Overview for today

* Natural Language Processing with NNs [~15m]

— Supervised models

* Unsupervised Learning [~45m]

* Memory in Neural Nets [~30m]
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* Many different problems
— Language modeling

— Machine translation

_Q&A

* Recent attempts to address with neural nets

— Yet to achieve same dramatic gains as vision/speech



Language modeling

e Natural language is a sequence of
sequences

e Some sentences are more likely than others:

o "How are you ?” has a high probability
o "How banana you ? “ has a low probability

[Slide: Wojciech Zaremba]



Neural Network Language Models

Input output

layer

gy P(w; = 1|h;)

projection hidden
layer layer

Hut

.P[-w_? - '5|h.})

d P(w; = nlhy)

shared
projection

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).
Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

INPUT (t) QUTPUT (t)

3 CONTEXT (t)

\

CONTEXT (t-1)

Figure: Recurrent neural network based LM
Recurrent neural network based language model. Mikolov et al., Interspeech, '10.

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Recurrent neural networks - schema
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[Slide: Wojciech Zaremba]



Backpropagation through time

* The intuition is that we unfold the RNN in time

3
—

* We obtain deep neural network with shared
weights U and W wen)

[Slide: Thomas Mikolov, COLING 2014 ]




Backpropagation through time

* We train the unfolded RNN using normal
backpropagation + SGD

* In practice, we limit the number of

unfolding stepsto 5-10

* It is computationally more efficient to =

propagate gradients after few training '/

examples (batch mode) A

Tomas Mikolov, COLING 2014

[Slide: Thomas Mikolov, COLING 2014 ]
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NNLMS

vs. RNNS: Penn Treebank Results (Mikolov)
Model Weight | PPL
3-gram with Good-Turing smoothing (GT3) 0 165.2
5-gram with Kneser-Ney smoothing (KN5) 0 141.2
5-gram with Kneser-Ney smoothing + cache || 0.0792 | 125.7
Maximum entropy model 0 142.1
Random clusterings LM 0 170.1
Random forest LM 0.1057 | 131.9
Structured LM 0.0196 | 146.1
Within and across sentence boundary LM 0.0838 | 116.6
Log-bilinear LM 0 144.5
Feedforward NNLM 0 140.2
Syntactical NNLM 0.0828 | 131.3
Combination of static RNNLMs 0.3231 | 102.1
Combination of adaptive RNNLMs 0.3058 | 101.0
ALL 1 83.5

Recent uses of NNLMs and RNNs to improve machine translation:

Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL '14.

Also Kalchbrenner '13, Sutskever et al., '14., Cho et al., '14. .

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]




Language modelling — RNN samples

the meaning of life is that only if an end would
be of the whole supplier. widespread rules are
regarded as the companies of refuses to
deliver. in balance of the nation’s information
and loan growth associated with the carrier
thrifts are in the process of slowing the seed
and commercial paper.

[Slide: Wojciech Zaremba]



More depth gives more power

Lt42

Lt41

[Slide: Wojciech Zarembal]



LSTM - Long Short Term Memory

[Hochreiter and Schmidhuber, Neural Computation 1997]

e Ad-hoc way of modelling

long dependencies '\\ / \/

e Many alternative ways of Output
modelling it

e Next hidden state is piz
modification of previous .G ~h

hidden state (so modulation
information doesn’t decay aile @F .

orget gate
too fast).

For simple explanation, see [Recurrent Neural Network Regularization,
Wojciech Zaremba, llya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014]

[Slide: Wojciech Zaremba]



RNN-LSTMs for Machine Translation

W X Y Z <E0S>
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[Sutskever et. al. (2014)]

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP
2014

[Slide: Wojciech Zaremba]



Visualizing Internal Representation

t-SNE projection of network state at end of input sentence

18
O | was given a card by her in the garden
10 O In the garden , she gave me a card
O She gave me a card in the garden
5 -
0 -
-5r O She was given a card by me in the garden
O In the garden , | gave her a card
_10 -
_15 - .
O | gave her a card in the garden
_20 1 1 Il 1 1 1 )
-16 -10 =5 0 5 10 15 20

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014



Translation - examples

e FR: Les avionneurs se querellent au sujet de la largeur des sieges alors que
de grosses commandes sont en jeu

e Google Translate: Aircraft manufacturers are quarreling about the seat width
as large orders are at stake

e L STM: Aircraft manufacturers are concerned about the width of seats while
large orders are at stake

e Ground Truth: Jet makers feud over seat width with big orders at stake

[Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014]

[Slide: Wojciech Zaremba]



Image Captioning: Vision + NLP

——
I._,.

Generate short text descriptions of m
image, given just picture. X \V

Use Convnet to extract image features

RNN or LSTM model takes image
features as input, generates text

woman, crowd, cat,
camera, holding, purple

A purple camera with a woman.
A woman holding a camera in a crowd.

A woman holding a cat.

#1 A woman holding a

"“i'“zi‘“i ﬁ i*“i_* camerain a crowd.

Many recent works on this:

« Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks

« Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

» Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
* Google: Show and Tell: A Neural Image Caption Generator

« Stanford: Deep Visual-Semantic Alignments for Generating Image Description

« UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks

» Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation

* Microsoft: From Captions to Visual Concepts and Back



Image Captioning Examples

[person (0.55)] [street (0.53)] [holding rouf [slope (0.51)]
[snow (0.91)] [skis (0.74)] [player (0.54)]

[people (0.85)] [men (0.57)] [skiing (0.51)]

[skateboard (0.89)] [riding (0.75)] [tennis (0.74)] [trick (O
[man (0.86)] [down (0.61)]

a group of people riding skis down a snow covered slope

a guy on a skate board on the side of a ramp

[men (0.59)) Igrou/p (0.66)] ([woman (0.64)]

f L ) Iding [playing (0.61)]

[court (0.51)] [standing (0.59)] [skis (0.58)] [street (0.52)]
[man (0.77)) [skateboard (0.67)]

a group of people standing next to each other

people stand outside a large ad for gap featuring a young boy

53)] [skate (0.52)]

[fire (0.96)] [hydrant (0.96)] [street (0.79)] [«

[bench (0.81)] [standing (0.57)] [baseball (0.55)]
[white (0.82)] [sitting (0.65)] [people (0.79)] [photo (0.53)]

- 1)] [k [man (0.72)]
a black and white photo of a fire hydrant
a courtyard full of poles pigeons and garbage cans also has benches on
either side of it one of which shows the back of a large person facin
g in the direction of the pigeons

—— =i :
[horse (0.53)] [bear (0.71)] [elephant (0.99)] [elephant
[brown (0.68)] [laying (0.61)]
[man (0.57)] [standing (0.79)] [field (0.65)]
[water (0.83)] [large (0.71)] [dirt (0.65)] [river (0.58)]
a baby elephant standing next to each other on a field
elephants are playing together in a shallow watering hole

From Captions to Visual Concepts and Back, Hao Fang* Saurabh Gupta* Forrest landola* Rupesh K. Srivastava*, Li Deng Piotr
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015.




Unsupervised Learning



Motivation

* Most successes obtained with supervised
models, e.g. Convnets

* Unsupervised learning methods less successtul

* But likely to be very important in long-term



Historical Note

* Deep Learning revival started in ~2006
— Hinton & Salakhudinov Science paper on RBMs

* Unsupervised Learning was focus from

2006-2012

* In ~2012 great results in vision, speech with
supervised methods appeared

— Less interest in unsupervised learning



Arguments for Unsupervised Learning

* Want to be able to exploit unlabeled data
— Vast amount of it often available

— Essentially free

* Good regularizer for supervised learning
— Helps generalization
— Transfer learning

— Zero / one-shot learning



Another Argument for
Unsupervised Learning

When we're learning to see, nobody’s telling us what the right
answers are — we just look. Every so often, your mother says
“that’s a dog”, but that’s very little information.

Youd be lucky if you got a few bits of information — even one
bit per second — that way. The brain’s visual system has 1014
neural connections. And you only live for 107 seconds.

So it’s no use learning one bit per second. You need more like
10° bits per second. And there’s only one place you can get that
much information: from the input itself.

— Geoftrey Hinton, 1996



Taxonomy of Approaches

Autoencoder (most unsupervised Deep Learning

methods) —
— RBMs / DBMs

— Denoising autoencoders
— Predictive sparse decomposition

Decoder-only
— Sparse coding

— Deconvolutional Nets
Encoder-only

— Implicit supervision, e.g. from video
Adversarial Networks

—

I.oss involves

_ some kind

of reconstruction
error



Auto-Encoder

Output Features

Feed-back /

generative / Feed-forward /
top-down bottom-up path
path

Input (Image/ Features)



Auto-Encoder Example 1

* Restricted Boltzmann Machine [Hinton 02 ]

(Binary) Features Z

Decoder Encoder

filters WT filters W

Sigmoid Sigmoid
function 07(.) function o(.)

(Binary) Input X



Auto-Encoder Example 2

* Predictive Sparse Decomposition [Ranzato et al., ‘07]

Sparse Features Z

I

L,

Spars1ty Encoder
filters W

Decoder
filters D Sigmoid

function o(.)

4

|

Input Patch X



Auto-Encoder Example 2

* Predictive Sparse Decomposition [Kavukcuoglu et al.,‘09]

Sparse Features Z

L1 Encoder

Sparsity filters W

Decoder Sigmoid
filters D function o(.)

min ||Dz — z||5 + Mz|1 + ||lc(Wz) — 2|3
D,W,2 N e e e’

Decoder Encoder



Stacked Auto-Encoders

Two phase training: Class label

1.Unsupervised * *

layer_“fls.e
pre-tramning

2. Fine-tuning with ! I
labeled data

[Hinton & Salakhutdinov l I

Science ‘06] Input Image




Training phase 2: Supervised Fine-Tuning

Class label

 Remove decoders

* Use feed-forward path

* Gives
standard(Convolutional)
Neural Network

Features

e (Can fine-tune with

backprop
[Hinton & Salakhutdinov

Science ‘06] Input Image

¥




Effects of Pre-Training

* From [Hinton & Salakhudinov, Science 2006 ]

Big network Small network

Randomly Initialized
Autoencoder

-

Randomly Initialized
Autoencoder

-

=y

Y
o

00

1S 1
e (<
1™ £
L L
c c
2 S
° ©
2 2
® 7]
5 5
o (3]
(3] [ ]
o o
© ©
() (]
S E
© @©
=2 =
O O
"] ")

Pretrained Autoencoder
Pretrained Autoencoder

100 150 200 250 300 350 400 450 500
Number of Epochs

100 150 200 250 300 350 400 450 500
Number of Epochs

See also: Why Does Unsupervised Pre-training Help Deep Learning?
Dumitru Erhan, Yoshua Bengio ,Aaron Courville, Pierre-Antoine Manzagol

PIERRE-Pascal Vincent, Sammy Bengio, JMLR 2010



Deep Boltzmann Machines

. Class label Salakhutdinov & Hinton
Undirected model ATSTATS00

¥

Features

Both pathways
used at train &

test time

TD modulation

of
BU features Input Image

LU




Shape Boltzmann Machine
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Figure 2. Undirected models of shape: (a) 1D slice of a Markov
Random Field. (b) Restricted Boltzmann Machine in 1D. (c) Deep
Boltzmann Machine in 1D. (d) 1D slice of a Shape Boltzmann
Machine. (e) Shape Boltzmann Machine in 2D.
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“Ihe Shape Boltzmann Machine: a Strong Model of Object
Shape”; Ali Eslami, Nicolas Heess and John Winn, CVPR 2012




Variational Auto-Encoder

* [Kingma & Welling, ICLR 2014]

Sample from
qa(z)

Differentiable Differentiable
encoder decoder

x sampled

Maximizelogp(x) — Dk (¢(Z |lp(z | x))
(Kingma and Welling, 2014, Rezende et al 2014)
[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]




Decoder-Only Models

* Examples:
— Sparse coding
— Deconvolutional Networks [Zeiler & Fergus, ‘10]

* No encoder to compute features

* So need to perform optimization
— Can be relatively fast



Sparse Coding (Patch-based)

of input y using dictionary D

Input

* /; regularization yields solutions
with few non-zero elements

* Output is sparse vector: z = [0,0.3,0,...,0.5,...,0.2,...,0]



Deconvolutional Network Layer

* Convolutional form of sparse coding

| Zeiler & Fergus, CVPR 2010].
Also Kavukcuoglu et al. NIPS 2010
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Overall Architecture (2 layers)
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Generative Models using Convnets

* Learning to Generate Chairs with Convolutional Neural
Networks, Alexey Dosovitskiy, Jost Tobias Springenberg and
Thomas Brox, 1411.5928, 2014

* Supervised training of convnet to draw chairs

Euclidean error x 10

uconv-4 Target RGB

(transformed)

\
A

| ¥
&
L P
L
4

Target
segmentation = 4} \':
(transformed) (.\ 159 '—T
e
transf. 1024 1024 - e e A . - -

param.

e

8 1536

512

Euclidean errorx 1



Some other interesting
generative models

* "Generative Image Modeling Using Spatial LSTMs”, L. Theis and M.
Bethge, arXiv 1506.03478, 2015

« “Texture synthesis and the controlled generation of natural stimuli using
convolutional neural networks”, Leon A. Gatys, Alexander S. Ecker,

Matthias Bethge, . arXiv:1505.07376, 2015

© |
=
=2
.
o




Encoder-Only Models

* In vision setting, essentially a convnet trained
without explicit class labels

* Learn invariances
* Unsupervised feature learning by augmenting single images,

Alexey Dosovitskiy, Jost Tobias Springenberg and Thomas
Brox, NIPS 2014

e J.earn from video

* Unsupervised Learning of Visual Representations using Videos

Xiaolong Wang, Abhinav Gupta, arXiv 1505.00687, 2015



Unsupervised Learning of
Transformations

[Unsupervised feature learning by augmenting single images, Alexey

Dosovitskiy, Jost Tobias Springenberg and Thomas Brox, NIPS 2014]
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Unsupervised Learning from Video

* Unsupervised Learning of Visual Representations using Videos,

Xiaolong Wang, Abhinav Gupta, arXiv 1505.00687, 2015

Query Tracked Negative D pistance in deep feature space
(First Frame) (Last Frame) (Random)

(b) Siamese-triplet Network (c) Ranking Objective



Generative Adversarial Networks

[Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]

D tries to D tries to
output 1 output O
f f
Differentiable Differentiable
function D function D
f f
x sampled x sampled
from data from model
?
Differentiable
function G
02, ?
Input noise
. 0 Z
ide: Ian

111 Ty



Generative Adversarial Networks

[ Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]

e Minimax value function:

m(;n mgXV(D, G) = Fo o piu () log D(x)] + Bznp.(2) log(1 — D(G(2)))]

A

Discriminator  Discriminator’s Discriminator’s
pushes up ability to ability to
recognize data as recognize
Generator being real generator
pushes

| | samples as being
d OoOWnN [Slide: Ian Goodfellow, Deep Learning workshop,
ICML 2015] fake



Generative Adversarial Networks

| Generative Adversarial Nets, Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu,
David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, NIPS 2014]

D(x) Data distribution
l / Model distribution

...............................

° N
° [ \‘
\
\
L e
, |
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Poorly fit model After updating D After updating G~ Mixed strategy
equilibrium

[Slide: Ian Goodfellow, Deep Learning workshop, ICML 2015]



Adversarial Network Samples

T
puEpoag |
pOONEH |

é

CIFAR-10 (fully connected) CIFAR-10 (convolutional)



Adversarial Network using
Laplacian Pyramid




Adversarial Network using
Laplacian Pyramid
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Memory in Neural Networks

Sainbayar Sukhbaatar




Introduction

* Recently, there has been lot of interest in
incorporating memory and attention to neural

networks
— Memory Networks, NTM, Learning to attend ...

* Neural networks are not good at remembering
things, especially when input is large but only
part of it is relevant

* Adding external memory and learning to attend
on important part is key



Outline

* Implicit Internal memory
— RNN, LSTM

* Explicit External memory
— MemNN, NTM

e Attention models

— MT, Speech, Image, Pointer Network



Implicit Internal Memory

* Internal state of the model can be used for memory
— Recurrent Neural Networks (RNNs)

—>@—# linear 5—> tanh 4>®—>

* Computation and memory is mixed

— Complex computation requires many layers of non-
linearity

— But some information 1s lost with each non-linearity

— Gradient vanishing, Catastrophic forgetting



Ways to Prevent Forgetting in RNNs

* Split state into fast and slow changing parts: structurally
constrained recurrent nets (Mikolov et al., 2014)

— Fast changing part 1s good for computation
— Slow changing part is good for storing information
e Gated units for internal state
— Control when to forget/write using gates
— Long-short term memory (LSTM) (see Graves, 2013)
— Simpler Gated Recurrent Unit (GRU) (Cho et al., 2014)

* Other problems

— Memory capacity is fixed and limited by the dimension of state
vector (computation is O(N?) where N is memory capacity)

— Vulnerable to distractions in inputs
— Restricted to sequential inputs



Stack memory for RNN

(Joulin et al., 2014)
Added a stack module to RNN, which can hold a list of

Vectors
Action on stack: push, pop and no-op
More powertul with multiple stacks

Stack are updated in continuous manner =2 differentiable
—> trainable by backpropagation + search

Applied to counting, memorization, binary addition

input hidden output

st1[0] A st[0]

stack(t-1) stack(t)



External Global Memory

* Separate memory from computation
— Add separate memory module for storage

— Memory contains list/set of items

output

t

\ 4
read
Memory Main
module J< m—— module
\_

input

* Main module can read and write to the memory

* Advantage: long-term, scalable, tlexible



Selective Addressing is Key for Memory

* Often, you only want to interact with few items in
memory at once

— Memory needs some addressing mechanism
* Memory addressing types
— Soft or hard addressing

* Soft addressing can be trained by backpropagation

* Hard addressing is not differentiable (e.g. can be trained with

reinforcement learning or additional training signal for where to
attend)

— Context and Location based addressing

* When input is ordered in some way, location based addressing is
useful

* Location addressing is same as context if location is embedded in the
context (e.g. MemN2N)



Memory Networks
(Weston et al., 2014)

Neural network with large external memory

Writes everything to the memory, but reads only relative
information

Hard addressing: max of the inner product between then
internal state and memory contents

Location based addressing: can compare two memory items
by their relative location

Can perform multiple memory lookups (hops) before
producing an output

Requires additional training signals for training hard
addressing

Applied to toy and large-scale QA tasks



Memory

Decoder

Embed

L

Mary is in garden

S

Internal
state vector

Embed

T Input text

' Where is John

_______________________



End-to-end Memory Networks
(Sukhbaatar et al., 2015)

Sott addressing: replaced hard max with
softmax

End-to-end training: softmax is differentiable =
can train with backpropagation

Location addressing: location/time is embedded
into the context (special words for “Iime=4")

Applied to toy QA and language modeling



End-to-end Memory Networks
(Sukhbaatar et al., 2015)
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End-to-end Memory Networks
(Sukhbaatar et al., 2015)
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RNN viewpoint of End-to-End MemNN

Plain RNN

RNN

|

Input sequence

Inputs are fed to RNN one-by-one in
order. RNN has only one chance to
look at a certain input symbol.

Memory Network
Selected input
Addressing signal Memory }>
All 1 1nput

Place all inputs in the memory. Let the
model decide which part it reads next.



Attention during memory lookups

What color is Greg? Answer: yellow Prediction: yellow

Does the suitcase fit in the chocolate? Answer: no Prediction: no

Samples from toy QA tasks (bAbI dataset) 1
Result
Story (1: 1 supporting fact) Support| Hop1 | Hop2 | Hop 3 Story (2: 2 supporting facts) Support| Hop 1 | Hop 2 | Hop 3 .
Daniel went to the bathroom. 0.00 0.00 0.03 John dropped the milk. 0.06 Test crror Falled tasks
Mary travelled to the hallway. 0.00 0.00 0.00 John took the milk there. yes 0.88
John went to the bedroom. 0.37 0.02 0.00 Sandra went back to the bathroom. 0.00
John travelled to the bathroom. yes 0.60 John moved to the hallway. yes 0.00 0
Mary went to the office. 0.01 0.00 0.00 Mary went back to the bedroom. 0.00 MCI’HNN 67 /0 4
Where is John? Answer: bathroom Prediction: bathroom Where is the milk? Answer: hallway Prediction: hallway
Story (16: basic induction) Support| Hop 1 Story (18: size reasoning) Support| Hop 1 LSTM 510/0 20
Brian is a frog. yes 0.00 The suitcase is bigger than the chest. yes 0.00
Lily is gray. 0.07 The box is bigger than the chocolate. 0.04
Brian is yellow. yes 0.07 The chest is bigger than the chocolate. yes 0.17 MCmNZN 12-40/0 11
Julius is green. 0.06 The chest fits inside the container. 0.00
Greg is a frog. yes 0.76 The chest fits inside the box. 0.00




Neural Turing Machine
(Graves et al., 2014)

* Learns how to write to the memory

* Soft addressing = backpropagation training

* Location addressing: small continuous shift of attention

* Complex addressing mechanism: need to sharpen after convolution
* Controller can be LSTM-RNN or feed-forward neural network

* Applied to learn algorithms such as sort, associative recall and copy.
* Hard addressing with reinforcement learning (Zaremba et al., 2015)
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RNNsearch: Attention in Machine
Translation (Bahdanau et al., 2015)

e RNN based encoder and decoder model

* Decoder can look at past encoder states using soft attention
* Attention mechanism is implement by a small neural network

— It takes the current decoder state and a past encoder state and outputs a
score. Then the all scores are fed to softmax to get attention weights

* Applied to machine translation. Significant improvement in translation
ot longer sentences

I Significant improvement on long sentences
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Image caption generation with attention

(Xu et al., 2015)

Encoder: lower convolutional layer of a deep ConvNet (because need spatial
information)

Decoder: LSTM RNN with soft spatial attention

— Decoder state and encoder state at single location are fed to small NN to get score
at that location

Network attends to the object when it is generating a word for it
Also hard attention is tried with reinforcement learning

B =
I et
P
1 .
2 . 2
ity G

A woman is throwing a frisbee in a park.

A stop sign is on a road with a
mountain in the background.

e

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
a teddy bear. in the water. trees in the background.



Video description generation

(Yao et al., 2015)

+Local+Global: A man and a woman are talking on the

Ref: A man and a woman ride a motorcycle
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+Local+Global: Someone is frying a fish in a

Ref: A woman is frying food

L. Yao, A. Torabi, K. Cho, N. Ballas, C. Pal, H. Larochelle, and
(bOttOfn: gfouﬁd trU—th) A. Courville, “Describing videos by exploiting temporal structure,”
arXiv: 1502.08029, 2015.



Location-aware attention for speech

(Chorowski et al., 2015)

e RNN based encoder-decoder model with attention
(similar to RNNsearch)

* Location based addressing: previous attention weights are
used as feature for the current attention (good when

subsequent attention locations are highly correlated)

* Improvement with sharpening and smoothing of
memory addressing

FDHCO _SX209: Michael colored the bedroom wall with crayons.
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Pointer Network: attention as an output

(Vinyals et al., 2015)

RNN based encoder-decoder model for discrete optimization
problems

Decoder can attend to previous encoder states (similar to
RNNsearch, content based soft attention by a small NN)

Rather than fixed output classes, attention weights determine
output

Input to the most attended encoder state becomes an output
—> can output any sequence of inputs

Ground Truth: tour length is 3.518 Predictions: tour length is 3.523




Resources

* EMNLP 2014 tutorial
— http://emnlp2014.org/ tutorials.html#embedding

* CVPR2014 deep learning tutorial
— https://sites.google.com/site/deeplearningcvpr2014/

* ICML 2013 deep learning tutorial

— http://www.cs.nyu.edu/~vann/talks/lecun-ranzato-
icml2013.pdf




Software

* Caffe (http://caffe.berkeleyvision.org/)

— Vision-centric

* Torch (http://torch.ch/)
— Lua-based library for Deep Learning
— Currently used by FAIR and Google Deep Mind

* Theano (http://deeplearning.net/software/theano/)
— Automatic differentiation
— Python-based
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FAIR Overview

Facebook Al Research

- Toward Artificial Intelligence (Al), with Machine Learning.
- Established Dec 2013 (1.5 year old)
- initiative of CEO and CTO

- lead by Yann Lecun




FAIR Overview

Facebook Al Research

- ~35 researcher scientists

- Machine Learning, Computer Vision and Natural Language
Processing

- ~15 research engineers
- Software support, prototyping, interaction with product teams...
- Locations: e
- New York City
- Menlo Park (HQ)

- Paris




FAIR Mission

Facebook Al Research
- Advance the state of the art of Al

- Publish research in best conferences and journals

- Open-source code release
- Produce software tools for Al research and applications

- Help FB products to leverage advances in Al

- Software prototyping, architecting, interaction with product

« N




FAIR Impact
Machine Learning @ FB

@I . Computer Vision

. Face detection and identification
- Object detection, scene classification

- Video classification

- Natural Language

- Tag prediction for search, feed ranking, ad targeting

n . Computational Advertising
- Ads targeting

- User interest modeling



Huge Scale Deployment of
Machine Learning

400M+ new Facebook photos/day (no labels)
60M+ Instagram images/day (most with hashtags)

~ 500 Billion photos total

More video playback than YouTube



We are hiring!

Internships

- https://www.facebook.com/careers/department?
dept=grad&req=a0lA000000CzCGuMAN

Postdoc positions

- Ex-postdocs now faculty at Berkeley, Harvard

Full-time positions

* https://research.facebook.com/ai
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Neuroscience of memory

* hippocampus
— Densely connected
— Vital for new memory formation
— From few days to few years

— Place / grid cells

e Neo-cortex

— Can keep memory much longer



Memory types

* Short-term memory (working memory)
— Limited capacity

* Long term memory
— Explicit / Declarative

* Semantic memory

* Episodic memory
— Implicit

* Procedural memory

* Priming



