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Basics Informal Introduction

Informal Description of Supervised Learning

I X space of input samples
Y space of labels, usually Y ⊂ R.

I Already observed samples

D =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n

I Goal:
With the help of D find a function fD : X → R such that fD(x) is a
good prediction of the label y for new, unseen x .

I Learning method:
Assigns to every training set D a predictor fD : X → R.
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Basics Informal Introduction

Illustration: Binary Classification

Problem:
The labels are ±1.

Goal:
Make few mistakes on future data.

Example:
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Basics Informal Introduction

Illustration: Regression

Problem:
The labels are R-valued.

Goal:
Estimate label y for new data x as accurate as possible.

Example:
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Basics Formalized Description

Data Generation

Assumptions

I P is an unknown probability measure on X × Y .

I D =
(
(x1, y1), . . . , (xn, yn)

)
∈ (X × Y )n is sampled from Pn.

I Future samples (x , y) will also be sampled from P.

Consequences

I The label y for a given x is, in general, not deterministic.

I The past and the future “look the same”.

I We seek algorithms that “work well” for many (or even all) P.
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Basics Formalized Description

Performance Evaluation I

Loss Function
L : X × Y ×R→ [0,∞) measures cost or loss L(x , y , t) of predicting label
y by value t at point x .

Interpretation

I As the name suggests, we prefer predictions with small loss.

I L is chosen by us.

I Since future (x , y) are random, it makes sense to consider the average
loss of a predictor.
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Basics Formalized Description

Performance Evaluation II

Risk
The risk of a predictor f : X → R is the average loss

RL,P(f ) :=

∫
X×Y

L
(
x , y , f (x)

)
dP(x , y) .

For D = ((x1, y1), . . . , (xn, yn)) the empirical risk is

RL,D(f ) :=
1

n

n∑
i=1

L(xi , yi , f (xi )) .

Interpretation
By the law of large numbers, we have P∞-almost surely:

RL,P(f ) = lim
|D|→∞

RL,D(f )

Thus, RL,P(f ) is the long-term average future loss when using f .
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Basics Formalized Description

Performance Evaluation III

Bayes Risk and Bayes Predictor
The Bayes risk is the smallest possible risk

R∗L,P := inf
{
RL,P(f ) | f : X → R (measurable)

}
.

A Bayes predictor is any function f ∗L,P : X → R that satisfies

RL,P(f ∗L,P) = R∗L,P .

Interpretation

I We will never find a predictor whose risk is smaller than R∗L,P .

I We seek a predictor f : X → R whose excess risk

RL,P(f )−R∗L,P

is close to 0.
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Basics Formalized Description

Performance Evaluation IV

Best Näıve Risk
The best näıve risk is the smallest risk one obtains by ignoring X :

R†L,P := inf
{
RL,P(c1X ) | c ∈ R

}
.

Remarks

I The best näıve risk (and its minimizer) is usually easy to estimate.

I Using fancy learning algorithms only makes sense, if R∗L,P < R
†
L,P .

Equality

I Typically: R†L,P = R∗L,P iff there is a constant Bayes predictor.

I If P = PX ⊗ PY , then R†L,P = R∗L,P , but the converse is false.
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Basics Formalized Description

Learning Goals I

Binary Classification: Y = {−1, 1}
I L(y , t) := 1(−∞,0]

(
y sign t

)
penalizes predictions t with sign t 6= y .

I RL,P(f ) = P({(x , y) : sign f (x) 6= y}).

Optimal Risk
Let η(x) := P(Y = 1|x) be the probability of a positive label at x ∈ X .

I Bayes risk: R∗L,P = EPX
min{η, 1− η}.

I f is Bayes predictor iff (2η − 1) sign f ≥ 0.

Näıve Risk

I Näıve risk: R†L,P = min{P(Y = 1), 1− P(Y = 1)}

I R†L,P = R∗L,P iff η ≥ 1/2 or η ≤ 1/2
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Basics Formalized Description

Learning Goals II

Least Squares Regression: Y ⊂ R
I L(y , t) := (y − t)2

I Conditional expectation: µP(x) := EP(Y |x).

I Conditional variance: σ2
P(x) := EP(Y 2|x)− µ2(x).

Optimal Risk

I µP is the only Bayes predictor and R∗L,P = EPX
σ2
P .

I Excess risk: RL,P(f )−R∗L,P = ‖f − µP‖2
L2(PX ).

Least squares regression aims at estimating the conditional mean.

Näıve Risk

I Näıve risk: R†L,P = varPY .
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I Näıve risk: R†L,P = varPY .

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 11 / 62



Basics Formalized Description

Learning Goals II

Least Squares Regression: Y ⊂ R
I L(y , t) := (y − t)2

I Conditional expectation: µP(x) := EP(Y |x).

I Conditional variance: σ2
P(x) := EP(Y 2|x)− µ2(x).

Optimal Risk

I µP is the only Bayes predictor and R∗L,P = EPX
σ2
P .

I Excess risk: RL,P(f )−R∗L,P = ‖f − µP‖2
L2(PX ).

Least squares regression aims at estimating the conditional mean.
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Basics Formalized Description

Learning Goals III

Absolute Value Regression: Y ⊂ R
I L(y , t) := |y − t|
I Conditional medians: mP(x) := medianP(Y |x).

Optimal Risk

I The medians mP are the only Bayes predictors.

I Excess risk: RL,P(fn)−R∗L,P → 0 implies fn → mP in probability PX .

Absolute value regression aims at estimating the conditional median.

Näıve Risk

I Näıve risk: R†L,P = medianPY .
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Basics What is learning theory about?

Questions in Statistical Learning I

Asymptotic Learning
A learning method is called universally consistent if

lim
n→∞

RL,P(fD) = R∗L,P in probability P∞ (1)

for every probability measure P on X × Y .

Good News
Many learning methods are universally consistent.
First result: Stone (1977), AoS
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Basics What is learning theory about?

Questions in Statistical Learning II

Learning Rates
A learning method learns for a distribution P with rate an ↘ 0, if

ED∼PnRL,P(fD) ≤ R∗L,P + CPan , n ≥ 1.

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI)
If |X | =∞, |Y | ≥ 2, and L “non-trivial”, then it is impossible to obtain a
learning rate that is independent of P.

Remark
If |X | <∞, then it is usually easy to obtain a uniform learning rate for
which CP depends on |X |.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 14 / 62



Basics What is learning theory about?

Questions in Statistical Learning II

Learning Rates
A learning method learns for a distribution P with rate an ↘ 0, if

ED∼PnRL,P(fD) ≤ R∗L,P + CPan , n ≥ 1.

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI)
If |X | =∞, |Y | ≥ 2, and L “non-trivial”, then it is impossible to obtain a
learning rate that is independent of P.

Remark
If |X | <∞, then it is usually easy to obtain a uniform learning rate for
which CP depends on |X |.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 14 / 62



Basics What is learning theory about?

Questions in Statistical Learning II

Learning Rates
A learning method learns for a distribution P with rate an ↘ 0, if

ED∼PnRL,P(fD) ≤ R∗L,P + CPan , n ≥ 1.

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI)
If |X | =∞, |Y | ≥ 2, and L “non-trivial”, then it is impossible to obtain a
learning rate that is independent of P.

Remark
If |X | <∞, then it is usually easy to obtain a uniform learning rate for
which CP depends on |X |.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 14 / 62



Basics What is learning theory about?

Questions in Statistical Learning III

Relative Learning Rates

I Let P be a set of distributions on X × Y .

I A learning method learns P with rate an ↘ 0, if, for all P ∈ P,

ED∼PnRL,P(fD) ≤ R∗L,P + CPan , n ≥ 1.

I The rate optimal (an) is minmax optimal, if, in addition, there is no
learning method that learns P with a rate (bn) such that bn/an → 0.

Tasks

I Identify interesting (“realistic”) classes P with good optimal rates.

I Find learning algorithms that achieve these rates.
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Basics What is learning theory about?

Example of Optimal Rates

Classical Least Squares Example

I X = [0, 1]d , Y = [−1, 1], L is least squares.

I Wm Sobolev space on X with order of smoothness m > d/2.

I P the set of P such that f ∗L,P ∈Wm with norm bounded by K .

I Optimal rate is n−
2m

2m+d .

Remarks

I The smoother target µ = f ∗L,P is, the better it can be learned.

I The larger the input dimension is, the harder learning becomes.

I There exists various learning algorithms achieving the optimal rate.

I They usually require us to know m in advance.
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Basics What is learning theory about?

Questions in Statistical Learning IV

Assumptions for Adaptivity

I Usually one has a familiy (Pθ)θ∈Θ of large sets Pθ of distributions.

I Each set Pθ has its own optimal rate.

I We don’t know whether P ∈ Pθ for some θ, but we hope so.

I If P ∈ Pθ, we don’t know θ and we have no mean to estimate it.

Task
We seek learning algorithms that are

I universally consistent.

I learn all Pθ with the optimal rate without knowing θ.

Such learning algorithms are adaptive to the unknown θ.
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Basics What is learning theory about?

Questions in Statistical Learning V

Finite Sample Estimates

I Assume that our algorithm has some hyper-parameters λ ∈ Λ.

I For each P, λ, δ ∈ (0, 1) and n ≥ 1 we seek an ε(P, λ, δ, n) such that

RL,P(fD,λ)−R∗L,P ≤ ε(P, λ, δ, n)

with probability Pn not smaller than 1− δ.

Remarks

I If there exists a sequence (λn) with

lim
n→∞

ε(P, λn, δ, n) = 0

for all P and δ, then the algorithm can be made universally consistent.

I We automatically obtain learning rates for such sequences.

I If |X | =∞ and . . . , then such ε(P, λ, δ, n) must depend on P.
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Basics What is learning theory about?

Questions in Statistical Learning VI

Generalization Error Bounds

I Goal: Estimate risk RL,P(fD,λ) by the performance of fD,λ on D.

I Find ε(λ, δ, n) such that with probability Pn not smaller than 1− δ:

RL,P(fD,λ) ≤ RL,D(fD,λ) + ε(λ, δ, n) .

Remarks

I ε(λ, δ, n) must not depend on P since we do not know P.

I ε(λ, δ, n) can be used to derive parameter selection strategies such as
structural risk minimization.

I Alternative: Use second data set D ′ and RL,D′(fD,λ) as an estimate.
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Basics What is learning theory about?

Summary

A “good” learning algorithm:

I Is universally consistent.

I Is adaptive for realistic classes of distributions.

I Can be modified to new problems that have a different loss.

I Has a good record on real-world problems.

I Runs efficiently on a computer.

I . . .

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 20 / 62



Basics What is learning theory about?

Summary

A “good” learning algorithm:

I Is universally consistent.

I Is adaptive for realistic classes of distributions.

I Can be modified to new problems that have a different loss.

I Has a good record on real-world problems.

I Runs efficiently on a computer.

I . . .

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 20 / 62



RERM Definition and Examples

Empirical Risk Minimization

Definition
Let F be a set of functions X → R. A learning method whose predictors
satisfy fD ∈ F and

RL,D(fD) = min
f ∈F
RL,D(f )

is called empirical risk minimization (ERM).

Remarks

I Not every F makes ERM possible.

I ERM is, in general, not unique.

I ERM may not be computationally feasible.
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RERM Definition and Examples

Empirical Risk Minimization

Danger of underfitting

I ERM can never produce predictors with risk better than

R∗L,P,F := inf{RL,P(f ) : f ∈ F} .

I Example: L least squares, X = [0, 1], PX uniform distribution, f ∗L,P
not linear, and F set of linear functions, then

R∗L,P,F > R∗L,P ,

and thus ERM cannot be consistent.
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RERM Definition and Examples

Empirical Risk Minimization

Danger of overfitting

I If F is too large, ERM may overfit.

I Example: L least squares, X = [0, 1], PX uniform distribution,
f ∗L,P = 1X , R∗L,P = 0, and F set of all functions. Then

fD(x) =

{
yi if x = xi for some i

0 otherwise.

satisfies RL,D(fD) = 0 but RL,P(fD) = 1.
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RERM Definition and Examples

Summary of Last Session

I Risk of a predictor f : X → R is

RL,P(f ) :=

∫
X×Y

L
(
x , y , f (x)

)
dP(x , y) .

I Bayes risk R∗L,P is the smallest possible risk. A Bayes predictor f ∗L,P
achieves this minimal risk.

I Learning is
RL,P(fD)→ R∗L,P

I Asymptotically, this is possible, but no uniform rates are possible.

I We seek adaptive learning algorithms. Ideally, these are fully
automated.
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RERM Definition and Examples

Regularized ERM

Definition
Let F be a non-empty set of functions X → R and Υ : F → [0,∞) be a
map. A learning method whose predictors satisfy fD ∈ F and

Υ(fD) +RL,D(fD) = inf
f ∈F

(
Υ(f ) +RL,D(f )

)
is called regularized empirical risk minimization (RERM).

Remarks

I Υ = 0 yields ERM.

I All remarks about ERM apply to RERM, too.
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RERM Definition and Examples

Examples of Regularized ERM I

General Dictionary Methods
For bounded h1, . . . , hm : X → R consider

F :=

{
fc :=

m∑
i=1

cihi : (c1, . . . , cm) ∈ Rm

}
,

Examples of Regularizers

I `1-regularization: Υ(fc) = λ‖c‖1 = λ
∑m

i=1 |ci |,
I `2-regularization: Υ(fc) = λ‖c‖2 = λ

∑m
i=1 |ci |2,

I `∞-regularization: Υ(fc) = λ‖c‖∞ = λmaxi |ci |,
or, in case of dependent hi , we take the infimum over all representations.
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RERM Definition and Examples

Examples of Regularized ERM II

Further Examples

I Support Vector Machines

I Regularized Decision Trees

I . . .
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RERM Norm Regularizers

Regularized ERM: Norm Regularizers

Conventions

I Whenever we consider regularizers they will be of the form

Υ(f ) = λ‖f ‖αE , f ∈ F ,

where α ≥ 1 and E := F is a vector space of functions X → R.

I In this case, we additionally assume that

‖f ‖∞ ≤ ‖f ‖E , f ∈ E .

I In the following, we assume that the optimization problem also has a
solution fP , when we replace D by P:

fP ∈ arg min
f ∈F

Υ(f ) +RL,P(f )
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RERM Towards the Statistical Analysis

The Classical Argument I

Ansatz

I Assume that we have a data set D and an ε > 0 such that

sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ ε

I Then we obtain

Υ(fD) +RL,P(fD)

= Υ(fD) +RL,P(fD)−RL,D(fD) +RL,D(fD)

≤ Υ(fD) +RL,D(fD) + ε

≤ Υ(fP) +RL,D(fP) + ε

≤ Υ(fP) +RL,P(fP) + 2ε
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RERM Towards the Statistical Analysis

The Classical Argument II

Discussion

I The uniform bound

sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ ε (2)

led to the inequality

Υ(fD) +RL,P(fD)−R∗L,P ≤ Υ(fP) +RL,P(fP)−R∗L,P + 2ε .

I Since Υ(fD) ≥ 0, all what remains to be done, is to estimate
I the probability of (2)
I the regularization error Υ(fP) +RL,P(fP)−R∗

L,P .

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 30 / 62



RERM Towards the Statistical Analysis

The Classical Argument II

Discussion

I The uniform bound

sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ ε (2)

led to the inequality

Υ(fD) +RL,P(fD)−R∗L,P ≤ Υ(fP) +RL,P(fP)−R∗L,P + 2ε .

I Since Υ(fD) ≥ 0, all what remains to be done, is to estimate
I the probability of (2)
I the regularization error Υ(fP) +RL,P(fP)−R∗

L,P .

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 30 / 62



RERM Towards the Statistical Analysis

The Classical Argument III

Union Bound

I Assume that F is finite.

I The union bound gives

P(D : sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ ε)

= 1− P(D : sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ > ε)

≥ 1−
∑
f ∈F

P(D :
∣∣RL,P(f )−RL,D(f )

∣∣ > ε)

Consequences

I It suffices to bound P(D :
∣∣RL,P(f )−RL,D(f )

∣∣ > ε) for all f .

I No assumptions on P are made so far. In particular, so far data D
does not need to be i.i.d. nor even random.
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RERM Towards the Statistical Analysis

The Classical Argument IV

Hoeffding’s Inequality
Let (Ω,A,Q) be a probability space and ξ1, . . . , ξn : Ω→ [a, b] be
independent random variables. Then, for all τ > 0, n ≥ 1, we have

Q

(∣∣∣∣1n
n∑

i=1

(
ξi − EQξi

)∣∣∣∣ ≥ (b − a)

√
τ

2n

)
≤ 2e−τ .

Application

I Consider Ω := (X × Y )n and Q := Pn.

I For ξi (D) := L(xi , yi , f (xi )) we have a = 0 and

1

n

n∑
i=1

(
ξi − EPnξi

)
= RL,D(f )−RL,P(f ) .

I Assuming L(x , y , f (x)) ≤ B makes application of Hoeffding possible.
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RERM Towards the Statistical Analysis

The Classical Argument V

Theorem for ERM
Let L : X × Y × R→ [0,∞) be a loss, F be a non-empty finite set of
functions f : X → R, and B > 0 be a constant such that

L(x , y , f (x)) ≤ B , (x , y) ∈ X × Y , f ∈ F .

Then we have

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |F|)

n

)
≥ 1− e−τ .

Remarks

I Does not specify approximation error R∗L,P,F −R∗L,P .

I If |F| =∞, the bound becomes meaningless.

I What happens, if we consider RERM with non-trivial regularizer?
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RERM Towards the Statistical Analysis

ERM for Infinite F : The General Approach

So far . . .
The union bound was the “trick” to make a conclusion from an estimate of∣∣RL,P(f )−RL,D(f )

∣∣ ≥ ε
for a single f to all f ∈ F . For infinite F , this does not work!

General Approach
Given some δ > 0, find a finite Nδ set of functions such that

sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ sup

f ∈Nδ

∣∣RL,P(f )−RL,D(f )
∣∣+ δ

Then apply the union bound for Nδ. The rest remains unchanged.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 34 / 62



RERM Towards the Statistical Analysis

ERM for Infinite F : The General Approach

So far . . .
The union bound was the “trick” to make a conclusion from an estimate of∣∣RL,P(f )−RL,D(f )

∣∣ ≥ ε
for a single f to all f ∈ F . For infinite F , this does not work!

General Approach
Given some δ > 0, find a finite Nδ set of functions such that

sup
f ∈F

∣∣RL,P(f )−RL,D(f )
∣∣ ≤ sup

f ∈Nδ

∣∣RL,P(f )−RL,D(f )
∣∣+ δ

Then apply the union bound for Nδ. The rest remains unchanged.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 34 / 62



RERM Towards the Statistical Analysis

ERM for Infinite F : The General Approach

The old inequality

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |F|)

n

)
≥ 1− e−τ .

The new inequality

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |Nδ|)

n
+ δ

)
≥ 1− e−τ .

Tasks

I For each δ > 0, find a small set Nδ.
I Optimize the right-hand side wrt. δ.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 35 / 62



RERM Towards the Statistical Analysis

ERM for Infinite F : The General Approach

The old inequality

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |F|)

n

)
≥ 1− e−τ .

The new inequality

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |Nδ|)

n
+ δ

)
≥ 1− e−τ .

Tasks

I For each δ > 0, find a small set Nδ.
I Optimize the right-hand side wrt. δ.

Ingo Steinwart University of Stuttgart () Learning Theory September 4, 2013 35 / 62



RERM Towards the Statistical Analysis

Covering Numbers

Definition
Let (M, d) be a metric space, A ⊂ M, and ε > 0. The ε-covering number
of A is defined by

N (A, d , ε) := inf

{
n ≥ 1 : ∃ x1, . . . , xn ∈ M such that A ⊂

n⋃
i=1

Bd(xi , ε)

}
where inf ∅ :=∞, and Bd(xi , ε) is the ball with radius ε and center xi .

I x1, . . . , xn is called an ε-net.

I N (A, d , ε) is the size of the
smallest ε-net.
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RERM Towards the Statistical Analysis

Covering Numbers II

I Every bounded A ⊂ Rd satisfies

N (A, ‖ · ‖, ε) ≤ cε−d , ε > 0

where c > 0 is a constant and the norm ‖ · ‖ does only influence c.

I For sets F of functions f : X → R, the behavior of N (F , ‖ · ‖, ε) may
be very different!

I The literature is full of estimates of lnN (F , ‖ · ‖, ε).

I A typical estimate looks like

lnN (BE , ‖ · ‖F , ε) ≤ cε−2p , ε > 0

Here p may depend on the input dimension and the smoothness of
the functions in E .
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RERM Towards the Statistical Analysis

ERM with Infinite Sets

Theorem

I Let L be Lipschitz in its third argument, Lipschitz constant = 1.

I Assume that ‖L ◦ f ‖∞ ≤ B for all f ∈ F .

I Let Nε be a minimal ε-net of F , i.e. |Nε| = N (F , ‖ · ‖∞, ε).

Then we have

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 2 ln(2 |Nε|)

n
+ 2ε

)
≥ 1− e−τ .
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RERM Towards the Statistical Analysis

Using Covering Numbers VII

Example

I Let L satisfy assumptions on previous theorem.

I Let F set of functions with lnN (F , ‖ · ‖∞, ε) ≤ cε−2p.

I Then we have

Pn

(
D : RL,P(fD) < R∗L,P,F + B

√
2τ + 4cε−2p

n
+ 2ε

)
≥ 1− e−τ .

I Optimizing wrt. ε gives a constant Kp such that

Pn

(
D : RL,P(fD) < R∗L,P,F + Kpc

1
2+2pB

√
τn−

1
2+2p

)
≥ 1− e−τ .

I For ERM over finite F , we had “p = 0”.
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RERM Towards the Statistical Analysis

Standard Analysis for RERM

Difficulties when Analyzing RERM

I We are interested in RERMs, where F is a vector space E .

I Vector spaces E are never compact, thus lnN (E , ‖ · ‖∞, ε) =∞.

I It seems that our approach does not work in this case.

Solution
RERM actually solves its optimization problem

Υ(fD) +RL,D(fD) = inf
f ∈E

(
Υ(f ) +RL,D(f )

)
over a set, which is significantly smaller than E .
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RERM Towards the Statistical Analysis

Norm Bound for RERM

Lemma
Assume that L(x , y , 0) ≤ 1. Then, for any RERM predictor fD,λ ∈ E we
have

‖fD,λ‖E ≤ λ−1/α .

Consequence
RERM optimization problem is actually solved over the ball with radius

λ−1/α .
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RERM Towards the Statistical Analysis

Norm Bound for RERM II

Proof
Our assumptions L(x , y , t) ≥ 0 and L(x , y , 0) ≤ 1 yield

λ‖fD,λ‖αE ≤ λ‖fD,λ‖αE +RL,D(fD,λ)

= inf
f ∈E

(
λ‖f ‖αE +RL,D(f )

)
≤ λ‖0‖αE +RL,D(0)

≤ 1 .
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RERM Statistical Analysis

An Oracle Inequality

Theorem (Example)

I L Lipschitz continuous with |L|1 ≤ 1 and L(x , y , 0) ≤ 1.

I E vector space with norm ‖ · ‖E satisfying ‖ · ‖∞ ≤ ‖ · ‖E .

I Υ(f ) = λ‖f ‖αE .

I We have lnN (BE , ‖ · ‖∞, ε) ≤ cε−2p

Then, for all n ≥ 1, λ ∈ (0, 1], τ ≥ 1, we have

λ‖fD,λ‖αE +RL,P(fD,λ) < λ‖fP,λ‖αE +RL,P(fP,λ) + Kpc
1

2+2p
√
τλ−

1
α n−

1
2+2p

with probability Pn not less than 1− e−τ .
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RERM Statistical Analysis

Consequences of the Oracle Inequality

Oracle inequality

λ‖fD,λ‖αE +RL,P(fD,λ)

−R∗L,P

< λ‖fP,λ‖αE +RL,P(fP,λ)

−R∗L,P,E
+R∗L,P,E −R∗L,P

+Kpc
1

2+2p
√
τλ−

1
α n−

1
2+2p

I Regularization error: A(λ) := λ‖fP,λ‖αE +RL,P(fP,λ)−R∗L,P,E
I Approximation error: R∗L,P,E −R∗L,P .

I Statistical error: Kpc
1

2+2p
√
τλ−

1
α n−

1
2+2p .
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RERM Statistical Analysis

Bounding the Remaining Errors

Lemma 1
If E is dense in L1(PX ), then R∗L,P,E −R∗L,P = 0.

Lemma 2
We have limλ→0 A(λ) = 0, and if there is an f ∗ ∈ E with
RL,P(f ) = R∗L,P,E , then

A(λ) ≤ λ‖f ∗‖αE .

Remarks

I A linear behaviour of A often requires such an f ∗.
I A typical behavior is, for some β ∈ (0, 1], of the form

A(λ) ≤ cλβ

I A sufficient condition for such a behaviour can be described with the
help of so-called “interpolation spaces of the real method”.
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RERM Statistical Analysis

Main Results for RERM

Oracle inequality
We assume R∗L,P,E −R∗L,P = 0.

λ‖fD,λ‖αE +RL,P(fD,λ)−R∗L,P < A(λ) + Kpc
1

2+2p
√
τλ−

1
α n−

1
2+2p

Consequences

I Consistent, if λn → 0 with λnn
α

2+2p →∞.

I If A(λ) ≤ cλβ, then

λn ∼ n
− α

(αβ+1)(2+2p)

achieves “best” rate

n
− αβ

(αβ+1)(2+2p)
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RERM Statistical Analysis

Main Results for ERM II

Discussion

I Assumptions for consistency on E are minimal.

I More sophisticated algorithms can be devised from oracle inequality.
For example, E could change with sample size, too.

I To achieve best learning rates, we need to know β.
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RERM Statistical Analysis

Learning Rates: Hyper-Parameters III

Training-Validation Approach
Assume that L is clippable.

I Split data into equally sized parts D1 and D2. We write m := n/2.

I Fix a finite set Λ ⊂ (0, 1] of candidate values for λ.

I For each λ ∈ Λ compute fD1,λ.

I Pick the λD2 ∈ Λ such that f̄D1,λD2
minimizes empirical risk RL,D2 .

Observation
Approach performs RERM on D1 and ERM over F := {f̄D1,λ : λ ∈ Λ} on
D2.
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RERM Statistical Analysis

Learning Rates: Hyper-Parameters VI

Theorem
If Λn is a polynomially growing n−α/2-net of (0, 1], our TV-RERM is
consistent and enjoys the same best rates as RERM without knowing β.
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RERM Statistical Analysis

Summary

Positive Aspects

I Finite sample estimates in forms of oracle inequalities.

I Consistency and learning rates.

I Adaptivity to best learning rates the analysis can provide.

I Framework applies to a variety of algorithms, e.g. SVMs with
Gaussian kernels.

I Analysis is very robust to changes in the scenario.

Negative Aspect

I For RERM, the rates are never optimal!

I This analysis is out-dated.
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RERM Statistical Analysis

Learning Rates: Non-Optimality I

I For RERM, with probability Pn not less than 1− e−τ we have

λn‖fD,λn‖αE +RL,P(fD,λn)−R∗
L,P ≤ C

√
τn−

αβ
2(αβ+1)(1+p) . (3)

I In the proof of this result we used λn‖fD,λn‖αE ≤ 1, but (3) shows

λn‖fD,λn‖2
E ≤ C

√
τn−

αβ
2(αβ+1)(1+p) .

For large n this estimate is sharper!

I Using the sharper estimate in the proof, we obtain a better learning rate.

I Argument can be iterated . . .
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RERM Statistical Analysis

Learning Rates: Non-Optimality II

Bernstein’s Inequality
Let (Ω,A,Q) be a probability space and ξ1, . . . , ξn : Ω→ [−B,B] be
independent random variables satisfying

I EQξi = 0

I EQξ
2
i ≤ σ2

Then, for all τ > 0, n ≥ 1, we have

Q

(∣∣∣∣1n
n∑

i=1

ξi

∣∣∣∣ ≥
√

2σ2τ

n
+

2Bτ

3n

)
≤ 2e−τ .
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RERM Statistical Analysis

Learning Rates: Non-Optimality III

I Some loss functions or distributions allow a variance bound

EP(L ◦ f − L ◦ f ∗L,P)2 ≤ V
(
RL,P(f )−R∗

L,P)ϑ .

I Use Bernstein’s inequality rather than Hoeffding’s inequality leads to an
oracle inequality with a

I variance term, which is O(n−1/2)
I supremum term, which is O(n−1)

I Iteration in the proof:

I Initial analysis provides small excess risk with high probability
I Variance bound converts small excess risk into small variance
I Variance term in oracle inequality becomes smaller, leading to a faster

rate
I . . .

I Rates up to O(n−1) become possible. Iteration can be avoided!
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RERM Statistical Analysis

Learning Rates: Non-Optimality IV

Further Reasons

I The fact that L is clippable, should be used to obtain a smaller
supremum term.

I ‖ · ‖∞-covering numbers provide a worst-case tool.
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RERM Statistical Analysis

Adaptivity of Standard SVMs

Theorem (Eberts & S. 2011)

I Consider an SVM with least squares loss and Gaussian kernel kσ.

I Pick λ and σ by a suitable training/validation approach.

Then, for m ∈ (d/2,∞), the SVM learns every f ∗L,P ∈Wm(X ) with the

(essentially) optimal rate n−
2m

2m+d
+ε without knowing m.
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Advanced Statistical Analysis ERM

Towards a Better Analysis for ERM I

Basic Setup

I We consider ERM over finite F .

I We assume that a Bayes predictor f ∗L,P exists.

I We consider excess losses

hf := L ◦ f − L ◦ f ∗L,P .

Thus EPhf = RL,P(f )−R∗L,P .

I Variance bound: EPh
2
f ≤ V (EPhf )ϑ

I Supremum bound: ‖hf ‖∞ ≤ B
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Advanced Statistical Analysis ERM

Towards a Better Analysis for ERM II

Decomposition

I Let fP ∈ F satisfy RL,P(fP) = R∗L,P,F .

I RL,D(fD) ≤ RL,D(fP) implies EDhfD ≤ EDhfP .

This yields

RL,P(fD)−RL,P(fP) = EPhfD − EPhfP
≤ EPhfD − EDhfD + EDhfP − EPhfP

We will estimate the two differences separately.
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Advanced Statistical Analysis ERM

Towards a Better Analysis for ERM III

Second Difference
We have EDhfP − EPhfP = ED(hfP − EPhfP ).

I Centered: EP(hfP − EPhfP ) = 0.

I Variance bound: EP(hfP − EPhfP )2 ≤ EPh
2
fP
≤ V (EPhfP )ϑ

I Supremum bound: ‖hfP − EPhfP‖∞ ≤ 2B

Bernstein yields

EDhfP − EPhfP ≤
√

2τV (EPhfP )ϑ

n
+

4Bτ

3n

≤ EPhfP +

(
2V τ

n

) 1
2−ϑ

+
4Bτ

3n
.
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Towards a Better Analysis for ERM IV

First Difference
To estimate the remaining term EPhfD − EDhfD , we define the functions

gf ,r :=
EPhf − hf
EPhf + r

, f ∈ F , r > 0 .

Bernstein Conditions

I Centered: EPgf ,r = 0.

I Variance bound:

EPg
2
f ,r ≤

EPh
2
f

(EPhf + r)2
≤

EPh
2
f

r2−ϑ(EPhf )ϑ
≤ V rϑ−2 .

I Supremum bound: ‖gf ,r‖∞ ≤ ‖EPhf − hf ‖∞r−1 ≤ 2Br−1.
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Towards a Better Analysis for ERM IV
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Towards a Better Analysis for ERM V

Application of Bernstein
With probability Pn not smaller than 1− |F|e−τ we have

sup
f ∈F

EDgf ,r <

√
2V τ

nr2−ϑ +
4Bτ

3nr

Transformation
The definition of gfD ,r and fD ∈ F imply

EPhfD − EDhfD < EPhfD

(√
2V τ

nr2−ϑ +
4Bτ

3nr

)
+

√
2V τ rϑ

n
+

4Bτ

3n
.
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Towards a Better Analysis for ERM VI

Combination of the three Estimates

EPhfD − EPhfP < EPhfP +
(2V τ

n

) 1
2−ϑ

+
8Bτ

3n

+EPhfD

(√
2V τ

nr2−ϑ +
4Bτ

3nr

)
+

√
2V τ rϑ

n

Transformation(
1−

√
2V τ

nr2−ϑ −
4Bτ

3nr

)
EPhfD < 2EPhfP +

(2V τ

n

) 1
2−ϑ

+
8Bτ

3n
+

√
2V τ rϑ

n

Final Step

For r :=
(

8V τ
n

)1/(2−ϑ)
, the factor on the lhs. is not smaller than 1/3.
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A Better Oracle Inequality for ERM

Theorem
Assume that there are ϑ ∈ [0, 1], and V ≥ B2−ϑ such that

I F finite set of functions.

I Variance bound: EP

(
L ◦ f − L ◦ f ∗L,P

)2 ≤ V ·
(
EP(L ◦ f − L ◦ f ∗L,P)

)ϑ
I Supremum bound: ‖L ◦ f − L ◦ f ∗L,P‖∞ ≤ B

Then, for τ > 0 and n ≥ 1, we have with probability Pn not less than
1− e−τ :

RL,P(fD)−R∗L,P < 6
(
R∗L,P,F −R∗L,P

)
+ 4

(
8V
(
τ + ln(1 + |F|)

)
n

) 1
2−ϑ

.
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