��$QVZHU��\HOORZ����3UHGLFWLRQ��\HOORZ 'RHV�WKH�VXLWFDVH�ILW�LQ�WKH�FKRFRODWH"���$QVZHU��QR����3UHGLFWLRQ��QR

Figure 2: Example predictions on the QA tasks of [21]. We show the labeled supporting facts
(support) from the dataset which MemN2N does not use during training, and the probabilities p of
each hop used by the model during inference. MemN2N successfully learns to focus on the correct
supporting sentences.

Penn Treebank Text8
# of # of memory Valid. Test # of # of memory Valid. Test

Model hidden hops size perp. perp. hidden hops size perp. perp.
RNN [15] 300 - - 133 129 500 - - - 184
LSTM [15] 100 - - 120 115 500 - - 122 154
SCRN [15] 100 - - 120 115 500 - - - 161
MemN2N 150 2 100 128 121 500 2 100 152 187

150 3 100 129 122 500 3 100 142 178
150 4 100 127 120 500 4 100 129 162
150 5 100 127 118 500 5 100 123 154
150 6 100 122 115 500 6 100 124 155
150 7 100 120 114 500 7 100 118 147
150 6 25 125 118 500 6 25 131 163
150 6 50 121 114 500 6 50 132 166
150 6 75 122 114 500 6 75 126 158
150 6 100 122 115 500 6 100 124 155
150 6 125 120 112 500 6 125 125 157
150 6 150 121 114 500 6 150 123 154
150 7 200 118 111 - - - - -

Table 2: The perplexity on the test sets of Penn Treebank and Text8 corpora. Note that increasing
the number of memory hops improves performance.

Figure 3: Average activation weight of memory positions during 6 memory hops. White color
indicates where the model is attending during the kth hop. For clarity, each row is normalized to
have maximum value of 1. A model is trained on (left) Penn Treebank and (right) Text8 dataset.

5 Language Modeling Experiments
The goal in language modeling is to predict the next word in a text sequence given the previous
words x. We now explain how our model can easily be applied to this task.

We now operate on word level, as opposed to the sentence level. Thus the previous N words in the
sequence (including the current) are embedded into memory separately. Each memory cell holds
only a single word, so there is no need for the BoW or linear mapping representations used in the
QA tasks. We employ the temporal embedding approach of Section 4.1.

Since there is no longer any question, q in Fig. 1 is fixed to a constant vector 0.1 (without
embedding). The output softmax predicts which word in the vocabulary (of size V ) is next in the
sequence. A cross-entropy loss is used to train model by backpropagating the error through multiple
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Average over Text8 
(Wikipedia) 

Samples from toy QA tasks (bAbI dataset) 

Penn Tree Text8 

RNN 129 184 

LSTM 115 154 

MemN2N 111 147 

Test perplexity 

Test error Failed tasks 

MemNN 6.7% 4 

LSTM 51% 20 

MemN2N 12.4% 11 

Result 



Neural Turing Machine 
(Graves et al., 2014) 

•  Learns how to write to the memory 
•  Soft addressing à backpropagation training 
•  Location addressing: small continuous shift of  attention 
•  Complex addressing mechanism: need to sharpen after convolution 
•  Controller can be LSTM-RNN or feed-forward neural network 
•  Applied to learn algorithms such as sort, associative recall and copy. 
•  Hard addressing with reinforcement learning (Zaremba et al., 2015) 



RNNsearch: Attention in Machine 
Translation (Bahdanau et al., 2015)  

•  RNN based encoder and decoder model 
•  Decoder can look at past encoder states using soft attention 
•  Attention mechanism is implement by a small neural network 

–  It takes the current decoder state and a past encoder state and outputs a 
score. Then the all scores are fed to softmax to get attention weights 

•  Applied to machine translation. Significant improvement in translation 
of  longer sentences 

Significant improvement on long sentences 

Attention 
weights 
during 
English to 
French 
machine 
translation 



Image caption generation with attention 
(Xu et al., 2015) 

•  Encoder: lower convolutional layer of  a deep ConvNet (because need spatial 
information) 

•  Decoder: LSTM RNN with soft spatial attention 
–  Decoder state and encoder state at single location are fed to small NN to get score 

at that location   
•  Network attends to the object when it is generating a word for it 
•  Also hard attention is tried with reinforcement learning 



Video description generation 
(Yao et al., 2015) 

(bottom: ground truth) 



Location-aware attention for speech  
(Chorowski et al., 2015) 

•  RNN based encoder-decoder model with attention 
(similar to RNNsearch) 

•  Location based addressing: previous attention weights are 
used as feature for the current attention (good when 
subsequent  attention locations are highly correlated) 

•  Improvement with sharpening and smoothing of  
memory addressing 



Pointer Network: attention as an output 
(Vinyals et al., 2015) 

•  RNN based encoder-decoder model for discrete optimization 
problems 

•  Decoder can attend to previous encoder states (similar to 
RNNsearch, content based soft attention by a small NN) 

•  Rather than fixed output classes, attention weights determine 
output 

•  Input to the most attended encoder state becomes an output 
à can output any sequence of  inputs 

 



Resources 

•  EMNLP 2014 tutorial 
–  http://emnlp2014.org/tutorials.html#embedding 

•  CVPR2014 deep learning tutorial 
–  https://sites.google.com/site/deeplearningcvpr2014/ 

•  ICML 2013 deep learning tutorial 
–  http://www.cs.nyu.edu/~yann/talks/lecun-ranzato-

icml2013.pdf  



Software 

•  Caffe (http://caffe.berkeleyvision.org/) 
–  Vision-centric 

•  Torch (http://torch.ch/) 
–  Lua-based library for Deep Learning 
–  Currently used by FAIR and Google Deep Mind 

•  Theano (http://deeplearning.net/software/theano/) 
–  Automatic differentiation 
–  Python-based  
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FAIR Overview 
Facebook AI Research 
▪  Toward Artificial Intelligence  (AI), with Machine Learning. 

▪  Established Dec 2013 (1.5 year old) 

▪  initiative of CEO and CTO 

▪  lead by Yann Lecun 



FAIR Overview 
Facebook AI Research 
▪  ~35 researcher scientists 

▪  Machine Learning, Computer Vision and Natural Language 
Processing 

▪  ~15 research engineers 

▪  Software support, prototyping, interaction with product teams… 

▪  Locations: 

▪  New York City 

▪   Menlo Park (HQ) 

▪  Paris 



FAIR Mission 
Facebook AI Research 
▪  Advance the state of the art of AI 

▪  Publish research in best conferences and journals 

▪  Open-source code release 

▪  Produce software tools for AI research and applications 

▪  Help FB products to leverage advances in AI 

▪  Software prototyping, architecting, interaction with product 
teams… 



Machine Learning @ FB 

▪  Computer Vision 

▪  Face detection and identification  

▪  Object detection, scene classification 

▪  Video classification  

▪  Natural Language 

▪  Tag prediction for search, feed ranking, ad targeting 

▪  Computational Advertising 

▪  Ads targeting 

▪  User interest modeling 

FAIR Impact 



Huge Scale Deployment of  
Machine Learning 
§  1.4 billion monthly active users 

§  850 million daily active users   (1 in 7 people on Earth) 

§  More images uploaded than any other website 
§  400M+ new Facebook photos/day (no labels) 

§  60M+ Instagram images/day (most with hashtags) 

§  ~ 500 Billion photos total 

§  Face and Object recognition models applied to every 
image 

§  5M video uploads/day & growing rapidly 
§  More video playback than YouTube 



We are hiring! 

•  Internships 
▪  https://www.facebook.com/careers/department?

dept=grad&req=a0IA000000CzCGuMAN 

•  Postdoc positions 
▪  Ex-postdocs now faculty at Berkeley, Harvard 

•  Full-time positions 

•  https://research.facebook.com/ai  
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Neuroscience of  memory 

•  hippocampus 
– Densely connected 
– Vital for new memory formation 
– From few days to few years 
– Place / grid cells 

•  Neo-cortex 
– Can keep memory much longer 



Memory types 

•  Short-term memory (working memory) 
– Limited capacity 

•  Long term memory 
– Explicit / Declarative 

•  Semantic memory 
•  Episodic memory 

–  Implicit 
•  Procedural memory 
•  Priming 


