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Overview

* Look at some of the recent progress with Neural

Net / Deep Learning models

— Assume familiarity with basic neural nets

* Non-exhaustive coverage

— Huge number of recent papers

* Draw on material from FAIR colleagues

— Experts in NLP, speech etc.
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Schedule

Overview

Vision

— Convnets for image recognition
— Other applications

Speech

NLP (RNNs, LSTMs)

Unsupervised Learning

Memory in neural nets




Motivation

* A lot of recent successes with large neural
networks, trained with supervision.

* Feature learning crucial to performance in
many tasks

* Still many open problems however!




Traditional ML Approach

For classification:
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* Trainable classifier is often generic (e.g. SVM)




Case Study: Object Recognition ~2010

Multitude of hand-designed features currently in use
— SIF'T, HOG, LBP, MSER, Color-SIFT.............

* Where next? Better classifiers? Or keep building more
features?

» Low level features: SIFT and its variants, LBP,
» Dense sampling and interest point detector;
» Represented as Bags of Words;
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Hand-Crafted Features + SVM

« LP-B Multiple Kernel Learning

— Gehler and Nowozin, On Feature Combination

for Multiclass Object Classification, ICCV’09

e 39 different kernels - Caltech-256 (39 kernels)

— PHOG, SIFT, V1S+,
Region Cov. Etc.

* MKL only gets

few % gain over , ,
. JF —o—MKL
averaging features W I e

== Griffin, Holub and Perona (TR06) .

accuracy

“ [ - @ - best feature
—&— product
average

@® Pinto, Cox and DiCarlo (PLOS08)

- Features are 0 20 30 40 &
doin the Work raining examples




What Limits Performance?

e Ablation studies on Deformable Parts Model
— Felzenszwalb, Girshick, McAllester, Ramanan, PAIMI’'10

* Replace each part with humans (Amazon Turk):
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What about Learning the Features?

* Learn hierarchy
* All the way from pixels = classifier

* One layer extracts features from output of previous layer

Image Trainable - Class
Pixels Classifier J Prediction

* Train all layers jointly




Deep

Learning
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Deep Learningis B 1 G

.Main types of deep architectures
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Deep Learningis B 1 G

.Main types of learning protocols

. Purely supervised
« Backprop + SGD
« Good when there is lots of labeled data.

. Layer-wise unsupervised + superv. linear classifier
« Train each layer in sequence using regularized auto-encoders

or RBMs

. Hold fix the feature extractor, train linear classifier on features

« Good when labeled data is scarce but there is lots of unlabeled
data.

. Layer-wise unsupervised + supervised backprop
. Train each layer in sequence
« Backprop through the whole system
« Good when learning problem is very difficult.

Ranzla4t0n



Deep Learningis B 1 G

.Main types of learning protocols

. Purely supervised
« Backprop + SGD
« Good when there is lots of labeled data.

. Layer-wise unsupervised + superv. linear classifier
« Train each layer in sequence using regularized auto-encoders

or RBMs

. Hold fix the feature extractor, train linear classifier on features

« Good when labeled data is scarce but there is lots of unlabeled
data.

. Layer-wise unsupervised + supervised backprop
. Train each layer in sequence
« Backprop through the whole system
« Good when learning problem is very difficult.
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Deep Learning
for

Computer Vision
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Convolutional Neural Networks

I.eCun et al. 1989

Neural network with specialized
connectivity structure

— [Everyone OK with basic NN?]

C3:f. maps 16@10x10
C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x28
s 2.1, maps | C5: layer .
6@14x14 | [ e ¢ i W hd r—;z_ layer %JTPUT

8 ' — ‘ : 1 —— | I ;;;;4=H///,'“v,~>~ —

\ | ’ — ‘ FuIIconAection Gaussian connections
Soriokitisns Subsampling Convolutions  Subsampling Full connection



Multistage Hubel-Wiesel Architecture

* Stack multiple stages of simple cells / complex cells layers

* Higher stages compute more global, more invariant features

* Classification layer on top

3

History:
* Neocognitron [Fukushima 1971-1982]
* Convolutional Nets [LeCun 1988-2007]

« HMAX [Poggio 2002-2006]
* Many others....
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Overview of Convnets

Feed-forward:

— Convolve input
— Non-linearity (rectified linear) Pooling

— Pooling (local max)

J Supervised Non-linearity

* Train convolutional filters by
back-propagating classification error [ReGVIENECILIE)

C3:f. maps 16@10x10 t

C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x 28 .
32x32 @ gé1f4m14p \<13250| yer F5:ayer ouTPUT
| N Y Input Image

i — |
| Fullcoanecnon ’ Gaussian connections
Conv olutons Subsampllng Convolutions ~ Subsampling Full connection




Convnet Successes

* Handwritten text/digits
— MNIST  (0.17% error [Ciresan et al. 2011])
— Arabic & Chinese [Ciresan et al. 2012]

Simpler recognition benchmarks
— CIFAR-10 (9.3% error [ Wan et al. 2013])

— 'Traffic sign recognition
* 0.56% error vs 1.16% for humans [Ciresan et al. 2011]

But less good at more complex datasets
— E.g. Caltech-101/256 (few training examples)




Application to ImageNet
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* ~14 million labeled images, 20k classes

* Images gathered from Internet

e Human labels via Amazon Turk
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[Deng et al. CVPR 2009]

ImageNet Classification with Deep Convolutional
Neural Networks [NIPS 2012]

Alex Krizhevsky Ilya Sutskever Geoffrey E. Hinton
University of Toronto University of Toronto University of Toronto
kriz@cs.utoronto.ca 1ilyaf@cs.utoronto.ca hinton@cs.utoronto.ca




Goal

* Image Recognition
— Pixels = Class Label

typewriter keyboard zucchini
pencil sharpener space bar ground beetle cocker spaniel
switch computer keyboard common newt partridge
combination lock accordion water snake English setter

[ Krizhevsky et al. NIPS 2012]
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e 'Trained on 2 GPUs for a week



ImageNet Classification (2010 — 2015)
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Examples

e From Clarifai.com

Predicted Tags:




Examples

e From Clarifai.com

Predicted Tags:




Examples

e From Clarifai.com

Predicted Tags:

(1.00%)

Time: 113 ms




Using Features on Other Datasets

* Train model on ImageNet 2012 training set

e Re-train classifier on new dataset
— Just the top layer (softmax)

* Classify test set of new dataset




Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013
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Caltech 256

Zeiler & Fergus, Visualizing and Understanding Convolutional Networks, arXiv 1311.2901, 2013
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The Details

* Operations in each layer

e Architecture

* Training

e Results




Components of Each Layer

Pixels / B/ Filter with
Features learned dictionary
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e Convolution

— Filter is learned during training

— Same filter at each location

Feature Map



Filtering

e [.ocal

— Each unit layer above

look at local window

— But no weight tying

* E.g. face recognition
'

Filters




Filtering

— Filters repeat every n

— More filters than
convolution for given
# features
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¢ Rectified linear function

— Applied per-pixel

— output = max(0,input)

Input feature map Output feature map




Non-Linearity

e Other choices:

— Sigmoid: 1/(1+exp(-x))

[ Delving Deep into Rectifiers:
Surpassing Human-Level
Performance on ImageNet
Classification, Kaiming He et
al. arXiv:1502.01852v1.pdf,
Feb 2015 ]




* Spatial Pooling

— Non-overlapping / overlapping regions
— Sum or max

— Boureau et al. ICML'10 for theoretical analysis




Pooling

* Pooling across feature groups

 Additional form of inter-feature competition

e MaxOut Networks [ Goodfellow et al. ICML 2013]
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Role of Pooling

* Spatial pooling

— Invariance to small transformations

— Larger receptive fields
(see more of input)

Visualization technique from

|Le et al. NIPS10]:
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Zeiler, Fergus

Videos from: http://ai.stanford.edu/~quocle/TCNNweb




Components of Each Layer

Pixels / B/ Filter with
Features learned dictionary

S Hoel - [Optional] o
atial local VAR .. utput
b e - Normalization » P

max pooling Features
across data/features




Normalization

e Contrast normalization across features

e See Divisive Normalization in Neuroscience

Filters




Normalization

* Contrast normalization (across feature maps)
— Local mean = 0, local std. = 1, “Loocal” 2 7x7 Gaussian

Equalizes the features maps

Feature Maps

After Contrast Normalization

Feature Maps




Role of Feature Normalization

Introduces local competition between features
— “Explaining away” in graphical models
— Just like top-down models

—  But more local mechanism

Also helps to scale activations at each layer better for learning

— Makes energy surface more isotropic

— So each gradient step makes more progress

Empirically, seems to help a bit (1-2%) on ImageNet

Most recent models don’t seem to have use though




Normalization across Data

e Batch Normalization

| Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey loffe, Christian Szegedy, arXiv:1502.03167]

Input: Values of = over a mini-batch: B = {z1._,,};
Parameters to be learned: v, 8
Output: {yz = BN%B(SL’Z')}

// mini-batch mean

— = =Inception
.. . BN-Baseline
// mini-batch variance
BN-x30
-+ BN-x5-Sigmoid
€ Steps to match Inception
1 1 1

// normalize , ‘ ‘
10M 15M 20M 25M 30M

// scale and shift

Figure 2: Single crop validation accuracy of Inception

Algorithm 1: Batch Normalizing Transform, applied to and its batch-normalized variants, vs. the number of
activation z over a mini-batch. fraining steps.




Overview of Convnets

Feed-forward:

— Convolve input
— Non-linearity (rectified linear) Pooling

— Pooling (local max)

J Supervised Non-linearity

* Train convolutional filters by
back-propagating classification error [ReGVIENECILIE)

C3:f. maps 16@10x10 t

C1: feature maps S4:f. maps 16@5x5

INPUT
6@28x 28 .
32x32 @ gé1f4m14p \<13250| yer F5:ayer ouTPUT
| N Y Input Image

i — |
| Fullcoanecnon ’ Gaussian connections
Conv olutons Subsampllng Convolutions ~ Subsampling Full connection




Architecture

Big issue: how to select

— Manual tuning of features 2 manual tuning of
architechtures

Depth
Width

Parameter count




How to Choose Architecture

Many hyper-parameters:

— # layers, # feature maps

Cross-validation

Grid search (need lots of GPUs)

Smarter strategies:
— Random [Bergstra & Bengio JMLR 2012]

— Gaussian processes [ Hinton??]




How important is Depth

* “Deep”’in Deep Learning
» Ablation study

* Tap off features




Architecture of Krizhevsky et al.

Softmax Output

.I

8 layers total Layer 7: Full

»

] Layer 6: Full
Trained on Imagenet

dataset [Deng et al. CVPR’09] Layer 5: Conv + Pool

il

Layer 4: Conv

»

18.2% top-5 error

Layer 3: Conv

. . Layer 2: Conv + Pool
Our reimplementation:

18.1% top—S error Layer 1: Conv + Pool

I‘I»I‘

Input Image




Architecture of Krizhevsky et al.

Softmax Output

* Remove top fully

connected layer
Layer 6: Full

— Layer 7

Layer 5: Conv + Pool

* Drop 16 million Layer 4: Conv
parameters

Layer 3: Conv

o Oﬂly 1.1% dfOp in Layer 2: Conv + Pool

|
performance‘ Layer 1: Conv + Pool

Input Image

I‘I.I‘I.I.I.lﬂl




Architecture of Krizhevsky et al.

* Remove both fully connected
layers

— Layer 6 &7

Layer 5: Conv + Pool

2§

Layer 4: Conv
a
Layer 3: Conv

x

* 5.7% drop in performance

a

Layer 1: Conv + Pool

x

Input Image

* Drop ~50 million parameters




Architecture of Krizhevsky et al.

Now try removing upper feature
extractor layers:

— Layers 3 & 4

Drop ~1 million parameters

* 3.0% drop in performance

Softmax Output

Layer 7: Full

Layer 6: Full

Layer 5: Conv + Pool

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Input Image




Architecture of Krizhevsky et al.

* Now try removing upper feature
extractor layers & fully connected:

— Layers 3,4,6 ,7
* Now only 4 layers

* 33.5% drop in performance

= Depth of network is key

Softmax Output

Layer 5: Conv + Pool

Layer 2: Conv + Pool

Layer 1: Conv + Pool

Input Image




Tapping off Features at each Layer

Plug features from each layer into linear SVM or soft-max

Cal-101 Cal-256
(30/class) | (60/class)
SVM (1) 44.8 £0.7 (24.6 = 0.4
SVM (2) 66.2 0.5 |39.6 = 0.3
SVM (3) 72.3+0.4 [46.0£ 0.3
SVM (4) 76.6 0.4 |51.3 0.1
SVM (5) 86.21-0.8|65.6x0.3
SVM (7) 85.5+04|71.7+ 0.2
Softmax (5) |82.9 0.4 |65.7 0.5
Softmax (7) [856.4+0.4|72.6 £ 0.1
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Scale Invariance
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Rotation Invariance
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Very Deep Models (1)

| Very Deep Convolutional Networks for Large-Scale Image Recognition,
Karen Simonyan & Andrew Zisserman, arXiv:1409.1556,2014]

Lots of 3x3 conv layers: more

non-linearity than single 7x7 layer

Close to SOA results on
Imagenet: 6.8% top-5 val

Can be hard to train

Table 3: ConvNet performance at a single test scale.

ConvNet config. (Table 1)

smallest image side

top-1 val. error (%)

top-5 val. error (%)

ConvNet Configuration
A A-LRN B C D E
11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers
input (224 x 224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool
conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128 | conv3-128
conv3-128 | conv3-128 | conv3-128 | conv3-128

maxpool
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256 | conv3-256
convl-256 | conv3-256 | conv3-256
conv3-256

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512 | conv3-512
convl-512 | conv3-512 | conv3-512
conv3-512

maxpool

FC-4096

FC-4096

FC-1000

soft-max

Table 2: Number of parameters (in millions).

Network

AA-LRN

B

C D

Number of parameters 133

133

134 | 138

144

train (S) | test (Q)
A 256 256 29.6 104
A-LRN 256 256 29.7 10.5
B 256 256 28.7 99
256 256 28.1 94
C 384 384 28.1 93
[256;512] 384 273 8.8
256 256 27.0 8.8
D 384 384 26.8 8.7
[256;512] 384 25.6 8.1
256 256 27.3 9.0
E 384 384 26.9 8.7
[256;512] 384 255 8.0




Very Deep Models (2)

|Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

GooglLeNet inception module:
1. Multiple filter scales at each layer

2. Dimensionality reduction to keep computational requirements down

Filter
n u m be r Of concatenation
filters 1x1 a—_—
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 4 4 [}
3 1x1 convolutions 1x1 convolutions 3x3 max pooling
3 X
P S—
Previous layer
_‘ [~
\/

[From http://image-net.org/challenges/
LSVRC/2014/slides/GoogLeNet.pptx]



GooglLeNet vs Previous Models
[Going Deep with Convolutions, Szegedy et al., arXiv:1409.4842, 2014]

GooglLeNet

Convolution
Pooling

FEEE Other

Zeiler-Fergus Architecture (1 tower)

[From http://image-net.org/challenges/
LSVRC/2014/slides/GooglLeNet.pptx]




Google Inception model
512 512

512

117 11 | -HE

Width of inception modules ranges from 256 filters (in early modules) to 1024
in top inception modules.

Can remove fully connected layers on top completely
Computional cost is

Number of parameters is reduced to 5 million increased by less than 2X
compared to Krizhevsky’s

6.7% top-5 validation error on Imagnet network. (<1.5Bn operations/
evaluation)

[From http://image-net.org/challenges/
LSVRC/2014/slides/GooglLeNet.pptx]



Visualizing Convnets

* Want to know what they are learning

* Raw coefhcients of learned filters in higher
layers difficult to interpret

* Two classes of method:
1. Project activations back to pixel space

2. Optimize input image to maximize a particular
feature map or class




Visualizing Convnets

* Projection from higher layers back to input
— Several similar approaches:

— Visualizing and Understanding Convolutional

Networks, Matt Zeiler & Rob Fergus, ECCV 2014

— Deep Inside Convolutional Networks: Visualising
Image Classification Models and Saliency Maps,

Karen Simonyan, Andrea Vedaldi, Andrew Zisserman,

arXiv 1312.6034, 2013

— Object Detectors Emerge in Deep Scene CNNs, Bolei
Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,
Antonio Torralba, ICLR 2015




Projection from Higher Layers
| Zeiler et al. ECCV14]

Filters

.

Layer 2 Reconstruction Layer 2: Feature maps

Layer 1 Reconstruction Layer 1: Feature maps

Deconvnet

Visualization Input Image




Details of Operation

Deconvnet layer Convnet layer

=1
P AN
< >
SLY - >
1
1
A

Layer Above
Reconstruction

Switches .
Max Unpooling @ O w \ ‘ Max Pooling

Pooled Maps

Unpooled Maps Rectified Feature Maps

Rectified Linear Rectified Linear
Function Function

Rectified Unpooled Maps Feature Maps

Convolutional Convolutional
Filtering {FT} Filtering {F}

Reconstruction Layer Below Pooled Maps

7S
1 ~
v\ r I
.




Unpooling Operation

Layer Above I
Reconstruction I‘ ‘“)oolcd Maps

Unpoohng Pooling

Max Locations
“Switches”

Unpooled Rectified

Maps Feature Maps




Layer 1 Filters

ECNEREZ™ZE
EHALZF =
EEEEELNANE
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Visualizations of Higher Layers

* Use ImageNet 2012 validation set
* Push each image through network

Take max activation from
feature map associated
with each filter

Feature
Map

. . Filters .

‘ Y ' Use Deconvnet to project

back to pive spac

Use pooling “switches”

-II peculiar to that activation

Vahdatlon Images
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Layer 2: Top-1

\




*\l.‘a}'er 2: Top-9

« NOT SAMPLES FROM MODEL
* Just parts of input image that give strong activation of this feature map
* Non-parametric view on invariances learned by model




_ - j . ,

s \ = ‘ P" g i | J

g 1;% ﬂog LRl m;: |
T e lz HNM*# IEE% 4

l‘
”/ 5 k] d 44 T PRl o 3
g @AY l" gLy A“ E 'W
“Wﬁ"r'" -E"‘j___hﬂ LSl LN T FEIE , o §
g N ="h b SVEN [ WYY |
el N WAL Tl ™ e
“.rv'r" AN H.M«mﬁgﬂnl 2

wa = SV
'F/ v v I]

iARA ‘I!Eﬂn.] M

W !
m NS
N

- NI

i 0

p— S .
=
==
e a
-
=

|

[




f,

Layer 3: Top-

N










a0Dy







: : &)
| @b
- =

L e
";i’ii |
jaz,

an " ‘ﬁ
" -!‘_ __--ﬂ_;
£ Q\\\-.I.'!.'.-'-’; o

Gl G

Of

|

EAT

i % J,

o rr
S e










) J__:,, 1S

I - ;uﬂ.ﬁmw .




Visualizing Convnets

* Optimize input to maximize particular ouput

— Lots of approaches, e.g. Erhan et al. [Tech Report
2009], Le et al. [NIPS 2010]. e

; Il
Ty "
- . ]

— Depend on initialization p Bl

* Google DeepDream

[ http://googleresearch.blogspot.ch/2015/06/inceptionism-going-deeper-

into-neural.html |

— Maximize “banana”
output




Google DeepDream

l
[Frel i

https://photos.google.com/share/
F1QipPX0SC170zWilt9LnuQliattX4OUC]_8EP65_cTVnBmS1jnYgsGQAieQUc1VQWdgQ/photo/
AF1QipMY TXpt0TvZ0Q5kubkGw8VAq2isxBuL02wKZafB?
key=aVBxWjhwSzg2RjJWLWRuVFBBZEN1d205bUdEMnhB




Training Big ConvNets

* Stochastic Gradient Descent
— Compute (noisy estimate of) gradient on small batch

of data & make step
— Take as many steps as possible (even if they are noisy)
— Large initial learning rate
— Anneal learning rate

e Momentum
— Variants [Sutskever ICML 2012]




Annealing of Learning Rate

* Start large, slowly reduce

* Explore different scales of energy surface

— I(data)
— (test) -




Evolution of Features During Training
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Evolution of Features During Training
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Normalization across Data

e Batch Normalization

| Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift, Sergey loffe, Christian Szegedy, arXiv:1502.03167]

Input: Values of = over a mini-batch: B = {z1._,,};
Parameters to be learned: v, 8
Output: {yz = BN%B(SL’Z')}

// mini-batch mean

— = =Inception
.. . BN-Baseline
// mini-batch variance
BN-x30
-+ BN-x5-Sigmoid
€ Steps to match Inception
1 1 1

// normalize , ‘ ‘
10M 15M 20M 25M 30M

// scale and shift
Figure 2: Single crop validation accuracy of Inception
Algorithm 1: Batch Normalizing Transform, applied to and its batch-normalized variants, vs. the number of
activation z over a mini-batch. fraining steps.




Automatic Tuning of Learning Rate?

- ADAGRAD

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for
online leaning and stochastic optimization,” in COLI; 2010.

« ADADELTA

ADADELTA: An Adaptive Learning Rate Method, Matthew D.
Zeiler, arXiv 1212.5701, 2012.

* No more pesky o1 Elgw
' YT T diag(Hy)| Elgipn]
learning rates 2(Hy)| Elg?_.

T. Schaul, S. Zhang, and Y. LeCun, “No more pesky learning rates,”
arXiv:1206.1106, 2012.




Local Minima?

['The Loss Surfaces of Multilayer Networks
Choromanska et al. http://arxiv.org/pdf/1412.0233v3.pdf ]

Distribution of test losses

nhidden




What about 2"9 order methods?

Newton's method: [NNE:maps
Full Hessian impractical to compute

Approximations: :

— Diagonal [Becker & Lecun ‘88] A= G (H) 0 V"
— Truncated CG [Martens, ICML'10]

— Per-batch low-rank [ Sohl-Dickstien et al., ICML14]

— Saddle free (|H|) [Dauphin et al. NIPS’14]

Generally, extra computation needed seems not worth
it: take more (dumb) steps instead!




Saddle Point Perspective

[Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization, Dauphin et al., NIPS 2014]

During optimization Hessian has
both +ve and —ve eigenvalues

— and maybe some zeros too (flat
directions)

— At minimum, all are +ve

Cause problems for SGD

Saddle Free Newton (SFN)

— Use |H| (matrix where take
absolute value of each eigenvalue

of H)

iy
W/H\/II/\IIIHIIHIH]II/HIV\/H\VH\/IH/\H/IHIH\HIH\# IIHIﬂIHI

I MSGD
111 Damped Newton
s SFN

0 20 40 60 80100
# epochs

Train error e (%)

10t

- MSGD
111 Damped Newton

I—‘I—‘I—‘I—‘I—‘I—‘l_.|_|
S ety
c»m-bdur'\)n—lor—-

0 2040 60 80100
# epochs

|most negative )|




Improving Generalization

* Data Augmentation (jitter, peturb)

* Weight decay (1.1/2 penalty on weights)
* Weight sharing (reduces # parameters)

* Multi-task learning

* Inject Noise into network
— DropOut [Hinton et al. 2012]
— DropConnect [Wan et al. ICML 2012]
— Stochastic Pooling [ Zeiler & Fergus ICLR’13]




Big Model + Regularize vs Small Model

Small model Big model Big model

+ Regularize

A




Fooling Convnets

Search for images that are misclassified
by the network

Intriguing properties of neural
networks, Christian Szegedy et al. arXiv
1312.6199, 2013

Deep Neural Networks are Easily
Fooled: High Confidence Predictions

for Unrecognizable Images, Anh

Nguyen, Jason Yosinski, Jeff Clune, ———
arXiv 1412.1897. ' . = —

Y
umm...

Problem common to any discriminative | R

method Figure 1. Evolved images that are unrecognizable to humans,
but that state-of-the-art DNNs trained on ImageNet believe with
> 99.6% certainty to be a familiar object. This result highlights
differences between how DNNs and humans recognize objects.




DropOut

* G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R.
Salakhutdinov, Improving neural networks by preventing co-adaptation of
feature detectors, arXiv:1207.0580 2012

Fully connected layers only

Randomly set activations in
layer to zero

Gives ensemble of models

Classification Errar %

Similar to bagging
| Breiman’94], but differs in

that parameters are shared.




DropConnect

* Wan et al. ICML 2013
* Fully-connected layers only

* Random binary mask on weights
Previous laer mask

+=+=-No-Drop Test
—— Dropout Train

—+— Dropout Test

- = = DropConnect Train
- + - DropConnect Test

Current layer output mask

[}

"

-

-m

]

| .
o

I o
£
w

'
S

| (@)

-

"

N

[}

-

e Lt e
b) DropConnect c) Effective Dropout
mask M mask M’

100 200 300 400 500 600 700 800 900
Epoch




Stochastic Pooling

For conv layers [Zeiler and Fergus, ICLR 2013]

Compute activations a;: (> 0)

;

| 2_keR; Ok

Normalize to sum to 1 -> P =
Sample location, [, from multinomia

Use activation from the location: s = q;

Sample a location
from P():eg. [=1

/ b) Filter :

f) Sampled
c) Rectified Linear d) Activations, a; e) Probabilities, p, Activation, s




OTHER THINGS GOOD TO KNOW

.Check gradients numerically by finite differences

.Visualize features (feature maps need to be uncorrelated)
and have high variance.

samples

hidden unit

Good training: hidden units are sparse across samples o1
and across features. Ranzatol 3



OTHER THINGS GOOD TO KNOW

.Check gradients numerically by finite differences

.Visualize features (feature maps need to be uncorrelated)
and have high variance.

i o
|
b
r

:IE‘

hidden unit

Bad training: many hidden units ignore the input and/or 02
exhibit strong correlations. Ranzatol d



OTHER THINGS GOOD TO KNOW

.Check gradients numerically by finite differences

.Visualize features (feature maps need to be uncorrelated)
and have high variance.

.Visualize parameters

too noisy too lack

. , . correlated structure
Good training: learned filters exhibit structure and are uncorrelated.

103
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OTHER THINGS GOOD TO KNOW

.Check gradients numerically by finite differences

.Visualize features (feature maps need to be uncorrelated)
and have high variance.

.Visualize parameters
.Measure error on both training and validation set.
. Test on a small subset of the data and check the error — 0.

104
Ranzaton



WHAT IF IT DOES NOT WORK?

. [raining diverges:
« Learning rate may be too large — decrease learning rate
« BPROP is buggy — numerical gradient checking

.Parameters collapse / loss is minimized but accuracy is low
» Check loss function:

. Is it appropriate for the task you want to solve?
. Does it have degenerate solutions? Check “pull-up” term.

.Network is underperforming

. Compute flops and nr. params. — if too small, make net larger
» Visualize hidden units/params — fix optmization

.Network is too slow

. Compute flops and nr. params. — GPU,distrib. framework, make
net smaller

105
Ranzaton



Industry Deployment

* Used in Facebook, Google, Microsoft

* Face recognition, image search, photo
organization....

* Very fast at test time (~100 images/sec/GPU)

=
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- C1: M2: C3: L4: L5: L6: F7: 3
Calista_Flockhart_0002.jpg Fronta lization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

[ Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face
Verification, CVPR’14]




Labeled Faces in Wild Dataset

3 Human cropped (97.5%)
DeepFace-ensemble (97.25%)
DeepFace-single (97.00%)
- ——TL Joint Baysian (96.33%)
.....—— High-dimensional LBP (95.17%)
Tom-vs-Pete + Attribute (93.30%)
| : 5 combined Joint Baysian (92.42%)
O'9%.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

false positive rate [Tagman et al. CVPR’14]
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Detection with ConvNets

* So far, all about
classification

 What about

localizing objects
within the scene?

Groundtruth:

tv or monitor

tv or monitor (2)
tv or monitor (3)
person

remote control
remote control (2)




Two General Approaches

1. Examine very position / scale

— E.g. Overfeat: Integrated recognition, localization
and detection using convolutional networks,

Sermanet et al., ICLR 2014

2. Use some kind of proposal mechanism to
attend to a set of possible regions
— E.g. Region-CNN [Rich feature hierarchies for

accurate object detection and semantic

segmentation, Girshick et al., CVPR 2014]




Sliding Window with ConvNet

image size 224

Iter size 7

istride 2

stride 2

Input Image

r\3‘55

Conv

26

3x3 max
pool
stride 2

\256

contrast
norm.

13@1\

Conv

13

Conv

13

L
1 w384

Layer 3

|3
vi

Layer 4

Conv

3x3 max
pool
stride 2

6

Layer 5

Full

Layer6 Layer7

Full

Output




Sliding Window with ConvNet

Conv Conv Conv Conv Conv Full Full

image size 224 26 13 13

filter size 7 @3 13
1 %384 | W1

| _ 256
istride 2 3x3 max \ 3x3 max

. pool| |contrast pool
stride 2 . stride 2| |norm. stride 2

3
l\ 55 13 @3 .
Input Image 1 \ — -
Layer 4 Layer 5 Layer6 Layer7 Output

@
classes

Feature Extractor 256 Classifier

Input Window




Sliding Window with ConvNet

image size 224

Iter size 7

istride 2

stride 2

Input Image

Input Window

r\3‘55

Conv Conv Conv

26 13 13

@3 Nk
1 w384 | V1

_ 256
3x3 max \
pool| | contrast
stride 2| |norm.

i
1 w256

.

Layer 4

Feature Extractor

Conv

3x3 max
pool
stride 2

6

Layer 5

Full Full

Layer6 Layer7 Output

@
classes

No need to compute two separate windows --- Just one big input window




Multi-Scale Sliding Window ConvNet

Feature
Maps

Feature 256
Extractor \

Classifier

VSE56
N




Multi-Scale Sliding Window ConvNet

Feature Bounding Box
Maps Maps

Feature \256 Regression
Extractor Network

VSE56
N




OverFeat — Output before NMS
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Overfeat Detection Results

[Sermanet et al. ICLR 2014]

Top predictions: Groundtruth:
watercraft (confidence 72.2) watercraft
watercraft (confidence 2.1) watercraft (2)

ILSVRC2012_val_00000623 JPEG

Top predictions: Groundtruth:
trombone (confidence 26.8) person
oboe (confidence 17.5) hat with a wide brim
oboe (confidence 11.5) hat with a wide brim (2)
ILSVRC2012_val_00000614.JPEG hat with a wide brim (3)
oboe
oboe (2)
saxophone
trombone
person (2)
person (3)
person (4)

Top predictions: Groundtruth:
tennis ball (confidence 3.5) strawberry
‘ = banana (confidence 2.4) strawberry (2)
| ﬁ !E | ﬁ 4 banana (confidence 2.1) strawberry (3)
g I B LI e aN| ‘ == . hotdog (confidence 2.0) strawberry (4)
. ' ' . E ! I - banana (confidence 1.9) strawberry (5)
ILSVRC2012_val_00000320.JPEG strawberry (6)
strawberry (7)
strawberry (8)
— — strawberry (9)
Top predictions: Groundtruth: strawberry (10)

microwave (confidence 5.6) bowl apple
refrigerator (confidence 2.5) microwave apple (2)

ILSVRC2012_val_00000519.JPEG a pple (3)



R-CNN Approach

[Rich feature hierarchies for accurate object detection and semantic segmentation, Girshick et al., CVPR 2014]

R-CNN: Regions with CNN features
—r— ‘1‘9— warpid region ﬂ

i e e T —
Bottom Up proposag =il 2 N\ pemontyes ]
mechanism YAES Yaws -~ NN ]

1. Input 2. Extract region 3. Compute 4. Classity

S core d by Clas S iﬁ er image proposals (~2k) CNN features regions

Figure 1: Object detection system overview. Our system (1)
takes an input image, (2) extracts around 2000 bottom-up region
proposals, (3) computes features for each proposal using a large

Current best convolutional neural network (CNN), and then (4) classifies each

region using class-specific linear SVMs. R-CNN achieves a mean

dCtCCtiOH app 180) ach average precision (mAP) of 53.7% on PASCAL VOC 2010. For

comparison, [34] reports 35.1% mAP using the same region pro-

on PAS C AL VOC posals, but with a spatial pyramid and bag-of-visual-words ap-

proach. The popular deformable part models perform at 33.4%.

Further work combines proposal mechanism with classification network:
— Fast R-CNN, Ross Girshick, arXiv 1504.08083, 2015.

— Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks, Shaoqing Ren et al., arXiv 1506.01497, 2015




Video Classification

* Want to capture temporal structure

* 3D convolutions & 3D max-pooling
* E.g. C3D model

Convla = Conv2a o Conv3a || Conv3b o Conv4a || Conv4b ki Conv5a || Conv5b i fce || fc7
64 |l 128 ||| 256 256 |[El| 512 512 ||€| 512 512 ||9][4096| [4096| |5
8 convolution, 5 pool, 2 fully-connected layers
3x3x3 convolution kernels

2x2x2 pooling kernels

[ Learning Spatiotemporal Features with 3D Convolutional Networks, Tran et al., arXiv:

1412.0767,2014]
[Slide: Manohar Paluri]




Action Recognition — UCF101 dataset

A e

Apply Eye Makeup

Kmllmg Mixing Batter || Mopping Floor | Nun Chucks |

B 9.
| .’ . ~'_,
Writing On Board y

Baby Crawling || Blowing Candlcs

Pull ups Push ups IR 6ck Climbing Indoor ngg_(_:_hmb

d - - 2
iBzmderchmg Haircut | Head Massage | Military Parade §  Salsa Spin Drummin, Playing Cello §l Playing Daf § Playing Dhol
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it R A b Lo L (\ J 3 -
Front Crawl Golf Swi Hammer Throw §§ High Jum Horse Race || Horse Ridin| Ice Dancing |l| Javelin Throw §  Kayakin,

VRN 3 )
.\‘3 > 4 fop— A | 25 e
: SSASS s s B

Long Jum Parallel Bars || Pole Vault Pommel Horse Punch 1 Rowin,

L | « M. - e

= L

i
Jetski 1vi Soccer Penal Still Rings  fSumo Wrestli Surfin, able Tennis Shotlfi Tennis Swing | Throw Discus

N

k= “
Uneven Bars _[Volleyball Spikin,

[Slide: Manohar Paluri]




Action Recognition Results

Accuracy (%)

Baselines Imagenet 68.8
iDT 76.2

Deep networks [19] 65.4
Use raw pixel Spatial stream network [36] 72.6
inputs LRCN [7] 71.1

LSTM composite model [39] 75.8
C3D (1 net) 82.3
C3D (3 nets) 85.2
1DT with Fisher vector [31]

Temporal stream network [36]

Two-stream networks [36]

LRCN [7]

LSTM composite model [39]

Multi-skip feature stacking [26]

C3D (3 nets) +1DT

Use optical
flows

[Slide: Manohar Paluri]




2D vs 3D Convnets

« UCF101 training

>
o
©
S
S
0
0
©
2
o

—4— depth-1 i % .

—v— depth-3 .
depth-5 || C

—&— depth-7

vonou t-SNE visualization

Imagenet

[Slide: Manohar Paluri]




Sport Classification Results

oh o :‘; N fwi “ﬁ‘ﬂ - ~“‘:,J ;t
B wod.
/ , - = e F

BULLS an CHI A1) MIA ({'(’\

2ND 141 16

arn Hoy I 'u(k\ =

' &
rR[[mROWS 2011  FASTFINALS ‘i
¥

Method Number of Nets | Clip hit@1 | Video hit@1 | Video hit@5
Deep Video’s Single-Frame + Multires [19] 3 net: : : 78.5
Deep Video’s Slow Fusion [19] . . 80.2
C3D (trained from scratch) K . 84.4
C3D (fine-tuned from I380K pre-trained model) . . 85.2

[Slide: Manohar Paluri]




Dense Scene Labeling

* Classification: pixels -> label

* Detection: pixels -> boxes

* Use Convnets to do pixels -> pixels
— Segmentation of image
— Image processing tasks (denoising etc.)

— Don'’t want pooling




Dense Scene Labeling

;

1

E

Input Image Semantic Map

« Convnet output is per-pixel label map



Dense Scene Labeling  peptn

-

7
"

Input Image Semantic Map

« Convnet output is per-pixel depth map



Dense Scene Labeling  peptn

Input Image

Normals

« Convnet output is per-pixel normal map



Eigen et al. architecture

Input: 320x240

i 96
| i 256i 384i 384i 256 4096

e mm-—— - upsample === == -—---- :
641 : 1281 6% 6%
—ee—fp> L t > > — - =
|
.‘ |
jm———————— upsample - === =-=-=--- '
631 : 641 6% 61’
L conv+pool J L concat J | convolutions |
[Predicting Depth, Surface Normals and Semantic Labels with a Common Output: 147x109

Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Architecture

Input: 320x240

L conv+pool J L concat J | convolutions |

[Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]




Multi-Scale Convnets

Input: 320x240
7\[.

t

256 4096
NS

upsample == === ==—--- ;

s

o
>

Dbt upsample - === =-=-=---
o % S o4
L conv+pool J L concat J | convolutions |

[Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Use Appropriate Loss Functions

Depth: d=D—D* = log predicted depth, D* = log true depth

Laeptn(D, D*) = ZdQ 2n2<2d> + — Zvcz + (Vyd;i)?]

[Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Depths Comparison

Eigen NIPS’14 (2 scales) Ours Ground Truth

[Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Surface Normals

RGB input 3DP [6] Ladicky&al [16] Wang&al [33] Ours (VGG) Ground Truth

oy a - ¥ 1 o
i . il -4 R
—d ! P il
i . £
i e . 1 d
i
f < ]

e | - E ﬁ ;

[Predicting Depth, Surface Normals and Semantic Labels with a Common
Multi-Scale Convolutional Architecture, Eigen et al., arXiv 1411.4734, 2014]



Scene Parsing

* Farabet et al. “Learning hierarchical features for scene labeling” PAMI 2013

.—’in ¥ 7 3 “{D.
building- tr@;e»' v

building i * §




Segmentation

* Ciresan et al. “DNN segment neuronal membranes...” NIPS 2012

* Turaga et al. “Maximin learning of image segmentation” NIPS 2009




Denoising with ConvNets

* Burger et al. “Can plain NNs compete with BM3D?” CVPR 2012

Original Nois | Denoised




Deblurring with Convnets

* Blind deconvolution

— Learning to Deblur, Schuler et al., arXiv
1406.7444, 2014

Blurry image with Result of [Zho+13] Deblurring result w. Deblurring result w.
ground truth kernel PSNR 23.17 noise agnostic training  noise specific training
PSNR 23.29 PSNR 23.41




Inpainting with Convnets

Image Denoising and Inpainting with Deep Neural
Networks, Xie et al. NIPS 2012.

Mask-specific inpainting with deep neural networks,
Kohler et al., Pattern Recognition 2014
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Removing Local Corruption

Restoring An Image Taken
Through a Window Covered with
Dirt or Rain

Rain Sequence

Each frame processed independently

David Eigen, Dilip Krishnan and Rob Fergus
ICCV 2013




Removing Local Corruption

* Restoring An Image Taken Through a Window Covered with
Dirt or Rain, Eigen et al., ICCV 2013.




Convnet + Structured Learning

* Gradient-based learning Viterb penalty
applied to document ©
o o N
recognition, Yann LeCun, | e
Leon Bottou, Yoshua Bengio i C{\O\/pﬂ‘ -
and Patrick Haftner, Proc. ot
Transformer
IEEE, Nov 1998.

Interpretation
Graph

2345 Answer

Compose + Viterbi .
Recognition
SDNN Transformer

2 33 4 5 goput
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Convnet + Structured Learning

* Learning Deep Structured Models, Liang-
Chieh Chen, Alexander G. Schwing, Alan L.

Yuille, Raquel Urtasun, arXiv 1407.2538, 2014

* Joint Training of a Convolutional Network and

a Graphical Model for Human Pose
Estimation, J. Tompson, A. Jain, Y. LeCun, C.
Bregler, NIPS 2014

Lots more recently......




BODY TRACKING

« Joint Training of a Convolutional Network and a
Graphical Model for Human Pose Estimation

J. Tompson, A. Jain, Y. LeCun, C. Bregler, NIPS 2014

= NYU



BODY TRACKING: PART DETECTOR

Simplified multi-resolution efficient model:

90x60x512

Full Image 320x240px

-

Half-res Image
160x120px

Conv + || 98x68x128
ReLU +
Pt
(3 stages) -
Conv + || 53x38x128 |
ReLU +
Pool | ;‘
(3 stages) —

9x9 Conv 90x60x4
+ ReLLU

9x9 Conv + ;
+ ReLU Point-wise :
3 Upscale 9x9 Conv

‘ g 12 + ReLU
45x30x128 | 00X

Fully-connectioned equivalent model
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BODY TRACKING: SPATIAL MODEL
Start with MRF formulation

“Convolutional priors”
Sum-product belief propagation

1
pa = 2 Ule—!/ (pA|’U * Py T+ bv—)A)

Face Unary flf Face » Face Face : Face »Shoulder s|f Face Unary

N =

Shoulder Unary fls Shoulder » Face Shoulder Shoulder > Shoulder ° E Shoulder Unary

T NYU



BODY TRACKING: SPATIAL MODEL

Implement it as a network (no longer MRF)!

1
PA = E H (pA|v * Py + bv—)A)

veV l

€A = exp (Z [log (SoftPlus (eA|v) * ReLU (e,) + SoftPlus (bv—>A))]>
veV

where: SoftPlus (z) = 1/slog (1 +exp (Bz)), 12 < B <2
ReLU (z) = max (z,¢),0 < e < 0.01

Conv » log
Conv » log

b,
W SoftPlus

. ReLU ] b ,—{SoftPlus
14

Conv »[ log

Conv » log

W 1SoftPlus
b,, ={SoftPlus

W, ~1SoftPlus
b,,—{SoftPlus

W22 SoftPlus

ReLU |—

2"0‘2"5‘2 0‘2"0‘

NYU






Brief Aside - Speech

* Also huge impact by neural nets
* Traditional approach (pre-2009):

Ra ) )
s ee\Zh — Fte atli.re Modeling Decoding Decoded
g i GMM / ANN HMM Sequence

signal MFCC/PLP

ﬁ , L f, |
WWMWWMW | . Acoustic modeling Language

Phoneme classification Model

SpeCtrograrfi

* Very incremental gains in performance



Deep Learning Technical Revolution

» First resurgence
o A. Mohamed, G. Dahl and G. Hinton "Deep belief networks 2009 T
for phone recognition,” In NIPS Workshop on Deep Learning
for Speech Recognition and Related Applications. 2009

 DNNs for Large Scale Tasks

o F. Seide, G. Li, and D. Yu, “Conversational Speech i
Transcription Using Context-Dependent Deep Neural 2011

Networks,” in Proc. Interspeech 2011.

 CNNs for Large Scale Tasks
o T. N. Sainath, A. Mohamed, B. Kingsbury and B.
Ramabhadran, "Deep Convolutional Neural Networks for 2013 -
LVCSR," in Proc. ICASSP, 2013.

« LSTMs for Large Scale Tasks
o H. Sak, A. Senior and F. Beaufays, “Long Short-Term 2014 -
Memory Recurrent Neural Network Architectures for Large

Scale Acoustic Modeling," in Proc. Interspeech, 2014.

[Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]



DNN Acoustic Modeling Results

 DNNs provide between a 8-25% relative improvement in word error
rate over GMM/HMM systems across a variety of tasks and
languages

» Results confirmed by many, many research labs

300 hour SWB 400 hour 2000 hour
Conversational Broadcast News | Voice Search
Telephony

GMM/HMM 14.3 16.5 16.0

DNN 12.2 15.2 12.2

% Relative 14.7 7.9 23.8
Improvement

[Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]



CNN vs DNN Results

= CNNs trained with vtin-warped log-mel fb features
offer between a 4-12% relative improvement over
DNNs trained with speaker-adapted features (VTLN
+fMLLR)

Baseline GMM/HMM

DNN 15.8 13.3 12.2

CNN 15.0 12.0 11.5

[Sainath et al, ICASSP 2013]

[Slide: Tara Sainath, Google, Advancements in Deep Learning, SLT Keynote, Dec 2014.]



End-to-End Recognition

* Go directly from raw waveform

om Em mm Em Em o Em o Em o B e B Ee B Em B Ee o Em Em Em Em

Raw speech ! Featgre H Modeling ]z[ Decoding ' Phoneme
sequence ! learning — | ! sequence

- o Em EE Em o Em EE Em EE Em EE Em EE Em Em Em Em Em Em Em Em e - o mm o mm o omm o mm o oEm o

____________ —_
|
|
]

Convolutional neural network Conditional Random Field

aw kW ot

000000000000 n00onoono

=]
~ =
=

T rTIT
=[JJ00000L {J000L
e Convolutional Neural Networks-based Continuous Speech Recognition

using Raw Speech Signal, Palaz, Magimai-Doss, Collobert, ICASSP 2015.

t=0 t=1 t=2 t=3 t=4

e Superior results on TIMIT (phoneme recog), comparable results on WSJ.



Natural Language

Processing




Language modeling

e Natural language is a sequence of
sequences

e Some sentences are more likely than others:

o "“How are you ?” has a high probability
o "How banana you ? “ has a low probability

[Slide: Wojciech Zaremba]



Neural Network Language Models

Input output

layer

gy P(w; = 1|h;)

projection hidden
layer layer

Hut

.P[-w_? - '5|h.})

d P(w; = nlhy)

shared
projection

Bengio, Y., Schwenk, H., Sencal, J. S., Morin, F., & Gauvain, J. L. (2006).
Neural probabilistic language models. In Innovations in Machine Learning (pp.

137-186). Springer Berlin Heidelberg.
[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



Recurrent Neural Network Language Models

Key idea: input to predict next word is current word plus context fed-back
from previous word (i.e. remembers the past with recurrent connection).

INPUT (t) QUTPUT (t)

3 CONTEXT (t)

\

CONTEXT (t-1)

Figure: Recurrent neural network based LM
Recurrent neural network based language model. Mikolov et al., Interspeech, '10.

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]



name

Xia Wl
Xi Wi
Xid Wl

hi-l

W non-linearity h W
’ i-1

|

transfers
memory

W non-linearity hi W

transfers
memory

non-linearit
W2 Y h|+1

> Ws

classifier

_}X.

classifier

ﬁ Xl‘l

classifier

e Xis

Recurrent neural networks - schema

name

Wojciech

[Slide: Wojciech Zaremba]



Backpropagation through time

* The intuition is that we unfold the RNN in time

3
—

* We obtain deep neural network with shared
weights U and W wen)

[Slide: Thomas Mikolov, COLING 2014 ]




Backpropagation through time

* We train the unfolded RNN using normal
backpropagation + SGD

* In practice, we limit the number of

unfolding stepsto 5-10

* It is computationally more efficient to =

propagate gradients after few training ’/

examples (batch mode) A

[Slide: Thomas Mikolov, COLING 2014 ]




NNLMS

vs. RNNS: Penn Treebank Results (Mikolov)
Model Weight | PPL
3-gram with Good-Turing smoothing (GT3) 0 165.2
5-gram with Kneser-Ney smoothing (KN5) 0 141.2
5-gram with Kneser-Ney smoothing + cache || 0.0792 | 125.7
Maximum entropy model 0 142.1
Random clusterings LM 0 170.1
Random forest LM 0.1057 | 131.9
Structured LM 0.0196 | 146.1
Within and across sentence boundary LM 0.0838 | 116.6
Log-bilinear LM 0 144.5
Feedforward NNLM 0 140.2
Syntactical NNLM 0.0828 | 131.3
Combination of static RNNLMs 0.3231 | 102.1
Combination of adaptive RNNLMs 0.3058 | 101.0
ALL 1 83.5

Recent uses of NNLMs and RNNs to improve machine translation:

Fast and Robust NN Joint Models for Machine Translation, Devlin et al, ACL '14.

Also Kalchbrenner '13, Sutskever et al., '14., Cho et al., '14. .

[Slide: Antoine Border & Jason Weston, EMNLP Tutorial 2014 ]




Language modelling — RNN samples

the meaning of life is that only if an end would
be of the whole supplier. widespread rules are
regarded as the companies of refuses to
deliver. in balance of the nation’s information
and loan growth associated with the carrier
thrifts are in the process of slowing the seed
and commercial paper.

[Slide: Wojciech Zaremba]



More depth gives more power

Lt+4+2

Lt41

[Slide: Wojciech Zarembal]



LSTM - Long Short Term Memory

[Hochreiter and Schmidhuber, Neural Computation 1997]

e Ad-hoc way of modelling

long dependencies '\\ / \/

e Many alternative ways of Output
modelling it

e Next hidden state is piz
modification of previous .G ~h

hidden state (so modulation
information doesn’t decay sile @F .

orget gate
too fast).

For simple explanation, see [Recurrent Neural Network Regularization,
Wojciech Zaremba, llya Sutskever, Oriol Vinyals, arXiv 1409.2329, 2014]

[Slide: Wojciech Zaremba]



RNN-LSTMs for Machine Translation

W X Y Z <E0S>
A A A A A
—> —> —> —> —> —> —>
T T ) ) ) ) )
A B C <E0S> w X Y Z

[Sutskever et. al. (2014)]

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014

Learning Phrase Representations using RNN Encoder-Decoder for Statistical
Machine Translation, Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre,

Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio, EMNLP
2014

[Slide: Wojciech Zaremba]



Visualizing Internal Representation

t-SNE projection of network state at end of input sentence

18
O | was given a card by her in the garden
10 O In the garden , she gave me a card
O She gave me a card in the garden
5 -
0 -
-5r O She was given a card by me in the garden
O In the garden , | gave her a card
_10 -
_15 - .
O | gave her a card in the garden
_20 1 1 Il 1 1 1 )
-16 -10 =5 0 5 10 15 20

Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014



Translation - examples

e FR: Les avionneurs se querellent au sujet de la largeur des sieges alors que
de grosses commandes sont en jeu

e Google Translate: Aircraft manufacturers are quarreling about the seat width
as large orders are at stake

e LSTM: Aircraft manufacturers are concerned about the width of seats while
large orders are at stake

e Ground Truth: Jet makers feud over seat width with big orders at stake

[Sequence to Sequence Learning with Neural Networks,
llya Sutskever, Oriol Vinyals, Quoc Le, NIPS 2014]

[Slide: Wojciech Zaremba]



Image Captioning: Vision + NLP

Generate short text descriptions of
image, given just picture.

Use Convnet to extract image features

RNN or LSTM model takes image
features as input, generates text

woman, crowd, cat, ‘
camera, holding, purple J
"y

~
N A purple camera with a woman. \
%, Awoman holding a camera in a crowd. |

J

_Awoman holding a cat._ >y

’ i 2.

#1 A woman holding a ‘
camera in a crowd.

Many recent works on this:

« Baidu/UCLA: Explain Images with Multimodal Recurrent Neural Networks

« Toronto: Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models

» Berkeley: Long-term Recurrent Convolutional Networks for Visual Recognition and Description
* Google: Show and Tell: A Neural Image Caption Generator

« Stanford: Deep Visual-Semantic Alignments for Generating Image Description

« UML/UT: Translating Videos to Natural Language Using Deep Recurrent Neural Networks

» Microsoft/CMU: Learning a Recurrent Visual Representation for Image Caption Generation
* Microsoft: From Captions to Visual Concepts and Back



Image Captioning Examples

—

7 [person [0 55)] [street (0.53)] [ rouf 63)] [slope (0.51)]
[men lCl 59]] |qr0up |Cl 05” [woman lU'a‘1" [snow (0.91)] [skis ( f3?4 [pla}'er {{} 54)]
)] [hol 1 30)] [playing (0 h‘J] [people (0.85)] [men (0.57)] [skiing (0.51)]
[Loult (0.51)] ISIEIndIHg (0.59)] [skis (0.58)] [street (0.52)] |skateboard (0.89)] [riding (0O [tennis {0.74)] [trick {0.53)] [skate (0.52)]
[man (0.77)] [skateboard (0.67))]

[nn'\ (0.86)] [down (0.61))
a group of people riding skis d::-wn a snow covered slope
a guy on a skate board on the side of a ramp

a group of people standing nex!l lo each other
people stand oulside a large ad for gap featuring a young boy

[umbrella {0.59)] [woman (0.52)]
[fire (D.96)] [hydrant (0.96)] [street (0.79)] [o

: [ e m— =

[bench (0.81)] [standing (0.57)] [baseball (0.55)] [horse (0.53]] [bear (0.71)] [elephant (0.99)] |«
[whne (Cl 82}] [ﬁl![l]tj Lt'J 65) ] [pecn e (0.79)] [photo (0.53)] [brown (0.68)] [Iaylng [CI 61))

| [man (0.72)] [man (0.57)] [standing (0.79)] [field (0.65)]
a black and white phutu ofa llre hydrant [water {0.83)] [large (0.71)] [dirt (0.65)] [river (0.58)]
a courtyard full of poles pigeons and garbage cans also has benches on a baby elephanl standmg next to each other on a field
gither side of it one of which shows the back of a large person facin : :
g in the direction of the pigaons elephants are playing together in a shallow watering hole

From Captions to Visual Concepts and Back, Hao Fang* Saurabh Gupta* Forrest landola* Rupesh K. Srivastava*, Li Deng Piotr
Dollar, Jianfeng Gao Xiaodong He, Margaret Mitchell John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig, CVPR 2015.






Facebook Al Research
~50 people working in ML/vision/NLP/speech/Al

— 1/3 are research engineers (some of FB’s best coders)

— Yann LeCun is lab director

Freedom to publish & open-source code

Easy to productize (1.1B users)

Labs in:
— Menlo Park, California (Facebook HQ)
— New York City

— Paris

We are hiring!
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