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Overview 

  Look at some of the recent progress with Neural 
Net / Deep Learning models 
– Assume familiarity with basic neural nets  

  Non-exhaustive coverage   
– Huge number of recent papers 

  Draw on material from FAIR colleagues 
– Experts in NLP, speech etc. 
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Schedule 

  Overview       [~15m] 
  Vision         [~1h50m] 

– Convnets for image recognition 
– Other applications 

  Speech         [~5m] 
  NLP  (RNNs, LSTMs)   [~20m] 
  Unsupervised Learning    [~1h] 
  Memory in neural nets   [~30m] 



Motivation 

  A lot of recent successes with large neural 
networks, trained with supervision. 

  Feature learning crucial to performance in 
many tasks 

  Still many open problems however! 



Traditional ML Approach 

Hand-designed 
Feature 

Extraction 
Trainable 
Classifier 

Input  
Data 

  Features are not learned 

  Trainable classifier is often generic (e.g. SVM) 

Class 
Prediction 

For classification: 



Case Study: Object Recognition ~2010 

  Multitude of hand-designed features currently in use 
–  SIFT, HOG, LBP, MSER, Color-SIFT…………. 

  Where next? Better classifiers? Or keep building more 
features? 

Felzenszwalb,  Girshick,  
McAllester and Ramanan, PAMI 2007 

Yan & Huang  
(Winner of PASCAL 2010 classification competition) 



Hand-Crafted Features + SVM 

  LP-β  Multiple Kernel Learning 
– Gehler and Nowozin, On Feature Combination 

for Multiclass Object Classification, ICCV’09 
  39 different kernels 

– PHOG, SIFT, V1S+, 
Region Cov.  Etc.   

  MKL only gets  
 few % gain over  
 averaging features 

à Features are  
doing the work 



What Limits Performance? 

  Ablation studies on Deformable Parts Model  
–   Felzenszwalb, Girshick, McAllester, Ramanan, PAMI’10 

  Replace each part with humans (Amazon Turk): 

         
      

      
    

Parikh & Zitnick, CVPR’10 



  Learn hierarchy 

  All the way from pixels à classifier 

  One layer extracts features from output of previous layer 

What about Learning the Features? 

Layer 1 Layer 2 Layer 3 Image 
Pixels 

  Train all layers jointly 

Trainable 
Classifier 

Class 
Prediction 



Deep  
Learning 



Perceptron Neural Net 

Boosting 

SVM 

GMM SP 

BayesNP 

Convolutional Neural Net 

Recurrent Neural Net 

AutoencoderNeural Net 

Sparse Coding 

Restricted BM Deep Belief Net 

Deep (sparse/denoising)  
Autoencoder 

UNSUPERVISED 

SUPERVISED 

DEEP SHALLOW 

Slide: M. Ranzato 
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�  Main types of deep architectures 
 
 
 
 
 
 
 
 

Ranzato 

Deep Learning is  B I G 
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�  Neural nets 
�  Conv Nets 

�  Hierar. Sparse Coding 
�  Deconv Nets 
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�  Recurrent Neural nets 
�  Recursive Nets 
�  LISTA 
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  Ranzato 

Deep Learning is  B I G 
�  Main types of learning protocols 
 

�  Purely supervised 
�  Backprop + SGD 
�  Good when there is lots of labeled data. 

 

�  Layer-wise unsupervised + superv. linear classifier 
�  Train each layer in sequence using regularized auto-encoders 

or RBMs 
�  Hold fix the feature extractor, train linear classifier on features 
�  Good when labeled data is scarce but there is lots of unlabeled 

data. 
 

�  Layer-wise unsupervised + supervised backprop 
�  Train each layer in sequence 
�  Backprop through the whole system 
�  Good when learning problem is very difficult. 
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Deep Learning 
for 

Computer Vision 



Perceptron Neural Net 

Boosting 

SVM 

GMM SP 

BayesNP 

Convolutional Neural Net 

Recurrent Neural Net 

AutoencoderNeural Net 

Sparse Coding 

Restricted BM Deep Belief Net 

Deep (sparse/denoising) Autoencoder 

UNSUPERVISED 

SUPERVISED 

DEEP SHALLOW 

Slide: M. Ranzato 



Convolutional Neural Networks 

  LeCun et al. 1989 

  Neural network with specialized 
connectivity structure 
–  [Everyone OK with basic NN?] 



Multistage Hubel­Wiesel Architecture  

Slide: Y.LeCun 

  Stack multiple stages of simple cells / complex cells layers 
  Higher stages compute more global, more invariant features 
  Classification layer on top 

 
History: 
  Neocognitron [Fukushima 1971-1982] 
  Convolutional Nets [LeCun 1988-2007]  
  HMAX [Poggio 2002-2006] 
  Many others…. 

 



Overview of Convnets 

  Feed-forward:  
–  Convolve input 
–  Non-linearity (rectified linear) 
–  Pooling (local max) 

  Supervised 
  Train convolutional filters by  

back-propagating classification error 

Input Image 

Convolution (Learned) 

Non-linearity 

Pooling 

LeCun et al. 1998 

Feature maps 



Convnet Successes 

  Handwritten text/digits 
–  MNIST      (0.17% error [Ciresan et al. 2011]) 
–  Arabic & Chinese   [Ciresan et al. 2012] 

  Simpler  recognition benchmarks 
–  CIFAR-10  (9.3% error [Wan et al. 2013]) 
–  Traffic sign recognition 

  0.56% error vs 1.16% for humans [Ciresan et al. 2011] 

  But less good at more complex datasets 
–  E.g. Caltech-101/256 (few training examples)  



Application to ImageNet 

[NIPS 2012] 

  

 

  

 

  

 

[Deng et al. CVPR 2009]  

  ~14 million labeled images, 20k classes 

  Images gathered from Internet 

  Human labels via Amazon Turk  



Goal 

  

 

[Krizhevsky et al. NIPS 2012] 

  Image Recognition 
– Pixels à Class Label 



Krizhevsky et al. [NIPS2012] 

  7 hidden layers, 650,000 neurons, 60,000,000 parameters 
  Trained on 2 GPUs for a week 

  Same model as LeCun’98 but: 
  -   Bigger model  (8 layers) 
-  More data    (106 vs 103 images) 
-  GPU implementation (50x speedup over CPU) 
-  Better regularization (DropOut) 
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Neural Nets 



Examples 
  From Clarifai.com 



Examples 
  From Clarifai.com 



Examples 
  From Clarifai.com 



Using Features on Other Datasets 

  Train model on ImageNet 2012 training set 

  Re-train classifier on new dataset 
–  Just the top layer (softmax) 

  Classify test set of new dataset 
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Caltech 256 
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013 
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6 training examples 

Caltech 256 
Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013 



The Details 

  Operations in each layer 

  Architecture 

  Training 

  Results 



Components of Each Layer 

Pixels / 
Features 

Filter with  
learned dictionary 

Spatial local 
max pooling 

Non-linearity 
 

Output Features 



Filtering 

  Convolution 
–  Filter is learned during training 
–  Same filter at each location 

Input Feature Map 

.

.

.



Filtering 

  Local 
–  Each unit layer above  
look at local window 
 
–  But no weight tying 

Input 

Filters 

  E.g. face recognition 



Filtering 

  Tiled 
–  Filters repeat every n 
–  More filters than 

convolution for given 
# features 

Input 

Filters Feature maps 



Non-Linearity 

  Rectified linear function 
– Applied per-pixel 
– output = max(0,input) 

Input feature map	
   Output feature map	
  

Black	
  =	
  nega�ve;	
  white	
  =	
  posi�ve	
  values	
   Only	
  non-­‐nega�ve	
  values	
  



Non-Linearity 

  Other choices: 
– Tanh 
– Sigmoid: 1/(1+exp(-x)) 
– PReLU 

   

y

f (y)

f (y) = y

f (y) = ay

 

   

   

 

   

   

 

   

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0

.

[Delving Deep into Rectifiers: 
Surpassing Human-Level 
Performance on ImageNet 
Classification, Kaiming He et 
al. arXiv:1502.01852v1.pdf, 
Feb 2015 ] 
 



Pooling 

  Spatial Pooling 
– Non-overlapping / overlapping regions 
– Sum or max 
– Boureau et al. ICML’10 for theoretical analysis 

Max 

Sum 



Pooling  

Feature
Map 1 

Pooled
Map 1

Feature
Map 4

Pooled
Map 2

  Pooling across feature groups 
  Additional form of inter-feature competition 
  MaxOut Networks [Goodfellow et al. ICML 2013] 



Role of Pooling  

  Spatial pooling 
–  Invariance to small transformations 
– Larger receptive fields  

(see more of input) 

Zeiler, Fergus [arXiv 2013] 

 
 

 
 

 
 

 

 
 
Videos from: http://ai.stanford.edu/~quocle/TCNNweb 

         
    
    
  

Visualization technique from 
[Le et al. NIPS’10]: 



Components of Each Layer 

Pixels / 
Features 

Filter with  
learned dictionary 

Spatial local 
max pooling 

Non-linearity 
 

Output  
Features 

[Optional] 
Normalization 

across data/features 



Normalization 

Filters Input 

  Contrast normalization across features 
  See Divisive Normalization in Neuroscience  



  Contrast normalization (across feature maps) 
– Local mean = 0, local std. = 1, “Local” à 7x7 Gaussian  
– Equalizes the features maps 

Normalization 

Feature Maps 
 

Feature Maps 
After Contrast Normalization 



Role of Feature Normalization  

  Introduces local competition between features 
–   “Explaining away” in graphical models 

–    Just like top-down models 
–    But more local mechanism 

  Also helps to scale activations at each layer better for learning 
–  Makes energy surface more isotropic 
–  So each gradient step makes more progress 

  Empirically, seems to help a bit (1-2%) on ImageNet 
  Most recent models don’t seem to have use though 

 
 
 
  



Normalization across Data 

  Batch Normalization 
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167] 

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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0.4
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0.7

0.8

Inception
BN−Baseline
BN−x5
BN−x30
BN−x5−Sigmoid
Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.



Overview of Convnets 

  Feed-forward:  
–  Convolve input 
–  Non-linearity (rectified linear) 
–  Pooling (local max) 

  Supervised 
  Train convolutional filters by  

back-propagating classification error 

Input Image 

Convolution (Learned) 

Non-linearity 

Pooling 

LeCun et al. 1998 

Feature maps 



Architecture 

  Big issue: how to select 
– Manual tuning of features à manual tuning of 

architechtures 

  Depth 
  Width 
  Parameter count 



How to Choose Architecture 

  Many hyper-parameters: 
–  # layers, # feature maps 

  Cross-validation  

  Grid search (need lots of GPUs) 

  Smarter strategies: 
– Random [Bergstra & Bengio JMLR 2012] 
– Gaussian processes [Hinton??] 



How important is Depth 

  “Deep” in Deep Learning 

  Ablation study 

  Tap off features 



Architecture of Krizhevsky et al.  

  8 layers total 

  Trained on Imagenet 
dataset [Deng et al. CVPR’09] 

  18.2% top-5 error  

  Our reimplementation: 
 18.1% top-5 error 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 

Layer 7: Full 



Architecture of Krizhevsky et al.  

  Remove top fully 
connected layer  
– Layer 7 

  Drop 16 million 
parameters 

  Only 1.1% drop in 
performance! 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 



Architecture of Krizhevsky et al.  

  Remove both fully connected 
layers  
– Layer 6 & 7 

  Drop ~50 million parameters 

  5.7% drop in performance 

Input Image 

Layer 1: Conv + Pool 

Layer 3: Conv 

Softmax Output 

Layer 2: Conv + Pool 

Layer 4: Conv 

Layer 5: Conv + Pool 



Architecture of Krizhevsky et al.  

  Now try removing upper feature 
extractor layers: 
– Layers 3 & 4 

  Drop ~1 million parameters 

  3.0% drop in performance 

Input Image 

Layer 1: Conv + Pool 

Layer 6: Full 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 

Layer 7: Full 



Architecture of Krizhevsky et al.  

  Now try removing upper feature 
extractor layers & fully connected: 
– Layers 3, 4, 6 ,7 

  Now only 4 layers 

  33.5% drop in performance 
 
à Depth of network is key 

 
Input Image 

Layer 1: Conv + Pool 

Softmax Output 

Layer 2: Conv + Pool 

Layer 5: Conv + Pool 



Tapping off Features at each Layer 

Plug features from each layer into linear SVM or soft-max	
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Scale Invariance 
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Rotation Invariance 
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Very Deep Models (1) 
[Very Deep Convolutional Networks for Large-Scale Image Recognition, 
Karen Simonyan & Andrew Zisserman, arXiv:1409.1556, 2014] 
 y

A A-LRN B C D E

224× 224
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

FC-4096
FC-4096
FC-1000

Number of parameters
A,A-LRN B C D E
133 133 134 138 144

Table 3: ConvNet performance at a single test scale.

S Q

A 256 256
A-LRN 256 256
B 256 256

C
256 256

D
256 256

E
256 256

25.5 8.0

  Lots of 3x3 conv layers: more 
non-linearity than single 7x7 layer 

  Close to SOA results on 
Imagenet: 6.8% top-5 val 

  Can be hard to train 



Very Deep Models (2) 
[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014] 
 

1x1 
number of 
filters 

3x3 

5x5 

GoogLeNet inception module: 
 
1.  Multiple filter scales at each layer 

2.  Dimensionality reduction to keep computational requirements down 
  

 

[From http://image-net.org/challenges/
LSVRC/2014/slides/GoogLeNet.pptx] 



GoogLeNet vs Previous Models 

GoogLeNet  

Zeiler-Fergus Architecture (1 tower) 

Convolution 
Pooling 
Softmax 
Other 

[From http://image-net.org/challenges/
LSVRC/2014/slides/GoogLeNet.pptx] 

[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014] 
 



Google Inception model 

Width of inception modules ranges from 256 filters (in early modules) to 1024 
in top inception modules. 
 
Can remove fully connected layers on top completely 
 
Number of parameters is reduced to 5 million 
 
6.7% top-5 validation error on Imagnet 
 
 

256 480 480 
512 

512 512 
832 832 1024 

Computional cost is 
increased by less than 2X 
compared to Krizhevsky’s 
network. (<1.5Bn operations/
evaluation) 
 [From http://image-net.org/challenges/

LSVRC/2014/slides/GoogLeNet.pptx] 



Visualizing Convnets 

  Want to know what they are learning 

  Raw coefficients of learned filters in higher 
layers difficult to interpret 

  Two classes of method: 
1.  Project activations back to pixel space 
2.  Optimize input image to maximize a particular 

feature map or class 



Visualizing Convnets 

  Projection from higher layers back to input 
–  Several similar approaches: 
– Visualizing and Understanding Convolutional 

Networks, Matt Zeiler & Rob Fergus, ECCV 2014 
– Deep Inside Convolutional Networks: Visualising 

Image Classification Models and Saliency Maps, 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 
arXiv 1312.6034, 2013 

– Object Detectors Emerge in Deep Scene CNNs, Bolei 
Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, 
Antonio Torralba, ICLR 2015 



Projection from Higher Layers 

Input Image Visualization 

Layer 1: Feature maps 

Layer 2: Feature maps 

Feature	
  
Map	
   ....	
  

Filters	
  

Layer 1 Reconstruction 

Layer 2 Reconstruction 

0	
   0	
  ....	
  

Filters	
  

C
onvnet	
  D

ec
on

vn
et

	
  
[Zeiler et al. ECCV14]	
  



Deconvnet layer 

Details of Operation 

Convnet layer 



Unpooling Operation 



Layer 1 Filters 



Visualizations of Higher Layers 

  Use ImageNet 2012 validation set 
  Push each image through network 

 

Input	
  	
  
Image	
  

Feature	
  
Map	
  

Lower	
  Layers	
  

....	
  

Filters	
  

Validation Images 

  Take max activation from 
feature map associated 
with each filter 

  Use Deconvnet to project 
back to pixel space 

  Use pooling “switches” 
peculiar to that activation 



Layer 1: Top-9 Patches 



Layer 2: Top-1 



Layer 2: Top-9 

  NOT SAMPLES FROM MODEL 
   Just parts of input image that give strong activation of this feature map 
  Non-parametric view on invariances learned by model 



Layer 2: Top-9 Patches 

  Patches from validation images that give maximal activation of a given feature map  



Layer 3: Top-1 



Layer 3: Top-9 



Layer 3: Top-9 Patches 



Layer 4: Top-1 



Layer 4: Top-9 



Layer 4: Top-9 Patches 



Layer 5: Top-1 



Layer 5: Top-9 



Layer 5: Top-9 Patches 



Visualizing Convnets 

  Optimize input to maximize particular ouput 
– Lots of approaches, e.g. Erhan et al.  [Tech Report 

2009], Le et al. [NIPS 2010]. 
– Depend on initialization 

  Google DeepDream  
[http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-
into-neural.html] 
–  Maximize “banana” 

output  



Google DeepDream 

https://photos.google.com/share/
F1QipPX0SCl7OzWilt9LnuQliattX4OUCj_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ/photo/
AF1QipMYTXpt0TvZ0Q5kubkGw8VAq2isxBuL02wKZafB?
key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB 



Training Big ConvNets 

  Stochastic Gradient Descent 
– Compute (noisy estimate of ) gradient on small batch 

of data & make step 
– Take as many steps as possible (even if they are noisy) 
– Large initial learning rate 
– Anneal learning rate 

  Momentum 
– Variants [Sutskever ICML 2012] 



Annealing of Learning Rate   

  Start large, slowly reduce 
  Explore different scales of energy surface 



Evolution of Features During Training 



Evolution of Features During Training 



Normalization across Data 

  Batch Normalization 
[Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift, Sergey Ioffe, Christian Szegedy, arXiv:1502.03167] 

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.
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Inception
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Steps to match Inception

Figure 2: Single crop validation accuracy of Inception
and its batch-normalized variants, vs. the number of
training steps.



Automatic Tuning of Learning Rate? 

  ADAGRAD 

  ADADELTA 

  No more pesky  
learning rates 

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for 
online leaning and stochastic optimization,” in COLT, 2010. 

�xt = � ⌘qPt
⌧=1 g

2
⌧

gt

�xt = −RMS[�x]t�1

RMS[g]t
gt

g p

�xt = − 1

|diag(Ht)|
E[gt�w:t]

2

E[g

2
t�w:t]

gt

ADADELTA: An Adaptive Learning Rate Method, Matthew D. 
Zeiler, arXiv 1212.5701, 2012. 

T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,” 
arXiv:1206.1106, 2012. 



Local Minima? 
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[The Loss Surfaces of Multilayer Networks 
Choromanska et al. http://arxiv.org/pdf/1412.0233v3.pdf ] 

Distribution of test losses 



What about 2nd order methods? 

  Newton’s method: 
  Full Hessian impractical to compute 
  Approximations: 

– Diagonal [Becker & Lecun ‘88] 
– Truncated CG [Martens, ICML’10] 
– Per-batch low-rank [Sohl-Dickstien et al., ICML’14] 
–  Saddle free (|H|) [Dauphin et al. NIPS’14] 

  Generally, extra computation needed seems not worth 
it: take more (dumb) steps instead! 

�xt = � 1

|diag(Ht)|+ µ

gt
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Saddle Point Perspective 

�✓ = −rf |H|−1

[Identifying and attacking the saddle point problem in high-dimensional non-
convex optimization, Dauphin et al., NIPS 2014]  

  During optimization Hessian has 
both +ve and –ve eigenvalues 
–  and maybe some zeros too (flat 

directions) 
–  At minimum, all are +ve 

  Cause problems for SGD 

  Saddle Free  Newton (SFN) 
–  Use |H| (matrix where take 

absolute value of each eigenvalue 
of H) 

( ) ( )



Improving Generalization 

  Data Augmentation (jitter, peturb) 
  Weight decay (L1/2 penalty on weights) 
  Weight sharing (reduces # parameters) 
  Multi-task learning 
  Inject Noise into network 

– DropOut [Hinton et al. 2012] 
– DropConnect [Wan et al. ICML 2012] 
– Stochastic Pooling [Zeiler & Fergus ICLR’13] 



Big Model + Regularize vs Small Model 

Small model Big model Big model 
+ Regularize 



Fooling Convnets 

  Search for images that are misclassified 
by the network  

  Intriguing properties of neural 
networks, Christian Szegedy et al. arXiv 
1312.6199, 2013 

  Deep Neural Networks are Easily 
Fooled: High Confidence Predictions 
for Unrecognizable Images, Anh 
Nguyen, Jason Yosinski, Jeff Clune, 
arXiv 1412.1897. 

  Problem common to any discriminative  
method Figure 1. Evolved images that are unrecognizable to humans,

but that state-of-the-art DNNs trained on ImageNet believe with
� 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.
I ith di tl ( ) i di tl (b ) d d

  
  

 
 



DropOut 

  G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. 
Salakhutdinov, Improving neural networks by preventing co-adaptation of 
feature detectors, arXiv:1207.0580 2012 

  Fully connected layers only 
  Randomly set activations in 

layer to zero 
  Gives ensemble of models 
  Similar to bagging 

[Breiman’94], but differs in 
that parameters are shared. 



DropConnect 
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c) Effective Dropout 
mask M’ 

Previous layer mask 
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  Wan et al. ICML 2013 
  Fully-connected layers only 
  Random binary mask on weights 
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Stochastic Pooling 

  For conv layers 
  Compute activations     :          
  Normalize to sum to 1      ->  
  Sample location,  , from multinomial 
  Use activation from the location:  

★!

a)!Image!

b)!Filter!

c)!Rec0fied!Linear! e)!Probabili0es,!pi 

0! 0! 0!

0!0!

0!0!

1.6!

2.4!

0! 0! 0!

0!0!

0!0!

0.4!

0.6!

d)!Ac0va0ons,!ai 

1.6!

f)!Sampled!!
!!!!Ac0va0on,!s!

Sample!a!loca0on!
from!P():!e.g.!!l = 1 

[Zeiler and Fergus, ICLR 2013] 
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OTHER THINGS GOOD TO KNOW 

�  Check gradients numerically by finite differences 
 

�  Visualize features (feature maps need to be uncorrelated) 
and have high variance. 
 

sa
m

pl
es

 

hidden unit 
Good training: hidden units are sparse across samples  
                          and across features.  Ranzato 
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OTHER THINGS GOOD TO KNOW 

�  Check gradients numerically by finite differences 
 

�  Visualize features (feature maps need to be uncorrelated) 
and have high variance. 
 

sa
m

pl
es

 

hidden unit 
Bad training: many hidden units ignore the input and/or 
                       exhibit strong correlations. Ranzato 
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OTHER THINGS GOOD TO KNOW 

�  Check gradients numerically by finite differences 
 

�  Visualize features (feature maps need to be uncorrelated) 
and have high variance. 
 

�  Visualize parameters 

Good training: learned filters exhibit structure and are uncorrelated.  

GOOD BAD BAD BAD 

too noisy too 
correlated 

lack 
structure 

Ranzato 



104 

OTHER THINGS GOOD TO KNOW 

�  Check gradients numerically by finite differences 
 

�  Visualize features (feature maps need to be uncorrelated) 
and have high variance. 
 

�  Visualize parameters 
 

�  Measure error on both training and validation set. 
 

�  Test on a small subset of the data and check the error → 0. 
 

Ranzato 
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WHAT IF IT DOES NOT WORK? 

�  Training diverges: 
�  Learning rate may be too large → decrease learning rate 
�  BPROP is buggy → numerical gradient checking 

 

�  Parameters collapse / loss is minimized but accuracy is low 
�   Check loss function: 

�  Is it appropriate for the task you want to solve? 
�  Does it have degenerate solutions? Check “pull-up” term. 

 

�  Network is underperforming 
�  Compute flops and nr. params. →  if too small, make net larger 
�  Visualize hidden units/params → fix optmization   
 

�  Network is too slow 
�  Compute flops and nr. params. → GPU,distrib. framework, make 

net smaller  
 

Ranzato 



Industry Deployment 

  Used in Facebook, Google, Microsoft 
  Face recognition, image search, photo 
organization…. 
  Very fast at test time (~100 images/sec/GPU) 

[Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face 
Verification, CVPR’14] 



Labeled Faces in Wild Dataset 
  Task: given pair of images, same person or not? 

[Tagman et al. CVPR’14]	
  



Detection with ConvNets 

  So far, all about 
classification 

  What about 
localizing objects 
within the scene? 



Two General Approaches 

1.  Examine very position / scale 
–  E.g. Overfeat: Integrated recognition, localization 

and detection using convolutional networks, 
Sermanet et al., ICLR 2014 

2.  Use some kind of proposal mechanism to 
attend to a set of possible regions 

–  E.g. Region-CNN [Rich feature hierarchies for 
accurate object detection and semantic 
segmentation, Girshick et al., CVPR 2014] 

 



Sliding Window with ConvNet 
Conv Conv Conv Conv Conv Full Full 



Sliding Window with ConvNet 

Input Window 

224 

224 

6 

6 
256 

C 
classes 

Conv Conv Conv Conv Conv Full Full 

Feature Extractor Classifier 



Sliding Window with ConvNet 

Input Window 

224 6 
256 

Conv Conv Conv Conv Conv Full Full 

Feature Extractor 16 

7 

240 

1 

No need to compute two separate windows ---  Just one big input window 

C 
classes 



Multi-Scale Sliding Window ConvNet 

Feature  
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Multi-Scale Sliding Window ConvNet 
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OverFeat – Output before NMS 



Overfeat Detection Results 

[Sermanet et al. ICLR 2014] 



R-CNN Approach 

  Bottom-up proposal 
mechanism 
  Scored by classifier 

  Current best 
detection approach  
on PASCAL VOC 

  Further work combines proposal mechanism with classification network: 
–  Fast R-CNN, Ross Girshick, arXiv 1504.08083, 2015. 
–  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal 

Networks, Shaoqing Ren et al., arXiv 1506.01497, 2015 

1. Input 
image

2. Extract region 
proposals (~2k)

3. Compute 
CNN features

aeroplane? no.

...
person? yes.

tvmonitor? no.

4. Classify 
regions

warped region
...

CNN

R-CNN: Regions with CNN features

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large
convolutional neural network (CNN), and then (4) classifies each
region using class-specific linear SVMs. R-CNN achieves a mean
average precision (mAP) of 53.7% on PASCAL VOC 2010. For
comparison, [34] reports 35.1% mAP using the same region pro-
posals, but with a spatial pyramid and bag-of-visual-words ap-
proach. The popular deformable part models perform at 33.4%.

[Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014] 



Video Classification 

  Want to capture temporal structure  
  3D convolutions & 3D max-pooling 
  E.g. C3D model 

8 convolution, 5 pool, 2 fully-connected layers 
3x3x3 convolution kernels 
2x2x2 pooling kernels 

[Learning Spatiotemporal Features with 3D Convolutional Networks, Tran et al., arXiv:
1412.0767, 2014] 

[Slide: Manohar Paluri] 



Action Recognition – UCF101 dataset 

 

[Slide: Manohar Paluri] 



Action Recognition Results 

Use optical 
flows 

Use raw pixel 
inputs 

Baselines 

[Slide: Manohar Paluri] 



2D vs 3D Convnets 

[Slide: Manohar Paluri] 

  UCF101 training 
 

t-SNE visualization 
 



Sport Classification Results 

[Slide: Manohar Paluri] 



Dense Scene Labeling 

  Classification: pixels -> label 
  Detection: pixels -> boxes 

  Use Convnets to do pixels -> pixels 
– Segmentation of image 
– Image processing tasks (denoising etc.) 
– Don’t want pooling 



Dense Scene Labeling


Input Image�

  Convnet output is per-pixel label map


Semantic Map�



Dense Scene Labeling


Input Image�

  Convnet output is per-pixel depth map


Depth�

Semantic Map�



Semantic Map�

Dense Scene Labeling


Input Image�

  Convnet output is per-pixel normal map


Depth�

Normals�



Eigen et al. architecture
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convolutions
conv+pool
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64	
  

upsample


upsample


Input:	
  320x240	
  

Output:	
  147x109	
  [Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Architecture


convolutions
conv+pool
 concat


upsample


upsample


Input:	
  320x240	
  

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Multi-Scale Convnets
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 concat


64	
  

upsample


upsample


Input:	
  320x240	
  

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Use Appropriate Loss Functions

Depth:


Normals


Labels

Lsemantic(C,C

�) = − 1

n

⇥

i

C�
i log(Ci)

Lnormals(N,N�) = − 1

n
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i
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n
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  /	
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[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Depths Comparison

Ground	
  Truth	
  Ours	
  Eigen	
  NIPS’14	
  (2	
  scales)	
  

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Surface Normals

RGB input 3DP [6] Ladicky&al [16] Wang&al [33] Ours (VGG) Ground Truth

[Predicting Depth, Surface Normals and Semantic Labels with a Common 
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Scene Parsing 

  Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013 



Segmentation 

  Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012 
  Turaga et al. “Maximin learning of image segmentation” NIPS 2009 



Denoising with ConvNets 

  Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012 

Original Noised Denoised 



Deblurring with Convnets 

  Blind deconvolution 
– Learning to Deblur, Schuler et al., arXiv 

1406.7444, 2014 

Blurry image with Result of [Zho+13] Deblurring result w. Deblurring result w.
ground truth kernel PSNR 23.17 noise agnostic training noise specific training

PSNR 23.29 PSNR 23.41



Inpainting with Convnets 
  Image Denoising and Inpainting with Deep Neural 

Networks, Xie et al. NIPS 2012. 
  Mask-specific inpainting with deep neural networks, 

Köhler et al., Pattern Recognition 2014 

corrupted image [20] PSNR 32.13 ours, PSNR 34.22Original    Schmid CVPR’10     Köhler et al. ‘14 



Removing Local Corruption 



Removing Local Corruption 
  Restoring An Image Taken Through a Window Covered with 

Dirt or Rain, Eigen et al., ICCV 2013. 



Convnet + Structured Learning 

  Gradient-based learning 
applied to document 
recognition, Yann LeCun, 
Leon Bottou, Yoshua Bengio 
and Patrick Haffner, Proc. 
IEEE, Nov 1998. 
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Convnet + Structured Learning 

  Learning Deep Structured Models, Liang-
Chieh Chen, Alexander G. Schwing, Alan L. 
Yuille, Raquel Urtasun, arXiv 1407.2538, 2014 
  Joint Training of a Convolutional Network and 
a Graphical Model for Human Pose 
Estimation,  J. Tompson, A. Jain, Y. LeCun, C. 
Bregler, NIPS 2014 
  Lots more recently…… 
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BODY TRACKING


  Joint Training of a Convolutional Network and a 
Graphical Model for Human Pose Estimation

 J. Tompson, A. Jain, Y. LeCun, C. Bregler, NIPS 2014
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BODY TRACKING: PART DETECTOR

fficient model:
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BODY TRACKING: SPATIAL MODEL

Start with MRF formulation


“Convolutional priors”

Sum-product belief propagation
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BODY TRACKING: SPATIAL MODEL

Implement it as a network (no longer MRF)!







Speech 



Brief	
  Aside	
  -­‐	
  Speech	
  
  Also	
  huge	
  impact	
  by	
  neural	
  nets	
  
  Tradi�onal	
  approach	
  (pre-­‐2009):	
  

  Very	
  incremental	
  gains	
  in	
  performance	
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Deep	
  Learning	
  Technical	
  Revolu�on	
  

2009 

2011 

2013 

2014 

  First resurgence 
o  A. Mohamed, G. Dahl and G. Hinton "Deep belief networks 

for phone recognition,” In NIPS Workshop on Deep Learning 
for Speech Recognition and Related Applications. 2009 

  DNNs for Large Scale Tasks 
o  F. Seide, G. Li, and D. Yu, “Conversational Speech 

Transcription Using Context-Dependent Deep Neural 
Networks,” in Proc. Interspeech 2011. 

  CNNs for Large Scale Tasks 
o  T. N. Sainath, A. Mohamed, B. Kingsbury and B. 

Ramabhadran, "Deep Convolutional Neural Networks for 
LVCSR," in Proc. ICASSP, 2013. 

  LSTMs for Large Scale Tasks 
o  H. Sak, A. Senior and F. Beaufays, “Long Short-Term 

Memory Recurrent Neural Network Architectures for Large 
Scale Acoustic Modeling," in Proc. Interspeech, 2014. 

 [Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]	
  



DNN Acoustic Modeling Results 
  DNNs provide between a 8-25% relative improvement in word error 

rate over GMM/HMM systems across a variety of tasks and 
languages 

  Results confirmed by many, many research labs 
 

300	
  hour	
  SWB	
  
Conversa�onal	
  	
  
Telephony	
  

400	
  hour	
  
Broadcast	
  News	
  

2000	
  hour	
  
Voice	
  Search	
  

GMM/HMM 14.3 16.5 16.0	
  
DNN 12.2 15.2 12.2	
  

%	
  Rela�ve	
  	
  
Improvement 

14.7 7.9 23.8	
  

[Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]	
  



CNN vs DNN Results 

Model	
   BN-­‐50	
   BN-­‐400	
   SWB-­‐300	
  

Baseline	
  GMM/HMM	
   18.1	
   13.8	
   14.5	
  

DNN	
   15.8	
   13.3	
   12.2	
  

CNN	
   15.0	
   12.0	
   11.5	
  

§ CNNs trained with vtln-warped log-mel fb features 
offer between a 4-12% relative improvement over 
DNNs trained with speaker-adapted features (VTLN
+fMLLR) 

[Sainath	
  et	
  al,	
  ICASSP	
  2013]	
  

[Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]	
  



End-­‐to-­‐End	
  Recogni�on	
  

  Go	
  directly	
  from	
  raw	
  waveform	
  

  Convolu�onal	
  Neural	
  Networks-­‐based	
  Con�nuous	
  Speech	
  Recogni�on	
  
using	
  Raw	
  Speech	
  Signal,	
  Palaz,	
  Magimai-­‐Doss,	
  Collobert,	
  ICASSP	
  2015.	
  	
  

  Superior	
  results	
  on	
  TIMIT	
  (phoneme	
  recog),	
  comparable	
  results	
  on	
  WSJ.	
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Natural Language 
Processing 



Language modeling 

●  Natural language is a sequence of 
sequences 

●  Some sentences are more likely than others: 
o  “How are you ?” has a high probability 
o  “How banana you ? “ has a low probability 

[Slide: Wojciech Zaremba] 



Neural Network Language Models

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).

Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ] 



Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

Recurrent neural network based language model. Mikolov et al., Interspeech, ’10.

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ] 



Recurrent neural networks - schema  

My 

name 

is 

name 

is 

Wojciech 

[Slide: Wojciech Zaremba] 



• The intuition is that we unfold the RNN in time

• We obtain deep neural network with shared
weights U and W

   

Backpropagation through time

[Slide: Thomas Mikolov, COLING 2014 ] 



• We train the unfolded RNN using normal
backpropagation + SGD

• In practice, we limit the number of
unfolding steps to 5 – 10

• It is computationally more efficient to
propagate gradients after few training
examples (batch mode)

Tomas Mikolov, COLING 2014

Backpropagation through time

100

[Slide: Thomas Mikolov, COLING 2014 ] 



NNLMS vs. RNNS: Penn Treebank Results (Mikolov)

Recent uses of NNLMs and RNNs to improve machine translation:
Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL ’14.

Also Kalchbrenner ’13, Sutskever et al., ’14., Cho et al., ’14. .

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ] 



Language modelling – RNN samples 

the meaning of life is that only if an end would 
be of the whole supplier. widespread rules are 
regarded as the companies of refuses to 
deliver. in balance of the nation’s information 
and loan growth associated with the carrier 
thrifts are in the process of slowing the seed 
and commercial paper. 

[Slide: Wojciech Zaremba] 



More depth gives more power 

[Slide: Wojciech Zaremba] 



LSTM - Long Short Term Memory 

●  Ad-hoc way of modelling 
long dependencies 

●  Many alternative ways of 
modelling it 

●  Next hidden state is 
modification of previous 
hidden state (so 
information doesn’t decay 
too fast). 

 
 

[Hochreiter and Schmidhuber, Neural Computation 1997] 

[Slide: Wojciech Zaremba] 

For simple explanation, see [Recurrent Neural Network Regularization, 
Wojciech Zaremba, Ilya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014] 



RNN-LSTMs for Machine Translation 

Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014  

Learning Phrase Representations using RNN Encoder-Decoder for Statistical 
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, 
Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP 
2014 

[Sutskever et. al. (2014)] 

[Slide: Wojciech Zaremba] 



Visualizing Internal Representation 

Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014  

t-SNE projection of network state at end of input sentence 



Translation - examples 
● FR: Les avionneurs se querellent au sujet de la largeur des sièges alors que 
de grosses commandes sont en jeu 
 
● Google Translate: Aircraft manufacturers are quarreling about the seat width 
as large orders are at stake 
 
● LSTM: Aircraft manufacturers are concerned about the width of seats while 
large orders are at stake 
 
● Ground Truth: Jet makers feud over seat width with big orders at stake 
 

[Sequence to Sequence Learning with Neural Networks, 
Ilya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014]  

[Slide: Wojciech Zaremba] 



Image Captioning: Vision + NLP 

 
Many recent works on this: 
  Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks 
  Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models 
  Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description 
  Google: Show and Tell: A Neural Image Caption Generator 
  Stanford: Deep Visual-Semantic Alignments for Generating Image Description 
  UML/UT:  Translating Videos to Natural Language Using Deep Recurrent Neural Networks 
  Microsoft/CMU:  Learning a Recurrent Visual Representation for Image Caption Generation 
  Microsoft:  From Captions to Visual Concepts and Back 

  
  

 
 

  Generate short text descriptions of  
image, given just picture. 

  Use Convnet to extract image features 

  RNN or LSTM model takes image 
features as input, generates text 



Image Captioning Examples 

From Captions to Visual Concepts and Back, Hao Fang∗ Saurabh Gupta∗ Forrest Iandola∗ Rupesh K. Srivastava∗, Li Deng Piotr 
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015. 





Facebook AI Research  
  ~50 people working in ML/vision/NLP/speech/AI 

– 1/3 are research engineers (some of FB’s best coders) 
– Yann LeCun is lab director  

  Freedom to publish & open-source code 
  Easy to productize (1.1B users) 
  Labs in: 

– Menlo Park, California (Facebook HQ) 
– New York City 
– Paris 

  We are hiring! 
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