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Overview

Focus on optimization formulations and algorithms that are relevant to
learning.

Convex

Regularized

Incremental / stochastic

Coordinate descent

Constraints

Mention other optimization areas of potential interest, as time permits.

Mário Figueiredo (IST, Lisbon) collaborated with me on a tutorial on
sparse optimization at ICCOPT last month. He wrote and edited many of
these slides.
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Matching Optimization Tools to Learning

(From KDD, Aug 2013) Optimization tools are often combined in different
ways to addesss learning applications.

Linear Regression.

Linear algebra for ‖ · ‖2. (Traditional!)

Stochastic gradient for m� n (e.g. parallel).

Variable Selection & Compressed Sensing.

Shrink algorithms (for `1 term) (Wright et al., 2009b).

Accelerated Gradient (Beck and Teboulle, 2009b).

ADMM (Zhang et al., 2010).

Higher-order: reduced inexact Newton (Wen et al., 2010);
interior-point (Fountoulakis and Gondzio, 2013)

(Also homotopy in λ, LARS, ...) (Efron et al., 2004)
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Support Vector Machines.

Coordinate Descent (Platt, 1999; Chang and Lin, 2011).
Stochastic gradient (Bottou and LeCun, 2004; Shalev-Shwartz et al.,
2007).
Higher-order methods (interior-point) (Ferris and Munson, 2002; Fine
and Scheinberg, 2001); (on reduced space) (Joachims, 1999).
Shrink Algorithms (Duchi and Singer, 2009; Xiao, 2010).
Stochastic gradient + shrink + higher-order (Lee and Wright, 2012).

Logistic Regression (+ Regularization).

Shrink algorithms + reduced Newton (Shevade and Keerthi, 2003;
Shi et al., 2008).
Newton (Lin et al., 2008; Lee et al., 2006)
Stochastic gradient (many!)
Coordinate Descent (Meier et al., 2008)

Matrix Completion.

(Block) Coordinate Descent (Wen et al., 2012).
Shrink (Cai et al., 2010a; Lee et al., 2010).
Stochastic Gradient (Lee et al., 2010).
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Inverse Covariance.

Coordinate Descent (Friedman et al., 2008)
Accelerated Gradient (d’Aspremont et al., 2008)
ADMM (Goldfarb et al., 2012; Scheinberg and Ma, 2012)

Deep Belief Networks.

Stochastic Gradient (Le et al., 2012)
Higher-order (LBFGS, approximate Newton) (Martens, 2010).
Shrinks
Coordinate descent (pretraining) (Hinton et al., 2006).

Image Processing.

Shrink algorithms, gradient projection (Figueiredo and Nowak, 2003;
Zhu et al., 2010)
Higher-order methods: interior-point (Chan et al., 1999), reduced
Newton.
Augmented Lagrangian and ADMM (Bregman) Yin et al. (2008)

Data Assimilation.

Higher-order methods (L-BFGS, inexact Newton)
+ many other tools from scientific computing.
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1 First-Order Methods for Smooth Functions

2 Stochastic Gradient Methods

3 Higher-Order Methods

4 Sparse Optimization

5 Augmented Lagrangian Methods

6 Coordinate Descent
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Just the Basics: Convex Sets
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Convex Functions
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Strong Convexity

Recall the definition of convex function: ∀λ ∈ [0, 1],

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)

A β−strongly convex function satisfies a stronger condition: ∀λ ∈ [0, 1]

f (λx + (1− λ)x ′) ≤ λf (x) + (1− λ)f (x ′)− β

2
λ(1− λ)‖x − x ′‖2

2

convexity

strong convexity
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A Little More on Convex Functions

Let f1, ..., fN : Rn → R̄ be convex functions. Then

f : Rn → R̄, defined as f (x) = max{f1(x), ..., fN(x)}, is convex.

g : Rn → R̄, defined as g(x) = f1(L(x)), where L is affine, is convex.
(“Affine” means that L has the form L(x) = Ax + b.)

h : Rn → R̄, defined as h(x) =
∑N

j=1
αj fj (x), for αj > 0, is convex.

An important function: the indicator of a set C ⊂ Rn,

ιC : Rn → R̄, ιC (x) =

{
0 ⇐ x ∈ C
+∞ ⇐ x 6∈ C

If C is a closed convex set, ιC is a lower semicontinuous convex function.
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Smooth Functions

Let f : Rn → R be twice differentiable and consider its Hessian matrix at
x , denoted ∇2f (x).

[∇2f (x)]ij =
∂f

∂xi∂xj
, for i , j = 1, ..., n.

f is convex ⇔ its Hessian ∇2f (x) is positive semidefinite ∀x

f is strictly convex ⇐ its Hessian ∇2f (x) is positive definite ∀x

f is β-strongly convex ⇔ its Hessian ∇2f (x) � βI , with β > 0, ∀x .
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Norms: A Quick Review

Consider some real vector space V, for example, Rn or Rn×n, ...

Some function ‖ · ‖ : V → R is a norm if it satisfies:

‖αx‖ = |α| ‖x‖, for any x ∈ V and α ∈ R (homogeneity);

‖x + x ′‖ ≤ ‖x‖+ ‖x ′‖, for any x , x ′ ∈ V (triangle inequality);

‖x‖ = 0 ⇒ x = 0.

Examples:

V = Rn, ‖x‖p =
(∑

i

|xi |p
)1/p

(called `p norm, for p ≥ 1).

V = Rn, ‖x‖∞ = lim
p→∞

‖x‖p = max{|x1|, ..., |xn|}

V = Rn×n, ‖X‖∗ = trace
(√

X T X
)

(matrix nuclear norm)

Also important (but not a norm): ‖x‖0 = lim
p→0
‖x‖p

p = |{i : xi 6= 0}|
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Norm balls

Radius r ball in `p norm: Bp(r) = {x ∈ Rn : ‖x‖p ≤ r}

p = 1 p = 2
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I. First-Order Algorithms: Smooth Convex Functions

Consider min
x∈Rn

f (x), with f smooth and convex.

Usually assume µI � ∇2f (x) � LI , ∀x , with 0 ≤ µ ≤ L
(thus L is a Lipschitz constant of ∇f ).

If µ > 0, then f is µ-strongly convex (as seen in Part 1) and

f (y) ≥ f (x) +∇f (x)T (y − x) +
µ

2
‖y − x‖2

2.

Define conditioning (or condition number) as κ := L/µ.

We are often interested in convex quadratics:

f (x) =
1

2
xTA x , µI � A � LI or

f (x) =
1

2
‖Bx − b‖2

2, µI � BT B � LI
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What’s the Setup?

We consider iterative algorithms

xk+1 = xk + dk ,

where dk depends on xk or possibly (xk , xk−1),

For now, assume we can evaluate f (xt) and ∇f (xt) at each iteration. We
focus on algorithms that can be extended to a setting broader than
convex, smooth, unconstrained:

nonsmooth f ;

f not available (or too expensive to evaluate exactly);

only an estimate of the gradient is available;

a constraint x ∈ Ω, usually for a simple Ω (e.g. ball, box, simplex);

nonsmooth regularization; i.e., instead of simply f (x), we want to
minimize f (x) + τψ(x).
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Steepest Descent

Steepest descent (a.k.a. gradient descent):

xk+1 = xk − αk∇f (xk ), for some αk > 0.

Different ways to select an appropriate αk .

1 Hard: interpolating scheme with safeguarding to identify an
approximate minimizing αk .

2 Easy: backtracking. ᾱ, 1
2 ᾱ, 1

4 ᾱ, 1
8 ᾱ, ... until sufficient decrease in f

is obtained.

3 Trivial: don’t test for function decrease; use rules based on L and µ.

Analysis for 1 and 2 usually yields global convergence at unspecified rate.
The “greedy” strategy of getting good decrease in the current search
direction may lead to better practical results.

Analysis for 3: Focuses on convergence rate, and leads to accelerated
multi-step methods.
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Line Search

Seek αk that satisfies Wolfe conditions: “sufficient decrease” in f :

f (xk − αk∇f (xk )) ≤ f (xk )− c1αk‖∇f (xk )‖2, (0 < c1 � 1)

while “not being too small” (significant increase in the directional
derivative):

∇f (xk+1)T∇f (xk ) ≥ −c2‖∇f (xk )‖2, (c1 < c2 < 1).

(works for nonconvex f .) Can show that accumulation points x̄ of {xk}
are stationary: ∇f (x̄) = 0 (thus minimizers, if f is convex)

Can do one-dimensional line search for αk , taking minima of quadratic or
cubic interpolations of the function and gradient at the last two values
tried. Use brackets for reliability. Often finds suitable α within 3 attempts.
(Nocedal and Wright, 2006, Chapter 3)
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Backtracking

Try αk = ᾱ, ᾱ2 ,
ᾱ
4 ,

ᾱ
8 , ... until the sufficient decrease condition is satisfied.

No need to check the second Wolfe condition: the αk thus identified is
“within striking distance” of an α that’s too large — so it is not too short.

Backtracking is widely used in applications, but doesn’t work for f
nonsmooth, or when f is not available / too expensive.
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Constant (Short) Steplength

By elementary use of Taylor’s theorem, and since ∇2f (x) � LI ,

f (xk+1) ≤ f (xk )− αk

(
1− αk

2
L
)
‖∇f (xk )‖2

2

For αk ≡ 1/L, f (xk+1) ≤ f (xk )− 1

2L
‖∇f (xk )‖2

2,

thus ‖∇f (xk )‖2 ≤ 2L[f (xk )− f (xk+1)]

Summing for k = 0, 1, . . . ,N, and telescoping the sum,

N∑
k=0

‖∇f (xk )‖2 ≤ 2L[f (x0)− f (xN+1)].

It follows that ∇f (xk )→ 0 if f is bounded below.
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Rate Analysis

Suppose that the minimizer x∗ is unique.

Another elementary use of Taylor’s theorem shows that

‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2 − αk

(
2

L
− αk

)
‖∇f (xk )‖2,

so that {‖xk − x∗‖} is decreasing.

Define for convenience: ∆k := f (xk )− f (x∗). By convexity, have

∆k ≤ ∇f (xk )T (xk − x∗) ≤ ‖∇f (xk )‖ ‖xk − x∗‖ ≤ ‖∇f (xk )‖ ‖x0 − x∗‖.

From previous page (subtracting f (x∗) from both sides of the inequality),
and using the inequality above, we have

∆k+1 ≤ ∆k − (1/2L)‖∇f (xk )‖2 ≤ ∆k −
1

2L‖x0 − x∗‖2
∆2

k .
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Weakly convex: 1/k sublinear; Strongly convex: linear

Take reciprocal of both sides and manipulate (using (1− ε)−1 ≥ 1 + ε):

1

∆k+1
≥ 1

∆k
+

1

2L‖x0 − x∗‖2
≥ 1

∆0
+

k + 1

2L‖x0 − x∗‖2
,

which yields

f (xk+1)− f (x∗) ≤ 2L‖x0 − x‖2

k + 1
.

The classic 1/k convergence rate!

By assuming µ > 0, can set αk ≡ 2/(µ+ L) and get a linear (geometric)
rate.

‖xk − x∗‖2 ≤
(

L− µ
L + µ

)2k

‖x0 − x∗‖2 =

(
1− 2

κ+ 1

)2k

‖x0 − x∗‖2.

Linear convergence is almost always better than sublinear!
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INTERMISSION: Convergence rates

There’s somtimes confusion about terminology for convergence. Here’s
what optimizers generally say, when talking about how fast a positive
sequence {tk} of scalars is decreasing to zero.

Sublinear: tk → 0, but tk+1/tk → 1. Example: 1/k rate, where tk ≤ Q/k
for some constant Q.

Linear: tk+1/tk ≤ r for some r ∈ (0, 1). Thus typically tk ≤ Cr k . Also
called “geometric” or “exponential” (but I hate the last one — it’s
oversell!)

Superlinear: tk+1/tk → 0. That’s fast!

Quadratic: tk+1 ≤ Ct2
k . Really fast, typical of Newton’s method. The

number of correct significant digits doubles at each iteration. There’s no
point being faster than this!
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Comparing Rates
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Comparing Rates: Log Plot
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Back To Steepest Descent

Question: does taking αk as the exact minimizer of f along −∇f (xk ) yield
a better rate of linear convergence than the (1− 2/κ) linear rate identified
earlier?

Consider f (x) = 1
2 xTA x (thus x∗ = 0 and f (x∗) = 0.)

We have ∇f (xk ) = A xk . Exactly minimizing w.r.t. αk ,

αk = arg min
α

1

2
(xk − αAxk )T A(xk − αAxk ) =

xT
k A2xk

xT
k A3xk

∈
[

1

L
,

1

µ

]
Thus

f (xk+1) ≤ f (xk )− 1

2

(xT
k A2xk )2

(xT
k Axk )(xT

k A3xk )
,

so, defining zk := Axk , we have

f (xk+1)− f (x∗)

f (xk )− f (x∗)
≤ 1− ‖zk‖4

(zT
k A−1zk )(zT

k Azk )
.
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Exact minimizing αk : Faster rate?

Using Kantorovich inequality:

(zT Az)(zT A−1z) ≤ (L + µ)2

4Lµ
‖z‖4.

Thus
f (xk+1)− f (x∗)

f (xk )− f (x∗)
≤ 1− 4Lµ

(L + µ)2
=

(
1− 2

κ+ 1

)2

,

and so

f (xk )− f (x∗) ≤
(

1− 2

κ+ 1

)2k

[f (x0)− f (x∗)].

No improvement in the linear rate over constant steplength!
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The slow linear rate is typical!

Not just a pessimistic bound — it really is this slow!
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Multistep Methods: Heavy-Ball

Enhance the search direction using a contribution from the previous step.
(known as heavy ball, momentum, or two-step)

Consider first a constant step length α, and a second parameter β for the
“momentum” term:

xk+1 = xk − α∇f (xk ) + β(xk − xk−1)

Analyze by defining a composite iterate vector:

wk :=

[
xk − x∗

xk−1 − x∗

]
.

Thus

wk+1 = Bwk + o(‖wk‖), B :=

[
−α∇2f (x∗) + (1 + β)I −βI

I 0

]
.
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Multistep Methods: The Heavy-Ball

Matrix B has same eigenvalues as[
−αΛ + (1 + β)I −βI

I 0

]
, Λ = diag(λ1, λ2, . . . , λn),

where λi are the eigenvalues of ∇2f (x∗).

Choose α, β to explicitly minimize the max eigenvalue of B, obtain

α =
4

L

1

(1 + 1/
√
κ)2

, β =

(
1− 2√

κ+ 1

)2

.

Leads to linear convergence for ‖xk − x∗‖ with rate approximately(
1− 2√

κ+ 1

)
.
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first−order method with momentum

There’s some damping going on! (Like the PID controllers in Schaal’s talk
yesterday.)
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Summary: Linear Convergence, Strictly Convex f

Steepest descent: Linear rate approx
(

1− 2

κ

)
;

Heavy-ball: Linear rate approx
(

1− 2√
κ

)
.

Big difference! To reduce ‖xk − x∗‖ by a factor ε, need k large enough that(
1− 2

κ

)k

≤ ε ⇐ k ≥ κ

2
| log ε| (steepest descent)(

1− 2√
κ

)k

≤ ε ⇐ k ≥
√
κ

2
| log ε| (heavy-ball)

A factor of
√
κ difference; e.g. if κ = 1000 (not at all uncommon in

inverse problems), need ∼ 30 times fewer steps.
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Conjugate Gradient

Basic conjugate gradient (CG) step is

xk+1 = xk + αk pk , pk = −∇f (xk ) + γk pk−1.

Can be identified with heavy-ball, with βk =
αkγk

αk−1
.

However, CG can be implemented in a way that doesn’t require knowledge
(or estimation) of L and µ.

Choose αk to (approximately) miminize f along pk ;

Choose γk by a variety of formulae (Fletcher-Reeves, Polak-Ribiere,
etc), all of which are equivalent if f is convex quadratic. e.g.

γk =
‖∇f (xk )‖2

‖∇f (xk−1)‖2
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Conjugate Gradient

Nonlinear CG: Variants include Fletcher-Reeves, Polak-Ribiere, Hestenes.

Restarting periodically with pk = −∇f (xk ) is useful (e.g. every n
iterations, or when pk is not a descent direction).

For quadratic f , convergence analysis is based on eigenvalues of A and
Chebyshev polynomials, min-max arguments. Get

Finite termination in as many iterations as there are distinct
eigenvalues;

Asymptotic linear convergence with rate approx 1− 2√
κ

.

(like heavy-ball.)

(Nocedal and Wright, 2006, Chapter 5)
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Accelerated First-Order Methods

Accelerate the rate to 1/k2 for weakly convex, while retaining the linear
rate (related to

√
κ) for strongly convex case.

Nesterov (1983) describes a method that requires κ.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← yk − 1
L∇f (yk ); (*short-step*)

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk =
αk (1− αk )

α2
k + αk+1

;

set yk+1 ← xk+1 + βk (xk+1 − xk ).

Still works for weakly convex (κ =∞).
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k

xk+1

xk

y
k+1

xk+2

y
k+2

y

Separates the “gradient descent” and “momentum” step components.
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Convergence Results: Nesterov

If α0 ≥ 1/
√
κ, have

f (xk )− f (x∗) ≤ c1 min

((
1− 1√

κ

)k

,
4L

(
√

L + c2k)2

)
,

where constants c1 and c2 depend on x0, α0, L.

Linear convergence “heavy-ball” rate for strongly convex f ;

1/k2 sublinear rate otherwise.

In the special case of α0 = 1/
√
κ, this scheme yields

αk ≡
1√
κ
, βk ≡ 1− 2√

κ+ 1
.
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FISTA

Beck and Teboulle (2009a) propose a similar algorithm, with a fairly short
and elementary analysis (though still not intuitive).

Initialize: Choose x0; set y1 = x0, t1 = 1;

Iterate: xk ← yk − 1
L∇f (yk );

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

For (weakly) convex f , converges with f (xk )− f (x∗) ∼ 1/k2.

When L is not known, increase an estimate of L until it’s big enough.

Beck and Teboulle (2009a) do the convergence analysis in 2-3 pages:
elementary, but technical.
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A Nonmonotone Gradient Method: Barzilai-Borwein

Barzilai and Borwein (1988) (BB) proposed an unusual choice of αk .
Allows f to increase (sometimes a lot) on some steps: non-monotone.

xk+1 = xk − αk∇f (xk ), αk := arg min
α
‖sk − αzk‖2,

where
sk := xk − xk−1, zk := ∇f (xk )−∇f (xk−1).

Explicitly, we have

αk =
sT

k zk

zT
k zk

.

Note that for f (x) = 1
2 xT Ax , we have

αk =
sT

k Ask

sT
k A2sk

∈
[

1

L
,

1

µ

]
.

BB can be viewed as a quasi-Newton method, with the Hessian
approximated by α−1

k I .
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Comparison: BB vs Greedy Steepest Descent
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There Are Many BB Variants

use αk = sT
k sk/sT

k zk in place of αk = sT
k zk/zT

k zk ;

alternate between these two formulae;

hold αk constant for a number (2, 3, 5) of successive steps;

take αk to be the steepest descent step from the previous iteration.

Nonmonotonicity appears essential to performance. Some variants get
global convergence by requiring a sufficient decrease in f over the worst of
the last M (say 10) iterates.

The original 1988 analysis in BB’s paper is nonstandard and illuminating
(just for a 2-variable quadratic).

In fact, most analyses of BB and related methods are nonstandard, and
consider only special cases. The precursor of such analyses is Akaike
(1959). More recently, see Ascher, Dai, Fletcher, Hager and others.
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Adding a Constraint: x ∈ Ω

How to change these methods to handle the constraint x ∈ Ω ?

(assuming that Ω is a closed convex set)

Some algorithms and theory stay much the same,

...if we can involve the constraint x ∈ Ω explicity in the subproblems.

Example: Nesterov’s constant step scheme requires just one calculation to
be changed from the unconstrained version.

Initialize: Choose x0, α0 ∈ (0, 1); set y0 ← x0.

Iterate: xk+1 ← arg miny∈Ω
1
2‖y − [yk − 1

L∇f (yk )]‖2
2;

find αk+1 ∈ (0, 1): α2
k+1 = (1− αk+1)α2

k + αk+1

κ ;

set βk = αk (1−αk )
α2

k +αk+1
;

set yk+1 ← xk+1 + βk (xk+1 − xk ).

Convergence theory is unchanged.
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Extending to Regularized Optimization

How to change these methods to handle optimization with regularization:

min
x

f (x) + τψ(x),

where f is convex and smooth, while ψ is convex but usually nonsmooth.

Often, all that is needed is to change the update step to

xk+1 = arg min
x

1

2αk
‖x − (xk + αk dk )‖2

2 + τψ(x).

where dk could be a scaled gradient descent step, or something more
complicated (heavy-ball, accelerated gradient), while αk is the step length.

This is the shrinkage/tresholding step; how to solve it with a nonsmooth
ψ? We’ll come back to this topic after discussing the need for
regularization.
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II. Stochastic Gradient Methods

Deal with (weakly or strongly) convex f . We change the rules a bit in this
section:

Allow f nonsmooth.

Can’t get function values f (x) easily.

At any feasible x , have access only to a cheap unbiased estimate of
an element of the subgradient ∂f .

Common settings are:
f (x) = EξF (x , ξ),

where ξ is a random vector with distribution P over a set Ξ. Special case:

f (x) =
1

m

m∑
i=1

fi (x),

where each fi is convex and nonsmooth.
(We focus on this finite-sum formulation, but the ideas generalize.)
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Applications

This setting is useful for machine learning formulations. Given data
xi ∈ Rn and labels yi = ±1, i = 1, 2, . . . ,m, find w that minimizes

τψ(w) +
1

m

m∑
i=1

`(w ; xi , yi ),

where ψ is a regularizer, τ > 0 is a parameter, and ` is a loss. For linear
classifiers/regressors, have the specific form `(w T xi , yi ).

Example: SVM with hinge loss `(w T xi , yi ) = max(1− yi (w T xi ), 0) and
ψ = ‖ · ‖1 or ψ = ‖ · ‖2

2.

Example: Logistic classification: `(w T xi , yi ) = log(1 + exp(yi w
T xi )). In

regularized version may have ψ(w) = ‖w‖1.
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Subgradients

Recall: For each x in domain of f , g is a subgradient of f at x if

f (z) ≥ f (x) + g T (z − x), for all z ∈ dom f .

Right-hand side is a supporting hyperplane.

The set of subgradients is called the subdifferential, denoted by ∂f (x).

When f is differentiable at x , have ∂f (x) = {∇f (x)}.

We have strong convexity with modulus µ > 0 if

f (z) ≥ f (x)+g T (z−x)+
1

2
µ‖z−x‖2, for all x , z ∈ dom f with g ∈ ∂f (x).

Generalizes the assumption ∇2f (x) � µI made earlier for smooth
functions.
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Classical Stochastic Gradient

For the finite-sum objective, get a cheap unbiased estimate of the gradient
∇f (x) by choosing an index i ∈ {1, 2, . . . ,m} uniformly at random, and
using ∇fi (x) to estimate ∇f (x).

Basic SA Scheme: At iteration k, choose ik i.i.d. uniformly at random
from {1, 2, . . . ,m}, choose some αk > 0, and set

xk+1 = xk − αk∇fik (xk ).

Note that xk+1 depends on all random indices up to iteration k, i.e.
i[k] := {i1, i2, . . . , ik}.
When f is strongly convex, the analysis of convergence of expected square
error E (‖xk − x∗‖2) is fairly elementary — see Nemirovski et al. (2009).

Define ak = 1
2 E (‖xk − x∗‖2). Assume there is M > 0 such that

1

m

m∑
i=1

‖∇fi (x)‖2
2 ≤ M.
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Rate: 1/k

Thus

1

2
‖xk+1 − x∗‖2

2

=
1

2
‖xk − αk∇fik (xk )− x∗‖2

=
1

2
‖xk − x∗‖2

2 − αk (xk − x∗)T∇fik (xk ) +
1

2
α2

k‖∇fik (xk )‖2.

Taking expectations, get

ak+1 ≤ ak − αk E [(xk − x∗)T∇fik (xk )] +
1

2
α2

k M2.

For middle term, have

E [(xk − x∗)T∇fik (xk )] = Ei[k−1]
Eik [(xk − x∗)T∇fik (xk )|i[k−1]]

= Ei[k−1]
(xk − x∗)T gk ,
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... where
gk := Eik [∇fik (xk )|i[k−1]] ∈ ∂f (xk ).

By strong convexity, have

(xk − x∗)T gk ≥ f (xk )− f (x∗) +
1

2
µ‖xk − x∗‖2 ≥ µ‖xk − x∗‖2.

Hence by taking expectations, we get E [(xk − x∗)T gk ] ≥ 2µak . Then,
substituting above, we obtain

ak+1 ≤ (1− 2µαk )ak +
1

2
α2

k M2.

When

αk ≡
1

kµ
,

a neat inductive argument (below) reveals the 1/k rate:

ak ≤
Q

2k
, for Q := max

(
‖x1 − x∗‖2,

M2

µ2

)
.
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Inductive Proof of 1/k Rate

Clearly true for k = 1. Otherwise:

ak+1 ≤ (1− 2µαk )ak +
1

2
α2

k M2

≤
(

1− 2

k

)
ak +

M2

2k2µ2

≤
(

1− 2

k

)
Q

2k
+

Q

2k2

=
(k − 1)

2k2
Q

=
k2 − 1

k2

Q

2(k + 1)

≤ Q

2(k + 1)
,

as claimed.
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But... What if we don’t know µ? Or if µ = 0?

The choice αk = 1/(kµ) requires strong convexity, with knowledge of the
modulus µ. An underestimate of µ can greatly degrade the performance of
the method (see example in Nemirovski et al. (2009)).

Now describe a Robust Stochastic Approximation approach, which has a
rate 1/

√
k (in function value convergence), and works for weakly convex

nonsmooth functions and is not sensitive to choice of parameters in the
step length.

This is the approach that generalizes to mirror descent, as discussed later.
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Robust SA

At iteration k :

set xk+1 = xk − αk∇fik (xk ) as before;

set

x̄k =

∑k
i=1 αi xi∑k

i=1 αi

.

For any θ > 0, choose step lengths to be

αk =
θ

M
√

k
.

Then f (x̄k ) converges to f (x∗) in expectation with rate approximately
(log k)/k1/2.

(The choice of θ is not critical.)
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Analysis of Robust SA

The analysis is again elementary. As above (using i instead of k), have:

αi E [(xi − x∗)T gi ] ≤ ai − ai+1 +
1

2
α2

i M2.

By convexity of f , and gi ∈ ∂f (xi ):

f (x∗) ≥ f (xi ) + g T
i (x∗ − xi ),

thus

αi E [f (xi )− f (x∗)] ≤ ai − ai+1 +
1

2
α2

i M2,

so by summing iterates i = 1, 2, . . . , k , telescoping, and using ak+1 > 0:

k∑
i=1

αi E [f (xi )− f (x∗)] ≤ a1 +
1

2
M2

k∑
i=1

α2
i .
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Thus dividing by
∑

i=1 αi :

E

[∑k
i=1 αi f (xi )∑k

i=1 αi

− f (x∗)

]
≤

a1 + 1
2 M2

∑k
i=1 α

2
i∑k

i=1 αi

.

By convexity, we have

f (x̄k ) = f

(∑k
i=1 αi xi∑k

i=1 αi

)
≤
∑k

i=1 αi f (xi )∑k
i=1 αi

,

so obtain the fundamental bound:

E [f (x̄k )− f (x∗)] ≤
a1 + 1

2 M2
∑k

i=1 α
2
i∑k

i=1 αi

.
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By substituting αi = θ
M
√

i
, we obtain

E [f (x̄k )− f (x∗)] ≤
a1 + 1

2θ
2
∑k

i=1
1
i

θ
M

∑k
i=1

1√
i

≤ a1 + θ2 log(k + 1)
θ
M

√
k

= M
[a1

θ
+ θ log(k + 1)

] 1√
k
.

That’s it!

There are other variants — periodic restarting, averaging just over the
recent iterates. These can be analyzed with the basic bound above.
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Constant Step Size

We can also get rates of approximately 1/k for the strongly convex case,
without performing iterate averaging. The tricks are to

define the desired threshold ε for ak in advance, and

use a constant step size.

Recall the bound on ak+1 from a few slides back, and set αk ≡ α:

ak+1 ≤ (1− 2µα)ak +
1

2
α2M2.

Apply this recursively to get

ak ≤ (1− 2µα)k a0 +
αM2

4µ
.

Given ε > 0, find α and K so that both terms on the right-hand side are
less than ε/2. The right values are:

α :=
2εµ

M2
, K :=

M2

4εµ2
log
(a0

2ε

)
.
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Constant Step Size, continued

Clearly the choice of α guarantees that the second term is less than ε/2.

For the first term, we obtain k from an elementary argument:

(1− 2µα)k a0 ≤ ε/2

⇔ k log(1− 2µα) ≤ − log(2a0/ε)

⇐ k(−2µα) ≤ − log(2a0/ε) since log(1 + x) ≤ x

⇔ k ≥ 1

2µα
log(2a0/ε),

from which the result follows, by substituting for α in the right-hand side.

If µ is underestimated by a factor of β, we undervalue α by the same
factor, and K increases by 1/β. (Easy modification of the analysis above.)

Thus, underestimating µ gives a mild performance penalty.
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Constant Step Size: Summary

PRO: Avoid averaging, 1/k sublinear convergence, insensitive to
underestimates of µ.

CON: Need to estimate probably unknown quantities: besides µ, we need
M (to get α) and a0 (to get K ).

We use constant size size in the parallel SG approach Hogwild!, to be
described later.

But the step is chosen by trying different options and seeing which seems
to be converging fastest. We don’t actually try to estimate all the
quantities in the theory and construct α that way.
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Mirror Descent

The step from xk to xk+1 can be viewed as the solution of a subproblem:

xk+1 = arg min
z
∇fik (xk )T (z − xk ) +

1

2αk
‖z − xk‖2

2,

a linear estimate of f plus a prox-term. This provides a route to handling
constrained problems, regularized problems, alternative prox-functions.

For the constrained problem minx∈Ω f (x), simply add the restriction z ∈ Ω
to the subproblem above.

We may use other prox-functions in place of (1/2)‖z − x‖2
2 above. Such

alternatives may be particularly well suited to particular constraint sets Ω.

Mirror Descent is the term used for such generalizations of the SA
approaches above.
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Mirror Descent cont’d

Given constraint set Ω, choose a norm ‖ · ‖ (not necessarily Euclidean).
Define the distance-generating function ω to be a strongly convex function
on Ω with modulus 1 with respect to ‖ · ‖, that is,

(ω′(x)− ω′(z))T (x − z) ≥ ‖x − z‖2, for all x , z ∈ Ω,

where ω′(·) denotes an element of the subdifferential.

Now define the prox-function V (x , z) as follows:

V (x , z) = ω(z)− ω(x)− ω′(x)T (z − x).

This is also known as the Bregman distance. We can use it in the
subproblem in place of 1

2‖ · ‖
2:

xk+1 = arg min
z∈Ω
∇fik (xk )T (z − xk ) +

1

αk
V (z , xk ).
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Bregman distance is the deviation of ω from linearity:

ω

x z

V(x,z)
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Bregman Distances: Examples

For any Ω, we can use ω(x) := (1/2)‖x − x̄‖2
2, leading to the “universal”

prox-function
V (x , z) = (1/2)‖x − z‖2

2

For the simplex

Ω = {x ∈ Rn : x ≥ 0,
n∑

i=1

xi = 1},

we can use instead the 1-norm ‖ · ‖1, choose ω to be the entropy function

ω(x) =
n∑

i=1

xi log xi ,

leading to Bregman distance (Kullback-Liebler divergence)

V (x , z) =
n∑

i=1

zi log(zi/xi )

(standard measure of distance between two probability distributions).
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Applications to SVM

SA techniques have an obvious application to linear SVM classification. In
fact, they were proposed in this context and analyzed independently by
researchers in the ML community for some years.

Codes: SGD (Bottou, 2012), PEGASOS (Shalev-Shwartz et al., 2007).

Tutorial: Stochastic Optimization for Machine Learning, (Srebro and
Tewari, 2010) for many more details on the connections between
stochastic optimization and machine learning.

Related Work: Zinkevich (2003) on online convex programming. Aiming
to approximate the minimize the average of a sequence of convex
functions, presented sequentially. No i.i.d. assumption, regret-based
analysis. Take steplengths of size O(k−1/2) in gradient ∇fk (xk ) of latest
convex function. Average regret is O(k−1/2).
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Parallel Stochastic Gradient

Several approaches tried, for f (x) = (1/m)
∑m

i=1 fi (x).

Dual Averaging: Average gradient estimates evaluated in parallel on
different cores. Requires message passing / synchronization (Dekel
et al., 2012), (Duchi et al., 2010).

Round-Robin: Cores evaluate ∇fi in parallel and update centrally
stored x in round-robin fashion. Requires synchronization (Langford
et al., 2009)

Asynchronous: Hogwild!: Each core grabs the centrally-stored x
and evaluates ∇fe(xe) for some random e, then writes the updates
back into x (Niu et al., 2011).

Hogwild!: Each processor runs independently:

1 Sample ij uniformly from {1, 2, . . . ,m};
2 Read current state of x and evaluate gij = ∇fij (x);

3 Update x ← x − αgij ;
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Hogwild! Convergence

Updates can be old by the time they are applied, but we assume a
bound τ on their age.

Niu et al. (2011) analyze the case in which the update is applied to
just one v ∈ e, but can be extended easily to update the full edge e,
provided this is done atomically.

Processors can overwrite each other’s work, but sparsity of ∇fe helps
— updates to not interfere too much.

Analysis of Niu et al. (2011) recently simplified / generalized by Richtarik
(2012).

In addition to L, µ, M, a0 defined above, also define quantities that
capture the size and interconnectivity of the subvectors xe .

ρi = |{j : fi and fj have overlapping support}|;
ρ =

∑m
i=1 ρi/m2: average rate of overlapping subvectors.
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Hogwild! Convergence

Given ε ∈ (0, a0/L), we have

min
0≤j≤k

E (f (xj )− f (x∗)) ≤ ε,

for constant step size

αk ≡
µε

(1 + 2τρ)LM2|E |2

and k ≥ K , where

K =
(1 + 2τρ)LM2m2

µ2ε
log

(
2La0

ε
− 1

)
.

Broadly, recovers the sublinear 1/k convergence rate seen in regular SGD,
with the delay τ and overlap measure ρ both appearing linearly.
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Hogwild! Performance

Hogwild! compared with averaged gradient (AIG) and round-robin (RR).
Experiments run on a 12-core machine. (10 cores used for gradient
evaluations, 2 cores for data shuffling.)

S. J. Wright () Optimization MLSS, August 2013 66 / 158



Hogwild! Performance
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III. Higher-Order Methods

Methods whose steps use second-order information about the objective f
and constraints. This information can be

Calculated exactly (Newton);

Approximated, by inspecting changes in the gradient over previous
iterations (quasi-Newton);

Approximated by finite-differencing on the gradient;

Approximated by re-use from a nearby point;

Approximated by sampling.

Newton’s method is based on a quadratic Taylor-series approximation of a
smooth objective f around the current point x :

f (x + d) ≈ q(x ; d) := f (x) +∇f (x)T d +
1

2
dT∇2f (x)d .

If ∇2f (x) is positive definite (as near the solution x∗), the Newton step is
the d that minimizes q(·; x), explicitly:

d = −∇2f (x)−1∇f (x).
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Can it be practical?

Isn’t it too expensive to compute ∇2f ? Too expensive to store it for large
n? What about nonsmooth functions?

For many learning applications, f is often composed of simple
functions, so writing down second derivatives is often easy. Not that
we always need them...

∇2f may have sparsity, or other structure that allows it to be
computed and stored efficiently.

In many learning applications, nonsmoothness often enters in a highly
structured way that can be accounted for explicitly, e.g. f (x) + τ‖x‖1.

Often don’t need ∇2f — use approximations instead.

In learning and data analysis, the interesting stuff is often happening on a
low-dimensional manifold. We might be able to home in on this manifold
using first-order methods, then switch to higher-order to improve
performance on the later stages.
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Implementing Newton’s Method

In some cases, it’s practical to compute the Hessian ∇2f (x) explicitly, and
solve for d by factoring and back-substitution:

∇2f (x)d = −∇f (x).

Newton’s method has local quadratic convergence:

‖xk+1 − x∗‖ = O(‖xk − x∗‖2).

When the Hessian is not positive definite, can modify the quadratic
approximation to ensure that it still has a solution, e.g. by adding a
multiple of I to the diagonal:

(∇2f (x) + δI )d = −∇f (x), for some δ ≥ 0.

(“Damped Newton” or “Levenberg-Marquardt”)

If we replace ∇2f (x) by 0 and set δ = 1/αk , we recover steepest descent.

Typically do a line search along dk to ensure sufficient decrease in f .
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Inexact Newton

We can use an iterative method to solve the Newton equations

∇2f (x)d = −∇f (x),

for example, conjugate gradient. These iterative methods often require
matrix-vector multiplications as the key operations:

v ← ∇2f (x)u.

These can be performed approximately without knowledge of ∇2f (x), by
using finite differencing:

∇2f (x)u ≈ [∇f (x + εu)−∇f (x)]/ε,

for some small scalar ε. Each “inner iteration” of the iterative method
costs one gradient evaluation.
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Sampled Newton

A cheap estimate of ∇f (x) may be available by sampling.

When f has a partially separable form (common in learning applications):

f (x) =
1

m

m∑
i=1

fi (x),

(with m huge), we have

∇2f (x) =
1

m

m∑
i=1

∇2fi (x),

we can thus choose a subset B ⊂ {1, 2, . . . ,m} randomly, and define the
approximate Hessian Hk as

Hk =
1

|B|
∑
i∈B
∇2fi (xk ),

Has been useful in deep learning / speech applications (Byrd et al., 2011).
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Quasi-Newton Methods

Maintains an approximation to the Hessian that’s filled in using
information gained on successive steps.

Generate sequence {Bk} of approximate Hessians alongside the iterate
sequence {xk}, and calculate steps dk by solving

Hk dk = −∇f (xk ).

Update from Bk → Bk+1 so that

Approx Hessian mimics the behavior of the true Hessian over this step:

∇2f (xk+1)sk ≈ yk ,

where sk := xk+1 − xk , yk := ∇f (xk+1)−∇f (xk ), so we enforce

Bk+1sk = yk

Make the smallest change consistent with this property (Occam
strikes again!)

Maintain positive definiteness.
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BFGS

These principles are satisfied by a family of updates, most famously, BFGS:

Bk+1 = Bk −
Bk ssT Bk

sT Bk s
+

yy T

y T s

where s = sk and y = yk .

Can start the sequence with B0 = ρI for some multiple ρ that’s consistent
with problem scaling, e.g. sT y/sT s.

Can maintain instead an approximation Hk to the inverse Hessian —
makes the step calculation easier. Update formula is

Hk+1 = (I − ρsy T )Hk (I − ρysT ) + ρssT ,

where ρ = 1/(y T s). Still perform a line search along dk .

Can prove superlinear local convergence for BFGS and other quasi-Newton
methods: ‖xk+1 − x∗‖/‖xk − x∗‖ → 0. Not as fast as Newton, but fast!
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LBFGS

LBFGS doesn’t store the n × n matrices Hk or Bk from BFGS explicitly
but rather keeps track of sk and yk from the last few iterations (say,
m = 5 or 10), and reconstructs these matrices as needed.

That is, take an initial matrix (B0 or H0) and assume that m steps have
been taken since. A simple procedure computes Bk u via a series of inner
and outer products with the matrices sk−j and yk−j from the last m
iterations: j = 0, 1, 2, . . . ,m − 1.

Suitable for problems where n is large. Requires 2mn storage and O(mn)
linear algebra operations, plus the cost of function and gradient
evaluations, and line search.

No superlinear convergence proved, but good behavior is observed on a
wide range of applications.

(Liu and Nocedal, 1989)
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Newton’s Method for Nonlinear Equations

Given the smooth, square nonlinear equations F (x) = 0 where
F : Rn → Rn (not an optimization problem, but the algorithms are
related!) we can use a first-order Taylor series expansion:

F (x + d) = F (x) + J(x)d + O(‖d‖2),

where J(x) is the Jacobian (the n × n matrix of first partial derivatives)
whose (i , j) element is ∂Fi/∂xj . (Not necessarily symmetric.)

At iteration k , define the Newton step to be dk such that

F (xk ) + J(xk )dk = 0.

If there is a solution x∗ at which F (x∗) = 0 and J(x∗) is nonsingular, then
Newton’s method again has local quadratic convergence. (Kantorovich.)

Useful in interior-point methods — see below.
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Interior-Point Methods

Primal-dual interior-point methods are a powerful class of algorithms for
linear programming and convex quadratic programming — both in theory
and practice.

Also simple elementary to motivate and implement!

min
x

1

2
xT Qx + cT x s.t. Ax = b, x ≥ 0,

where Q is symmetric positive semidefinite. (LP is a special case.)
Optimality conditions are that there exist vectors λ and s such that

Qx + c − ATλ− s = 0, Ax = b, (x , s) ≥ 0, xi si = 0, i = 1, 2, . . . , n.

Defining

X = diag(x1, x2, . . . , xn), S = diag(s1, s2, . . . , sn),

we can write the last condition as XSe = 0, where e = (1, 1, . . . , 1)T .
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Thus can write the optimality conditions as a square system of
constrained, nonlinear equations:Qx + c − ATλ− s

Ax − b
XSe

 = 0, (x , s) ≥ 0.

Primal-dual interior-point methods generate iterates (xk , λk , sk ) with

(xk , sk ) > 0 (interior).

Each step (∆xk ,∆λk ,∆sk ) is a Newton step on a perturbed version
of the equations. (The perturbation eventually goes to zero.)

Use steplength αk to maintain (xk+1, sk+1) > 0. Set

(xk+1, λk+1, sk+1) = (xk , λk , sk ) + αk (∆xk ,∆λk ,∆sk ).
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Perturbed Newton step is a linear system:Q −AT −I
A 0 0
S 0 X

∆xk

∆λk

∆sk

 =

r k
x

r k
λ

r k
c


where

r k
x = −(Qxk + c − ATλk − sk )

r k
λ = −(Axk − b)

r k
c = −X k Sk e + σkµk e

r k
x , r k

λ , r k
c are current redisuals, µk = (xk )T sk/n is the current duality gap,

and σk ∈ (0, 1] is a centering parameter.

Typically there is a lot of structure in the system than can be exploited.
Do block elimination, for a start.

See Wright (1997) for a description of primal-dual methods, Gertz and
Wright (2003) for a software framework.
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Interior-Point Methods for Classification

Interior-point methods were tried early for compressed sensing, regularized
least squares, support vector machines.

SVM with hinge loss formulated as a QP, solved with a primal-dual
interior-point method. Included in the OOQP distribution (Gertz and
Wright, 2003); see also (Fine and Scheinberg, 2001; Ferris and
Munson, 2002).

Compressed sensing and LASSO variable selection formulated as
bound-constrained QPs and solved with primal-dual; or second-order
cone programs solved with barrier (Candès and Romberg, 2005)

However they were mostly superseded by first-order methods.

Stochastic gradient in machine learning (low accuracy, simple data
access);

Gradient projection (GPSR) and prox-gradient (SpaRSA, FPC) in
compressed sensing (require only matrix-vector multiplications).

Is it time to reconsider interior-point methods?
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Compressed Sensing: Splitting and Conditioning

Consider the `2-`1 problem

min
x

1

2
‖Bx − b‖2

2 + τ‖x‖1,

where B ∈ Rm×n. Recall the bound constrained convex QP formulation:

min
u≥0,v≥0

1

2
‖B(u − v)− b‖2

2 + τ1T (u + v).

B has special properties associated with compressed sensing matrices (e.g.
RIP) that make the problem well conditioned.

(Though the objective is only weakly convex, RIP ensures that when
restricted to the optimal support, the active Hessian submatrix is well
conditioned.)
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Compressed Sensing via Primal-Dual Interior-Point

Fountoulakis et al. (2012) describe an approach that solves the
bounded-QP formulation.

Uses a vanilla primal-dual interior-point framework.

Solves the linear system at each interior-point iteration with a
conjugate gradient (CG) method.

Preconditions CG with a simple matrix that exploits the RIP
properties of B.

Matrix for each linear system in the interior point solver has the form

M :=

[
BT B −BT B
−BT B BT B

]
+

[
U−1S 0

0 V−1T

]
,

where U = diag(u), V = diag(v), and S = diag(s) and T = diag(t) are
constructed from the Lagrange multipliers for the bound u ≥ 0, v ≥ 0.
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The preconditioner replaces BT B by (m/n)I . Makes sense according to
the RIP properties of B.

P :=
m

n

[
I −I
−I I

]
+

[
U−1S 0

0 V−1T

]
,

Convergence of preconditioned CG depends on the eigenvalue distribution
of P−1M. Gondzio and Fountoulakis (2013) shows that the gap between
largest and smallest eigenvalues actually decreases as the interior-point
iterates approach a solution. (The gap blows up to ∞ for the
non-preconditioned system.)

Overall, the strategy is competitive with first-order methods, on random
test problems.
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Preconditioning: Effect on Eigenvalue Spread / Solve Time

Red = preconditioned, Blue = non-preconditioned.
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Inference via Optimization

Many inference problems are formulated as optimization problems:

image reconstruction

image restoration/denoising

supervised learning

unsupervised learning

statistical inference

...

Standard formulation:

observed data: y

unknown object (signal, image, vector, matrix,...): x

inference criterion:
x̂ ∈ arg min

x
g(x , y)
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Inference via Optimization

Inference criterion: x̂ ∈ arg min
x

g(x , y)

g comes from the application domain (machine learning, signal processing,
inverse problems, statistics, bioinformatics,...); examples ahead.

Typical structure of g : g(x , y) = h(x , y) + τψ(x)

h(x , y) → how well x “fits”/“explains” the data y ;
(data term, log-likelihood, loss function, observation model,...)

ψ(x) → knowledge/constraints/structure: the regularizer

τ ≥ 0: the regularization parameter.

Since y is fixed, we often write simply f (x) = h(x , y).
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IV-A. Sparse Optimization: Formulations

Inference criterion, with regularizer ψ: min
x

f (x) + τψ(x)

Typically, the unknown is a vector x ∈ Rn or a matrix x ∈ Rn×m.

Common regularizers impose/encourage one (or a combination of) the
following characteristics:

small norm (vector or matrix)

sparsity (few nonzeros)

specific nonzero patterns (e.g., group/tree structure)

low-rank (matrix)

smoothness or piece-wise smoothness
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Alternative Formulations for Sparse Optimization

Tikhonov regularization: min
x

f (x) + τψ(x)

Morozov regularization:
min

x
ψ(x)

subject to f (x) ≤ ε

Ivanov regularization:
min

x
f (x)

subject to ψ(x) ≤ δ

Under mild conditions, these are all equivalent.

Morozov and Ivanov can be written as Tikhonov using indicator functions.

Which one to use? Depends on problem and context.
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Cardinality (`0) is hard to deal with!

Finding the sparsest solution is NP-hard (Muthukrishnan, 2005).

ŵ = arg min
w
‖w‖0 s.t. ‖Aw − y‖2

2 ≤ δ.

The related best subset selection problem is also NP-hard (Amaldi and
Kann, 1998; Davis et al., 1997).

ŵ = arg min
w
‖Aw − y‖2

2 s.t. ‖w‖0 ≤ τ.

Under conditions, we can use `1 as a proxy for `0! This is the central issue
in compressive sensing (CS) (Candès et al., 2006a; Donoho, 2006)
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ŵ = arg min
w
‖Aw − y‖2

2 s.t. ‖w‖0 ≤ τ.

Under conditions, we can use `1 as a proxy for `0! This is the central issue
in compressive sensing (CS) (Candès et al., 2006a; Donoho, 2006)

S. J. Wright () Optimization MLSS, August 2013 89 / 158



Compressed Sensing — Reconstructions with `1
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Compressive Sensing in a Nutshell

Even in the noiseless case, it seems impossible to recover w from y

...unless, w is sparse and A has some properties.

If w is sparse enough and A has certain properties, then w is stably
recovered via (Haupt and Nowak, 2006)

ŵ = arg min
w
‖w‖0

s. t. ‖Aw − y‖ ≤ δ NP-hard!
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Compressive Sensing in a Nutshell

The key assumption on A is defined variously as incoherence or restricted
isometry (RIP). When such a property holds, we can replace `0 with `1 in
the formulation: (Candès et al., 2006b):

ŵ = arg min
w
‖w‖1

subject to ‖Aw − y‖ ≤ δ convex problem

Matrix A satisfies the RIP of order k, with constant δk ∈ (0, 1), if

‖w‖0 ≤ k ⇒ (1− δk)‖w‖2
2 ≤ ‖Aw‖ ≤ (1 + δk)‖w‖2

2

...i.e., for k-sparse vectors, A is approximately an isometry. Alternatively,
say that “all k-column submatrices of A are nearly orthonormal.”

Other properties (spark and null space property (NSP)) can be used.

Caveat: checking RIP, NSP, spark is NP-hard (Tillmann and Pfetsch,
2012), but these properties are usually satisfied by random matrices.
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Underconstrained Systems

Let x̄ be the sparsest solution of Ax = y , where A ∈ Rm×n and m < n.

x̄ = arg min ‖x‖0 s.t. Ax = y .

Consider instead the convex, `1 norm version:

min
x
‖x‖1 s.t. Ax = y .

Of course, x̄ solves this problem too, if ‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A).

Recall: ker(A) = {x ∈ Rn : Ax = 0} is the kernel (a.k.a. null space) of A.

Coming Up: elementary analysis by Yin and Zhang (2008), based on work
by Kashin (1977) and Garnaev and Gluskin (1984).
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Equivalence Between `1 and `0 Optimization

Minimum `0 (sparsest) solution: x̄ ∈ arg min ‖x‖0 s.t. Ax = y .

x̄ is also a solution of min ‖x‖1 s.t. Ax = y , provided that

‖x̄ + v‖1 ≥ ‖x̄‖1, ∀v ∈ ker(A).

Letting S = {i : x̄i 6= 0} and Z = {1, ..., n} \ S , we have

‖x̄ + v‖1 = ‖x̄S + vS‖1 + ‖vZ‖1

≥ ‖x̄S‖1 + ‖vZ‖1 − ‖vS‖1

= ‖x̄‖1 + ‖v‖1 − 2‖vS‖1

≥ ‖x̄‖1 + ‖v‖1 − 2
√

k‖v‖2.

Hence, x̄ minimizes the convex formuation if 1
2
‖v‖1

‖v‖2
≥
√

k , ∀v ∈ ker(A)

...but, in general, we have only: 1 ≤ ‖v‖1

‖v‖2
≤
√

n.

However, we may have ‖v‖1

‖v‖2
� 1, if v is restricted to a random subspace.
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Bounding the `1/`2 Ratio in Random Matrices

If the elements of A ∈ Rm×n are sampled i.i.d. from N (0, 1) (zero mean,
unit variance Gaussian), then, with high probability,

‖v‖1

‖v‖2
≥ C

√
m√

log(n/m)
, for all v ∈ ker(A),

for some constant C (based on concentration of measure phenomena).

Thus, with high probability, x̄ ∈ G , if

m ≥ 4

C 2
k log n.

Conclusion: Can solve under-determined system, where A has i.i.d.
N (0, 1) elements, by solving the convex problem

min
x
‖x‖1 s.t. Ax = b,

if the solution is sparse enough, and A is random with O(k log n) rows.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

Random A ∈ R4×7, showing ratio ‖v‖1 for v ∈ ker(A) with ‖v‖2 = 1

Blue: ‖v‖1 ≈ 1. Red: ratio ≈
√

7. Note that ‖v‖1 is well away from the
lower bound of 1 over the whole nullspace.
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Ratio ‖v‖1/‖v‖2 on Random Null Spaces

The effect grows more pronounced as m/n grows.
Random A ∈ R17×20, showing ratio ‖v‖1 for v ∈ N(A) with ‖v‖2 = 1.

Blue: ‖v‖1 ≈ 1. Red: ‖v‖1 ≈
√

20. Note that ‖v‖1 is closer to upper
bound throughout.
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The Ubiquitous `1 Norm

Lasso (least absolute shrinkage and selection operator) (Tibshirani, 1996)
a.k.a. basis pursuit denoising (Chen et al., 1995):

min
x

1

2
‖Ax − y‖2

2 + τ‖x‖1 or min
x
‖Ax − y‖2

2 s.t. ‖x‖1 ≤ δ

or, more generally,

min
x

f (x) + τ‖x‖1 or min
x

f (x) s.t. ‖x‖1 ≤ δ

Widely used outside and much earlier than compressive sensing
(statistics, signal processing, neural networks, ...).

Many extensions: namely to express structured sparsity (more later).

Why does `1 yield sparse solutions? (next slides)

How to solve these problems? (this tutorial)
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Why `1 Yields Sparse Solution

w∗ = arg minw ‖Aw − y‖2
2

s.t. ‖w‖2 ≤ δ
vs w∗ = arg minw ‖Aw − y‖2

2

s.t. ‖w‖1 ≤ δ
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“Shrinking” with `1

The simplest problem with `1 regularization

ŵ = arg min
w

1

2
(w − y)2 + τ |w | = soft(y , τ) =


y − τ ⇐ y > τ
0 ⇐ |y | ≤ τ
y + τ ⇐ y < −τ

Contrast with the squared `2 (ridge) regularizer (linear scaling):

ŵ = arg min
w

1

2
(w − y)2 +

τ

2
w 2 =

1

1 + τ
y .

(No sparsification.)
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Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature vectors)
and yi ∈ {−1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):

ŷ = sign([xT 1]w) = sign
(

wd+1 +
d∑

j=1

wj xj

)

Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Expected error: min
w∈Rd+1

E
(
1Y ([X T 1]w)<0

)
impossible! PX ,Y unknown

Empirical error (EE): min
w

1
N

N∑
i=1

h
(

yi ([xT 1]w)︸ ︷︷ ︸
margin

)
, where h(z) = 1z<0.

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h : R→ {0, 1} with convex loss L : R→ R+.

S. J. Wright () Optimization MLSS, August 2013 101 / 158



Machine/Statistical Learning: Linear Classification

Data N pairs (x1, y1), ..., (xN , yN), where xi ∈ Rd (feature vectors)
and yi ∈ {−1,+1} (labels).

Goal: find “good” linear classifier (i.e., find the optimal weights):
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ŷ = sign([xT 1]w) = sign
(

wd+1 +
d∑

j=1

wj xj

)
Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Expected error: min
w∈Rd+1

E
(
1Y ([X T 1]w)<0

)
impossible! PX ,Y unknown

Empirical error (EE): min
w

1
N

N∑
i=1

h
(

yi ([xT 1]w)︸ ︷︷ ︸
margin

)
, where h(z) = 1z<0.

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h : R→ {0, 1} with convex loss L : R→ R+.
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ŷ = sign([xT 1]w) = sign
(

wd+1 +
d∑

j=1

wj xj

)
Assumption: data generated i.i.d. by some underlying distribution PX ,Y

Expected error: min
w∈Rd+1

E
(
1Y ([X T 1]w)<0

)
impossible! PX ,Y unknown

Empirical error (EE): min
w

1
N

N∑
i=1

h
(

yi ([xT 1]w)︸ ︷︷ ︸
margin

)
, where h(z) = 1z<0.

Convexification: EE neither convex nor differentiable (NP-hard problem).
Solution: replace h : R→ {0, 1} with convex loss L : R→ R+.

S. J. Wright () Optimization MLSS, August 2013 101 / 158



Machine/Statistical Learning: Linear Classification

Criterion: min
w

N∑
i=1

L
(

yi (w T xi + b)︸ ︷︷ ︸
margin

)
︸ ︷︷ ︸

f (w)

+τψ(w)

Regularizer: ψ = `1 ⇒ encourage sparseness ⇒ feature selection

Convex losses: L : R→ R+ is a (preferably convex) loss function.

Misclassification loss: L(z) = 1z<0

Hinge loss: L(z) = max{1− z , 0}

Logistic loss: L(z) =
log
(

1+exp(−z)
)

log 2

Squared loss: L(z) = (z − 1)2
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Machine/Statistical Learning: General Formulation

This formulation cover a wide range of linear ML methods:

min
w

N∑
i=1

L
(
yi ([xT 1]w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Least squares regression: L(z) = (z − 1)2, ψ(w) = 0.

Ridge regression: L(z) = (z − 1)2, ψ(w) = ‖w‖2
2.

Lasso regression: L(z) = (z − 1)2, ψ(w) = ‖w‖1

Logistic classification: L(z) = log(1 + exp(−z)) (ridge, if
ψ(w) = ‖w‖2

2

Sparse logistic regression: L(z) = log(1 + exp(−z)), ψ(w) = ‖w‖1

Support vector machines: L(z) = max{1− z , 0}, ψ(w) = ‖w‖2
2

Boosting: L(z) = exp(−z),

...
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Machine/Statistical Learning: Nonlinear Problems

What about non-linear functions?

Simply use ŷ = φ(x ,w) =
D∑

j=1

wj φj (x), where φj : Rd → R

Essentially, nothing changes; computationally, a lot may change!

min
w

N∑
i=1

L
(
yi φ(x ,w)

)
︸ ︷︷ ︸

f (w)

+ τψ(w)

Key feature: φ(x ,w) is still linear with respect to w , thus f inherits the
convexity of L.

Examples: polynomials, radial basis functions, wavelets, splines, kernels,...
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Structured Sparsity — Groups

Main goal: to promote structural patterns, not just penalize cardinality

Group sparsity: discard/keep entire groups of features (Bach et al., 2012)

density inside each group

sparsity with respect to the groups which are selected

choice of groups: prior knowledge about the intended sparsity patterns

Yields statistical gains if the assumption is correct (Stojnic et al., 2009)

Many applications:

feature template selection (Martins et al., 2011)

multi-task learning (Caruana, 1997; Obozinski et al., 2010)

learning the structure of graphical models (Schmidt and Murphy,
2010)
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Example: Sparsity with Multiple Classes

In multi-class (more than just 2 classes) classification, a common
formulation is

ŷ = arg max
y∈{1,...,K}

xT wy

Weight vector w = (w1, ...,wK ) ∈ RKd has a natural group/grid
organization:

input features

la
b
e
ls

Simple sparsity is wasteful: may still need to keep all the features

Structured sparsity: discard some input features (feature selection)
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Example: Multi-Task Learning

Same thing, except now rows are tasks and columns are features

Example: simultaneous regression (seek function into Rd → Rb)

shared features

ta
sk

s

Goal: discard features that are irrelevant for all tasks

Approach: one group per feature (Caruana, 1997; Obozinski et al., 2010)
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Mixed Norm Regularizer

ψ(x) =
M∑

i=1

‖x[i ]‖2

where x[i ] is a subvector of x (Zhao et al., 2009).

Sum of infinity norms also used (Turlach et al., 2005).

Three scenarios for groups, progressively harder to deal with:

Non-overlapping Groups

Tree-structured Groups

Graph-structured Groups
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Matrix Inference Problems

Sparsest solution:

From Bx = b ∈ Rp, find
x ∈ Rn (p < n).

minx ‖x‖0 s.t. Bx = b

Yields exact solution, under
some conditions.

Lowest rank solution:

From B(X ) = b ∈ Rp, find
X ∈ Rm×n (p < m n).

minX rank(X ) s.t. B(X ) = b

Yields exact solution, under some
conditions.

Both NP−hard (in general); the same is true of noisy versions:

min
X∈Rm×n

rank(X ) s.t. ‖B(X )− b‖2
2

Under some conditions, the same solution is obtained by replacing rank(X )
by the nuclear norm ‖X‖∗ (as any norm, it is convex) (Recht et al., 2010)
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Nuclear Norm Regularization

Tikhonov formulation: min
X
‖B(X )− b‖2

2︸ ︷︷ ︸
f (X )

+ τ‖X‖∗︸ ︷︷ ︸
τψ(X )

Linear observations: B : Rm×n → Rp,
(
B(X )

)
i

= 〈B(i),X 〉,

B(i) ∈ Rm×n, and 〈B,X 〉 =
∑

ij

Bij Xij = trace(BT X )

Particular case: matrix completion, each matrix B(i) has one 1 and is zero
everywhere else.

Why does the nuclear norm favor low rank solutions? Let Y = UΛV T be
the singular value decomposition, where Λ = diag

(
σ1, ..., σmin{m,n}

)
; then

arg min
X

1

2
‖Y − X‖2

F + τ‖X‖∗ = U soft(Λ, τ)︸ ︷︷ ︸
may yield zeros

V T

...singular value thresholding (Ma et al., 2011; Cai et al., 2010b)
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Another Matrix Inference Problem: Inverse Covariance

Consider n samples y1, ..., yn ∈ Rd of a Gaussian r.v. Y ∼ N (µ,C ); the
log-likelihood is

L(P) = log p(y1, ..., yn|P) = log det(P)− trace(SP) + constant

where S = 1
n

∑n
i=1(yi − µ)(yi − µ)T and P = C−1 (inverse covariance).

Zeros in P reveal conditional independencies between components of Y :

Pij = 0 ⇔ Yi ⊥⊥ Yj |{Yk , k 6= i , j}

...exploited to infer (in)dependencies among Gaussian variables. Widely
used in computational biology and neuroscience, social network analysis, ...

Sparsity (presence of zeros) in P is encouraged by solving

min
P�0
− log det(P) + trace(SP)︸ ︷︷ ︸

f (P)

+τ ‖vect(P)‖1︸ ︷︷ ︸
ψ(P)

where vect(P) = [P1,1, ...,Pd ,d ]T .
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Atomic-Norm Regularization

The atomic norm

‖x‖A = inf
{

t > 0 : x ∈ t conv(A)
}

= inf
{∑

a∈A
ca : x =

∑
a∈A

caa, ca ≥ 0
}

...assuming that the centroid of A is at the origin.

Example: the `1 norm as an atomic norm

A =

{[
0
1

]
,

[
1
0

]
,

[
0
−1

]
,

[
−1
0

]}
conv(A) = B1(1) (`1 unit ball).

‖x‖A = inf
{

t > 0 : x ∈ t B1(1)
}

= ‖x‖1
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Atomic Norms: More Examples
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Atomic-Norm Regularization

Given an atomic set A, we can adopt an Ivanov formulation

min f (x) s.t. ‖x‖A ≤ δ

(for some δ > 0) tends to recover x with sparse atomic representation.

Can formulate algorithms for the various special cases — but is a general
approach available for this formulation?

Yes! The conditional gradient! (more later.)

It is also possible to tackle the Tikhonov and Morozov formulations

min
x

f (x) + τ‖x‖A and min
x
‖x‖A s.t. f (x) ≤ ε

(more later).
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Summary: Sparse Optimization Formulations

Many inference, learning, signal/image processing problems can be
formulated as optimization problems.

Sparsity-inducing regularizers play an important role in these problems

There are several way to induce sparsity

It is possible to formulate structured sparsity

It is possible to extend the sparsity rationale to other objects, namely
matrices

Atomic norms provide a unified framework for sparsity/simplicity
regularization

Now discuss Algorithms for Sparse / Regularized Optimization (Section
IV-B).
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More Basics: Subgradients of Convex Functions

Convexity ⇒ continuity (on the domain of the function).

Convexity 6⇒ differentiability. (Example: ‖x‖1 is convex but not
differentiable when any components of x are zero).

Subgradients generalize gradients for general convex functions:

v is a subgradient of f at x if f (x ′) ≥ f (x) + v T (x ′ − x)

Subdifferential: ∂f (x) = {all subgradients of f at x}
If f is differentiable, ∂f (x) = {∇f (x)}

linear lower bound nondifferentiable case
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More on Subgradients and Subdifferentials

The subdifferential is a set-valued function:

f : Rd → R ⇒ ∂f : Rd → 2R
d

(power set of Rd )

Example:

f (x) =


−2x − 1, x ≤ −1
−x , −1 < x ≤ 0

x2/2, x > 0

∂f (x) =


{−2}, x < −1

[−2, −1], x = −1
{−1}, −1 < x < 0

[−1, 0], x = 0
{x}, x > 0

x ∈ arg minx f (x) ⇔ 0 ∈ ∂f (x)
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A Key Tool: Moreau’s Proximity Operators: “Shrinks”

Moreau (1962) proximity operator

x̂ ∈ arg min
x

1

2
‖x − y‖2

2 + ψ(x) =: proxψ(y)

...well defined for convex ψ, since ‖ · −y‖2
2 is coercive and strictly convex.

Example: (seen above) proxτ |·|(y) = soft(y , τ) = sign(y) max{|y | − τ, 0}

Block separability: x = (x[1], ..., x[M]) (a partition of the components of x)

ψ(x) =
M∑

i=1

ψi (x[i ]) ⇒ (proxψ(y))i = proxψi
(y[i ])

Relationship with subdifferential: z = proxψ(y) ⇔ y − z ∈ ∂ψ(z)
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x

1

2
‖x − y‖2

2 + ψ(x) =: proxψ(y)

...well defined for convex ψ, since ‖ · −y‖2
2 is coercive and strictly convex.

Example: (seen above) proxτ |·|(y) = soft(y , τ) = sign(y) max{|y | − τ, 0}
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Important Proximity Operators

Soft-thresholding is the proximity operator of the `1 norm.

Consider the indicator ιS of a convex set S;

proxιS (u) = arg min
x

1

2
‖x − u‖2

2 + ιS(x) = arg min
x∈S

1

2
‖x − y‖2

2 = PS(u)

...the Euclidean projection on S.

Squared Euclidean norm (separable, smooth):

prox(τ/2)‖·‖2
2
(y) = arg min

x

1

2
‖x − y‖2

2 +
τ

2
‖x‖2

2 =
y

1 + τ

Euclidean norm (not separable, nonsmooth):

proxτ‖·‖2
(y) =

{ x
‖x‖2

(‖x‖2 − τ), if ‖x‖2 > τ

0 if ‖x‖2 ≤ τ
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More Proximity Operators

(Combettes and Pesquet, 2011)
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Matrix Nuclear Norm and its Prox Operator

Recall the trace/nuclear norm: ‖X‖∗ =

min{m,n}∑
i=1

σi .

The dual of a Schatten p-norm is a Schatten q-norm, with
1
q + 1

p = 1. Thus, the dual of the nuclear norm is the spectral norm:

‖X‖∞ = max
{
σ1, ..., σmin{m,n}

}
.

If Y = UΛV T is the SVD of Y , we have

proxτ‖·‖∗(Y ) = UΛV T − P{X :max{σ1,...,σmin{m,n}}≤τ}(UΛV T )

= U soft
(
Λ, τ

)
V T .
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Basic Proximal-Gradient Algorithm

Take this step at iteration k :

xk+1 = proxαkψ

(
xk − αk∇f (xk )

)
.

This approach goes by many names, such as

“proximal gradient algorithm” (PGA),

“iterative shrinkage/thresholding” (IST),

“forward-backward splitting” (FBS)

It it has been reinvented several times in different communities:
optimization, partial differential equations, convex analysis, signal
processing, machine learning.
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Convergence of the Proximal-Gradient Algorithm

Basic algorithm: xk+1 = proxαkψ

(
xk − αk∇f (xk )

)
Generalized (possibly inexact) version:

xk+1 = (1− λk )xk + λk

(
proxαkψ

(
xk − αk∇f (xk ) + bk

)
+ ak

)
where ak and bk are “errors” in computing the prox and the gradient;
λk is an over-relaxation parameter.

Convergence is guaranteed (Combettes and Wajs, 2006) if

X 0 < inf αk ≤ supαk <
2
L

X λk ∈ (0, 1], with inf λk > 0

X
∑∞

k ‖ak‖ <∞ and
∑∞

k ‖bk‖ <∞
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More on IST/FBS/PGA for the `2-`1 Case

Problem: x̂ ∈ G = arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1 (recall BT B � LI )

IST/FBS/PGA becomes xk+1 = soft
(
xk − αBT (B x − b), ατ

)
with α < 2/L.

The zero set: Z ⊆ {1, ..., n} : x̂ ∈ G ⇒ x̂Z = 0

Zeros are found in a finite number of iterations (Hale et al., 2008):
after a finite number of iterations (xk)Z = 0.

After discovery of the zero set, reduces to minimizing an
unconstrained quadratic over the nonzero elements of x :
N := {1, 2, . . . , n} \ Z. By RIP property, the submatrix BT

NBN is well
conditioned, so convergence is typically fast linear.
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Heavy Ball Acceleration: FISTA

FISTA (fast iterative shrinkage-thresholding algorithm) is
heavy-ball-type acceleration of IST (based on Nesterov (1983)) (Beck
and Teboulle, 2009a).

Initialize: Choose α ≤ 1/L, x0; set y1 = x0, t1 = 1;

Iterate: xk ← proxταψ
(
yk − α∇f (yk )

)
;

tk+1 ← 1
2

(
1 +

√
1 + 4t2

k

)
;

yk+1 ← xk +
tk − 1

tk+1
(xk − xk−1).

Acceleration:

FISTA: f (xk )− f (x̂) ∼ O

(
1

k2

)
IST: f (xk)− f (x̂) ∼ O

(
1

k

)
.

When L is not known, increase an estimate of L until it’s big enough.
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Acceleration via Larger Steps: SpaRSA

The standard step-size αk ≤ 2
L in IST too timid.

The SpARSA (sparse reconstruction by separable approximation)
framework proposes bolder choices of αk (Wright et al., 2009a):

Barzilai-Borwein (see above), to mimic Newton steps — or at least
get the scaling right.

keep increasing αk until monotonicity is violated: backtrack.

Convergence to critical points (minima in the convex case) is guaranteed
for a safeguarded version: ensure sufficient decrease w.r.t. the worst value
in previous M iterations.
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Acceleration by Continuation

IST/FBS/PGA can be very slow if τ is very small and/or f is poorly
conditioned.

A very simple acceleration strategy: continuation/homotopy

Initialization: Set τ0 � τ , starting point x̄ , factor σ ∈ (0, 1), and k = 0.

Iterations: Find approx solution x(τk ) of minx f (x) + τkψ(x), starting from x̄ ;

if τk = τf STOP;

Set τk+1 ← max(τf , στk ) and x̄ ← x(τk );

Often the solution path x(τ), for a range of values of τ is desired,
anyway (e.g., within an outer method to choose an optimal τ)

Shown to be very effective in practice (Hale et al., 2008; Wright
et al., 2009a). Recently analyzed by Xiao and Zhang (2012).
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A Final Touch: Debiasing

Consider problems of the form x̂ ∈ arg min
x∈Rn

1
2‖B x − b‖2

2 + τ‖x‖1

Often, the original goal was to minimize the quadratic term, after the
support of x had been found. But the `1 term can cause the nonzero
values of xi to be “suppressed.”

Debiasing:

X find the zero set (complement of the support of x̂):
Z(x̂) = {1, ..., n} \ supp(x̂).

X solve minx ‖B x − b‖2
2 s.t. xZ(x̂) = 0. (Fix the zeros and solve an

unconstrained problem over the support.)

Often, this problem has to be solved using an algorithm that only
involves products by B and BT , since this matrix cannot be
partitioned.
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Identifying Optimal Manifolds

Identification of the manifold of the regularizer ψ on which x∗ lies can
improve algorithm performance, by focusing attention on a reduced space.
We can thus evaluate partial gradients and Hessians, restricted to just this
space.

For nonsmooth regularizer ψ, the optimal manifold is a smooth surface
passing through x∗ along which the restriction of ψ is smooth.

Example: for ψ(x) = ‖x‖1, have manifold consisting of z with

zi


≥ 0 if x∗i > 0

≤ 0 if x∗i < 0

= 0 if x∗i = 0.

If we know the optimal nonzero components, we know the manifold. We
could restrict the search to just this set of nonzeros.
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Identification Properties of Prox-Gradient Algorithms

When the optimal manifold is partly smooth (that is, parametrizable by
smooth functions and otherwise well behaved) and prox-regular, and the
minimizer is nondegenerate, then the shrink approach can identify it from
any sufficiently close x . That is,

Sτ (x − α∇f (x), α)

lies on the optimal manifold, for α bounded away from 0 and x in a
neighborhood of x∗. (Consequence of Lewis and Wright (2008).)

For ψ(x) = ‖x‖1, shrink algorithms identify the correct nonzero set,
provided there are no “borderline” components (that is, the optimal
nonzero set would not change with an arbitrarily small perturbation to the
data).

Can use a heuristic to identify when the nonzero set settles down, then
switch to second phase to conduct a search on the reduced space of
“possible nonzeros.”
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Conditional Gradient

Also known as “Frank-Wolfe” after the authors who devised it in the
1950s. Later analysis by Dunn (around 1990). Suddenly a topic of
enormous renewed interest; see for example (Jaggi, 2013).

min
x∈Ω

f (x),

where f is a convex function and Ω is a closed, bounded, convex set.

Start at x0 ∈ Ω. At iteration k :

vk := arg min
v∈Ω

v T∇f (xk );

xk+1 := xk + αk (vk − xk ), αk =
2

k + 2
.

Potentially useful when it is easy to minimize a linear function over
the original constraint set Ω;

Admits an elementary convergence theory: 1/k sublinear rate.

Same convergence theory holds if we use a line search for αk .
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Conditional Gradient for Atomic-Norm Constraints

Conditional Gradient is particularly useful for optimization over
atomic-norm constraints.

min f (x) s.t. ‖x‖A ≤ τ.

Reminder: Given the set of atoms A (possibly infinite) we have

‖x‖A := inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0

}
.

The search direction vk is τ āk , where

āk := arg min
a∈A
〈a,∇f (xk )〉.

That is, we seek the atom that lines up best with the negative gradient
direction −∇f (xk ).
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Generating Atoms

We can think of each step as the “addition of a new atom to the basis.”
Note that xk is expressed in terms of {ā0, ā1, . . . , āk}.

If few iterations are needed to find a solution of acceptable accuracy, then
we have an approximate solution that’s represented in terms of few atoms,
that is, sparse or compactly represented.

For many atomic sets A of interest, the new atom can be found cheaply.

Example: For the constraint ‖x‖1 ≤ τ , the atoms are
{±ei : i = 1, 2, . . . , n}. if ik is the index at which |[∇f (xk )]i | attains its
maximum, we have

āk = −sign([∇f (xk )]ik ) eik

Example: For the constraint ‖x‖∞ ≤ τ , the atoms are the 2n vectors with
entries ±1. We have

[āk ]i = −sign[∇f (xk )]i , i = 1, 2, . . . , n.
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V. Augmented Lagrangian Methods

Consider a linearly constrained problem,

min f (x) s.t. Ax = b.

where f is a proper, lower semi-continuous, convex function.

The augmented Lagrangian is (with ρk > 0)

L(x , λ; ρ) := f (x) + λT (Ax − b)︸ ︷︷ ︸
Lagrangian

+
ρk

2
‖Ax − b‖2

2︸ ︷︷ ︸
“augmentation”

Basic augmented Lagrangian (a.k.a. method of multipliers) is

xk = arg min
x
L(x , λk−1; ρk);

λk = λk−1 + ρ(Axk − b);

(possibly increase ρk .

(Hestenes, 1969; Powell, 1969)
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A Favorite Derivation

...more or less rigorous for convex f .

Write the problem as

min
x

max
λ

f (x) + λT (Ax − b).

Obviously, the max w.r.t. λ will be +∞, unless Ax = b, so this is
equivalent to the original problem.

This equivalence is not very useful, computationally: the maxλ
function is highly nonsmooth w.r.t. x . Smooth it by adding a
proximal term, penalizing deviations from a prior estimate λ̄:

min
x

{
max
λ

f (x) + λT (Ax − b)− 1

2ρ
‖λ− λ̄‖2

}
.

Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

λ = λ̄+ ρ(Ax − b).

S. J. Wright () Optimization MLSS, August 2013 135 / 158



A Favorite Derivation

...more or less rigorous for convex f .

Write the problem as

min
x

max
λ

f (x) + λT (Ax − b).

Obviously, the max w.r.t. λ will be +∞, unless Ax = b, so this is
equivalent to the original problem.

This equivalence is not very useful, computationally: the maxλ
function is highly nonsmooth w.r.t. x . Smooth it by adding a
proximal term, penalizing deviations from a prior estimate λ̄:

min
x

{
max
λ

f (x) + λT (Ax − b)− 1

2ρ
‖λ− λ̄‖2

}
.

Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

λ = λ̄+ ρ(Ax − b).

S. J. Wright () Optimization MLSS, August 2013 135 / 158



A Favorite Derivation

...more or less rigorous for convex f .

Write the problem as

min
x

max
λ

f (x) + λT (Ax − b).

Obviously, the max w.r.t. λ will be +∞, unless Ax = b, so this is
equivalent to the original problem.

This equivalence is not very useful, computationally: the maxλ
function is highly nonsmooth w.r.t. x . Smooth it by adding a
proximal term, penalizing deviations from a prior estimate λ̄:

min
x

{
max
λ

f (x) + λT (Ax − b)− 1

2ρ
‖λ− λ̄‖2

}
.

Maximization w.r.t. λ is now trivial (a concave quadratic), yielding

λ = λ̄+ ρ(Ax − b).

S. J. Wright () Optimization MLSS, August 2013 135 / 158



A Favorite Derivation (Cont.)

Inserting λ = λ̄+ ρ(Ax − b) leads to

min
x

f (x) + λ̄T (Ax − b) +
ρ

2
‖Ax − b‖2 = L(x , λ̄; ρ).

Hence can view the augmented Lagrangian process as:

X minx L(x , λ̄; ρ) to get new x ;

X Shift the “prior” on λ by updating to the latest max: λ̄+ ρ(Ax − b);

X Increase ρk if not happy with improvement in feasibility;

X repeat until convergence.

Add subscripts, and we recover the augmented Lagrangian algorithm of
the first slide!
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Inequality Constraints

The same derivation can be used for inequality constraints:

min f (x) s.t. Ax ≥ b.

Apply the same reasoning to the constrained min-max formulation:

min
x

max
λ≥0

f (x)− λT (Ax − b).

After the prox-term is added, can find the minimizing λ in closed form
(as for prox-operators). Leads to update formula:

λ← max
(
λ̄+ ρ(Ax − b), 0

)
.

This derivation extends immediately to nonlinear constraints
c(x) = 0 or c(x) ≥ 0.
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“Explicit” Constraints, Inequality Constraints

There may be other constraints on x (such as x ∈ Ω) that we prefer
to handle explicitly in the subproblem.

For the formulation min
x

f (x), s.t. Ax = b, x ∈ Ω,

the minx step can enforce x ∈ Ω explicitly:

xk = arg min
x∈Ω
L(x , λk−1; ρ);

λk = λk−1 + ρ(Axk − b);

This gives an alternative way to handle inequality constraints:
introduce slacks s, and enforce them explicitly. That is, replace

min
x

f (x) s.t. c(x) ≥ 0,

by
min
x ,s

f (x) s.t. c(x) = s, s ≥ 0,

and enforce s ≥ 0 explicitly in the subproblems.
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Quick History of Augmented Lagrangian

Dates from at least 1969: Hestenes, Powell.

Developments in 1970s, early 1980s by Rockafellar, Bertsekas, and
others.

Lancelot code for nonlinear programming (Conn et al., 1992).

Lost favor somewhat as an approach for general nonlinear
programming during the next 15 years.

Recent revival in the context of sparse optimization and its many
applications, in conjunction with splitting / coordinate descent.
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Alternating Direction Method of Multipliers (ADMM)

Consider now problems with a separable objective of the form

min
(x ,z)

f (x) + h(z) s.t. Ax + Bz = c ,

for which the augmented Lagrangian is

L(x , z , λ; ρ) := f (x) + h(z) + λT (Ax + Bz − c) +
ρ

2
‖Ax − Bz − c‖2

2.

Standard AL would minimize L(x , z , λ; ρ) w.r.t. (x , z) jointly.
However, these are coupled in the quadratic term, separability is lost

In ADMM, minimize over x and z separately and sequentially:

xk = arg min
x
L(x , zk−1, λk−1; ρk);

zk = arg min
z
L(xk , z , λk−1; ρk);

λk = λk−1 + ρk(Axk + Bzk − c).
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ADMM

Main features of ADMM:

Does one cycle of block-coordinate descent in (x , z).

The minimizations over x and z add only a quadratic term to f and
h, respectively. Usually does not alter the cost much.

Can perform the (x , z) minimizations inexactly.

Can add explicit (separated) constraints: x ∈ Ωx , z ∈ Ωz .

Many (many!) recent applications to compressed sensing, image
processing, matrix completion, sparse principal components analysis....

ADMM has a rich collection of antecendents, dating even to the 1950s
(operator splitting).

For an comprehensive recent survey, including a diverse collection of
machine learning applications, see Boyd et al. (2011).
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ADMM: A Simpler Form

Often, a simpler version is enough: min
(x ,z)

f (x) + h(z) s.t. Ax = z ,

equivalent to min
x

f (x) + h(Ax), often the one of interest.

In this case, the ADMM can be written as

xk = arg min
x

f (x) + ρ
2‖A x − zk−1 − dk−1‖2

2

zk = arg min
z

h(z) + ρ
2‖A xk−1 − z − dk−1‖2

2

dk = dk−1 − (A xk − zk)

the so-called “scaled version” (Boyd et al., 2011).

Updating zk is a proximity computation: zk = proxh/ρ

(
A xk−1− dk−1

)
Updating xk may be hard: if f is quadratic, involves matrix inversion;
if f is not quadratic, may be as hard as the original problem.
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ADMM: Convergence

Consider the problem min
x

f (x) + h(Ax), where f and h are lower

semi-continuous, proper, convex functions and A has full column rank.

The ADMM algorithm presented in the previous slide converges (for
any ρ > 0) to a solution x∗, if one exists, otherwise it diverges.

This is a cornerstone result by Eckstein and Bertsekas (1992).

As in IST/FBS/PGA, convergence is still guaranteed with inexactly
solved subproblems, as long as the errors are absolutely summable.

The recent burst of interest in ADMM is evident from the citation
record of Eckstein and Bertsekas (1992).
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Special Case: `2-`1

Standard problem: minx
1
2‖Ax − b‖2

2 + ‖x‖1. ADMM becomes

xk = arg min
x
‖x‖1 + ρ

2‖A x − zk−1 − dk−1‖2
2

zk = arg min
z

h(z) + ρ
2‖A xk−1 − z − dk−1‖2

2

dk = dk−1 − (A xk − zk )

Subproblems are

xk := (AT A + ρk I )−1(AT b + ρk zk−1 − λk ),

zk := min
z

τ‖z‖1 + (λk )T (xk − z) +
ρk

2
‖z − xk‖2

2

= proxτ/ρk
(xk + λk/ρk )

λk+1 := λk + ρk (xk − zk ).

Solving for xk is the most complicated part of the calculation. If the
least-squares part is underdetermined (A is m × n with n > m), can make
use of the Sherman-Morrison-Woodbury formula:

(AT A + ρk I )−1 =
1

ρk
I − 1

ρk
AT (ρk I + AAT )−1A,

where the inner matrix has size m ×m (smaller than n × n).
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Moreover, in some compressed sensing applications, we have AAT = I . In
this case, xk can be recovered at the cost of two matrix-vector
multiplications involving A.

Otherwise, can solve for xk inexactly, using a few steps of an iterative
method.

The YALL1 code solves this problem, and other problems with more
general regularizers (e.g. groups).
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ADMM for Sparse Inverse Covariance

max
X�0

log det(X )− 〈X ,S〉 − τ‖X‖1,

Reformulate as

max
X�0

log det(X )− 〈X , S〉 − τ‖Z‖1 s.t. X − Z = 0.

Subproblems are:

Xk := arg max
X

log det(X )− 〈X , S〉 − 〈Uk−1,X − Zk−1〉

− ρk

2
‖X − Zk−1‖2

F

:= arg max
X

log det(X )− 〈X , S〉 − ρk

2
‖X − Zk−1 + Uk/ρk‖2

F

Zk := proxτ/ρk‖·‖1
(Xk + Uk );

Uk+1 := Uk + ρk (Xk − Zk ).
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Solving for X

Get optimality condition for the X subproblem by using
∇X log det(X ) = X−1, when X is s.p.d. Thus,

X−1 − S − ρk (X − Zk−1 + Uk/ρk ) = 0,

which is equivalent to

X−1 − ρk X − (S − ρk Zk−1 + Uk ) = 0.

Form eigendecomposition

(S − ρk Zk−1 + Uk ) = QΛQT ,

where Q is n × n orthogonal and Λ is diagonal with elements λi . Seek X
with the form QΛ̃QT , where Λ̃ has diagonals λ̃i . Must have

1

λ̃i

− ρk λ̃i − λi = 0, i = 1, 2, . . . , n.

Take positive roots: λ̃i = [λi +
√
λ2

i + 4ρk ]/(2ρk ), i = 1, 2, . . . , n.
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VI. Coordinate Descent

Consider first min f (x) with f : Rn → R.

Iteration j of basic coordinate descent:

Choose index ij ∈ {1, 2, . . . , n};
Fix all components i 6= ij , change xij in a way that (hopefully) reduces
f .

Variants for the reduced step:

take a reduced gradient step: −∇ij f (x);

do a more rigorous search in the subspace defined by ij ;

actually minimize f in the ij component.

Many extensions of this basic idea.

An old approach, revived recently because of useful applications in machine
learning, and interesting possibilities as stochastic and parallel algorithms.
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Block Coordinate Descent

At iteration j , choose a subset Gj ⊂ {1, 2, . . . , n} and allow only the
components in Gj to change. Fix the components xi for i /∈ Gj .

Again, the step could be a reduced gradient step along −∇Gj
f (x), or a

more elaborate search.

There are many different heuristics for choosing Gj , often arising naturally
from the application.

Constraints and regularizers complicate things! Make block partition
consistent with separablity of constraints / regularizers.
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Deterministic and Stochastic CD

Step
xj+1,ij = xj ,ij − αj [∇f (xj )]ij .

Deterministic CD: choose ik in some fixed order e.g. cyclic;

Stochastic CD: choose ik at random from {1, 2, . . . , n}.

CD is a reasonable choice when it’s cheap to evaluate individual elements
of ∇f (x) (e.g. at 1/n of the cost of a full gradient, say).

Convergence: Deterministic (Luo and Tseng, 1992; Tseng, 2001), linear
rate (Beck and Tetruashvili, 2013). Stochastic, linear rate: (Nesterov,
2012).
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Coordinate Descent in Dual SVM

Coordinate descent has long been popular for solving the dual (QP)
formulation of support vector machines.

min
α∈RN

1

2
αT Kα− 1Tα s.t. 0 ≤ α ≤ C1, y Tα = 0.

SMO: Each Gk has two components. (Thus can maintain feasibility
with respect to the single linear constraint y Tα = 0.)

LIBSVM: SMO approach (still |Gk | = 2), with different heuristic.

LASVM: Again |Gk | = 2, with focus on online setting.

SVM-light: Small |Gk | (default 10).

GPDT: Larger |Gk | (default 400) with gradient projection solver as
the subproblem solver.
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Asynchronous Stochastic Coordinate Descent (ASCD)

Consider min f (x), where f : Rn → Rn is smooth and convex.

Each processor (independently, without synchronization) does:

1. Choose i ∈ {1, 2, . . . , n} uniformly at random;

2. Read x and evaluate g = [∇f (x)]i ;

3. Update xi ← xi − γ
Lmax

g ;

Here γ is a steplength (more below) and Lmax is a bound on the diagonals
of the Hessian ∇2f (x).

Assume that not more than τ cycles pass between when x is read (step 2)
and updated (step 3).

How to choose γ to achieve good convergence?
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Constants and “Diagonalicity”

Several constants are critical to the analysis.

τ : maximum delay;

Lmax: maximum diagonal of ∇2f (x);

Lres: maximum row norm of Hessian;

µ: lower bound on eigenvalues of ∇2f (x) (assumed positive).

The ratio Lres/Lmax is particularly important — it measures the degree of
diagonal dominance in the Hessian ∇2f (x) (Diagonalicity).

By convexity, we have

1 ≤ Lres

Lmax
≤
√

n.

Closer to 1 if Hessian is nearly diagonally dominant (eigenvectors close to
principal coordinate axes). Smaller is better for parallelism.
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Diagonalicity Illustrated

Left figure is better. It can tolerate a higher delay parameter τ and thus
more cores working asynchronously.
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How to choose γ?

Choose some ρ > 1 and pick γ small enough to ensure that

ρ−1 ≤
E(‖∇f (xj+1)‖2)

E(‖∇f (xj )‖2)
≤ ρ.

Not too much change in gradient over each iteration, so not too much
price to pay for using old information, in the asynchronous setting.

Choose γ small enough to satisfy this property but large enough to get a
linear rate.

Assuming that

τ + 1 ≤
√

nLmax

2eLres
,

and choosing ρ = 1 + 2eLres√
nLmax

, we can take γ = 1. Then have

E(f (xj )− f ∗) ≤
(

1− µ

2nLmax

)j

(f (x0)− f ∗).

(Liu and Wright, 2013)
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ASCD Discussion

Linear rate is close to the rate attained by short-step steepest descent.

Bound on τ is a measure of potential parallelization. When ratio Lres/Lmax

is favorable, get τ = O(
√

n). Thus, expect near-linear speedup on to
O(
√

n) cores running asynchronously in parallel.

Can extend algorithm and analysis to

“Essentially strongly convex” and “weakly convex” cases;

Separable constraints. Have τ = O(n1/4) — less potential parallelism.
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Implemented on 4-socket, 40-core Intel Xeon

min
x

‖Ax − b‖2 + 0.5‖x‖2

where A ∈ Rm×n is a Gaussian random matrix (m = 6000, n = 20000,
columns are normalized to 1). Lres/Lmax ≈ 2.2. Choose γ = 1.
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Conclusions

We’ve seen a sample of optimization tools that are relevant to
learning, as currently practiced.

Many holes in this discussion! Check the “matching” slides at the
start for further leads.

Besides being a source of algorithmic tools, optimization offers some
interesting perspectives on formulation.

Optimizers get a lot of brownie points for collaborating with learning
and data analysis researchers, so don’t hesitate to talk to us!
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