Learning Theory

Ingo Steinwart
University of Stuttgart

September 4, 2013

Informal Description of Supervised Learning

- X space of input samples Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

$$
D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(X \times Y)^{n}
$$

Informal Description of Supervised Learning

- X space of input samples
Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

$$
D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(X \times Y)^{n}
$$

- Goal:

With the help of D find a function $f_{D}: X \rightarrow \mathbb{R}$ such that $f_{D}(x)$ is a good prediction of the label y for new, unseen x.

- Learning method:

Assigns to every training set D a predictor $f_{D}: X \rightarrow \mathbb{R}$.

Illustration: Binary Classification

Problem:

The labels are ± 1.
Goal:
Make few mistakes on future data.

Illustration: Binary Classification

Problem:

The labels are ± 1.
Goal:
Make few mistakes on future data.

Example:

Illustration: Binary Classification

Problem:

The labels are ± 1.
Goal:
Make few mistakes on future data.

Example:

Illustration: Regression

Problem:

The labels are \mathbb{R}-valued.

Goal:

Estimate label y for new data x as accurate as possible.

Illustration: Regression

Problem:

The labels are \mathbb{R}-valued.

Goal:

Estimate label y for new data x as accurate as possible.
Example:

Data Generation

Assumptions

- P is an unknown probability measure on $X \times Y$.
- $D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(X \times Y)^{n}$ is sampled from P^{n}.
- Future samples (x, y) will also be sampled from P.

Data Generation

Assumptions

- P is an unknown probability measure on $X \times Y$.
- $D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right) \in(X \times Y)^{n}$ is sampled from P^{n}.
- Future samples (x, y) will also be sampled from P.

Consequences

- The label y for a given x is, in general, not deterministic.
- The past and the future "look the same".
- We seek algorithms that "work well" for many (or even all) P.

Performance Evaluation I

Loss Function

$L: X \times Y \times \mathbb{R} \rightarrow[0, \infty)$ measures cost or loss $L(x, y, t)$ of predicting label y by value t at point x.

Interpretation

- As the name suggests, we prefer predictions with small loss.
- L is chosen by us.
- Since future (x, y) are random, it makes sense to consider the average loss of a predictor.

Performance Evaluation II

Risk

The risk of a predictor $f: X \rightarrow \mathbb{R}$ is the average loss

$$
\mathcal{R}_{L, P}(f):=\int_{X \times Y} L(x, y, f(x)) d P(x, y)
$$

For $D=\left(\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)\right)$ the empirical risk is

$$
\mathcal{R}_{L, D}(f):=\frac{1}{n} \sum_{i=1}^{n} L\left(x_{i}, y_{i}, f\left(x_{i}\right)\right)
$$

Interpretation

By the law of large numbers, we have P^{∞}-almost surely:

$$
\mathcal{R}_{L, P}(f)=\lim _{|D| \rightarrow \infty} \mathcal{R}_{L, D}(f)
$$

Thus, $\mathcal{R}_{L, P}(f)$ is the long-term average future loss when using f.

Performance Evaluation III

Bayes Risk and Bayes Predictor

The Bayes risk is the smallest possible risk

$$
\mathcal{R}_{L, P}^{*}:=\inf \left\{\mathcal{R}_{L, P}(f) \mid f: X \rightarrow \mathbb{R} \text { (measurable) }\right\}
$$

A Bayes predictor is any function $f_{L, P}^{*}: X \rightarrow \mathbb{R}$ that satisfies

$$
\mathcal{R}_{L, P}\left(f_{L, P}^{*}\right)=\mathcal{R}_{L, P}^{*} .
$$

Performance Evaluation III

Bayes Risk and Bayes Predictor

The Bayes risk is the smallest possible risk

$$
\mathcal{R}_{L, P}^{*}:=\inf \left\{\mathcal{R}_{L, P}(f) \mid f: X \rightarrow \mathbb{R} \text { (measurable) }\right\}
$$

A Bayes predictor is any function $f_{L, P}^{*}: X \rightarrow \mathbb{R}$ that satisfies

$$
\mathcal{R}_{L, P}\left(f_{L, P}^{*}\right)=\mathcal{R}_{L, P}^{*} .
$$

Interpretation

- We will never find a predictor whose risk is smaller than $\mathcal{R}_{L, P}^{*}$.
- We seek a predictor $f: X \rightarrow \mathbb{R}$ whose excess risk

$$
\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}
$$

is close to 0 .

Performance Evaluation IV

Best Naïve Risk

The best naïve risk is the smallest risk one obtains by ignoring X :

$$
\mathcal{R}_{L, P}^{\dagger}:=\inf \left\{\mathcal{R}_{L, P}\left(c \mathbf{1}_{X}\right) \mid c \in \mathbb{R}\right\} .
$$

Remarks

- The best naïve risk (and its minimizer) is usually easy to estimate.
- Using fancy learning algorithms only makes sense, if $\mathcal{R}_{L, P}^{*}<\mathcal{R}_{L, P}^{\dagger}$.

Performance Evaluation IV

Best Naïve Risk

The best naïve risk is the smallest risk one obtains by ignoring X :

$$
\mathcal{R}_{L, P}^{\dagger}:=\inf \left\{\mathcal{R}_{L, P}\left(c \mathbf{1}_{X}\right) \mid c \in \mathbb{R}\right\} .
$$

Remarks

- The best naïve risk (and its minimizer) is usually easy to estimate.
- Using fancy learning algorithms only makes sense, if $\mathcal{R}_{L, P}^{*}<\mathcal{R}_{L, P}^{\dagger}$.

Equality

- Typically: $\mathcal{R}_{L, P}^{\dagger}=\mathcal{R}_{L, P}^{*}$ iff there is a constant Bayes predictor.
- If $P=P_{X} \otimes P_{Y}$, then $\mathcal{R}_{L, P}^{\dagger}=\mathcal{R}_{L, P}^{*}$, but the converse is false.

Learning Goals I

Binary Classification: $Y=\{-1,1\}$

- $L(y, t):=\mathbf{1}_{(-\infty, 0]}(y \operatorname{sign} t)$ penalizes predictions t with $\operatorname{sign} t \neq y$.
- $\mathcal{R}_{L, P}(f)=P(\{(x, y): \operatorname{sign} f(x) \neq y\})$.

Learning Goals I

Binary Classification: $Y=\{-1,1\}$

- $L(y, t):=\mathbf{1}_{(-\infty, 0]}(y \operatorname{sign} t)$ penalizes predictions t with $\operatorname{sign} t \neq y$.
- $\mathcal{R}_{L, P}(f)=P(\{(x, y): \operatorname{sign} f(x) \neq y\})$.

Optimal Risk

Let $\eta(x):=P(Y=1 \mid x)$ be the probability of a positive label at $x \in X$.

- Bayes risk: $\mathcal{R}_{L, P}^{*}=\mathbb{E}_{P_{X}} \min \{\eta, 1-\eta\}$.
- f is Bayes predictor iff $(2 \eta-1) \operatorname{sign} f \geq 0$.

Learning Goals I

Binary Classification: $Y=\{-1,1\}$

- $L(y, t):=\mathbf{1}_{(-\infty, 0]}(y \operatorname{sign} t)$ penalizes predictions t with $\operatorname{sign} t \neq y$.
- $\mathcal{R}_{L, P}(f)=P(\{(x, y): \operatorname{sign} f(x) \neq y\})$.

Optimal Risk

Let $\eta(x):=P(Y=1 \mid x)$ be the probability of a positive label at $x \in X$.

- Bayes risk: $\mathcal{R}_{L, P}^{*}=\mathbb{E}_{P_{X}} \min \{\eta, 1-\eta\}$.
- f is Bayes predictor iff $(2 \eta-1) \operatorname{sign} f \geq 0$.

Naïve Risk

- Naïve risk: $\mathcal{R}_{L, P}^{\dagger}=\min \{P(Y=1), 1-P(Y=1)\}$
- $\mathcal{R}_{L, P}^{\dagger}=\mathcal{R}_{L, P}^{*}$ iff $\eta \geq 1 / 2$ or $\eta \leq 1 / 2$

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y, t):=(y-t)^{2}$
- Conditional expectation: $\mu_{P}(x):=\mathbb{E}_{P}(Y \mid x)$.
- Conditional variance: $\sigma_{P}^{2}(x):=\mathbb{E}_{P}\left(Y^{2} \mid x\right)-\mu^{2}(x)$.

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y, t):=(y-t)^{2}$
- Conditional expectation: $\mu_{P}(x):=\mathbb{E}_{P}(Y \mid x)$.
- Conditional variance: $\sigma_{P}^{2}(x):=\mathbb{E}_{P}\left(Y^{2} \mid x\right)-\mu^{2}(x)$.

Optimal Risk

- μ_{P} is the only Bayes predictor and $\mathcal{R}_{L, P}^{*}=\mathbb{E}_{P_{X}} \sigma_{P}^{2}$.
- Excess risk: $\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}=\left\|f-\mu_{P}\right\|_{L_{2}\left(P_{X}\right)}^{2}$.

Least squares regression aims at estimating the conditional mean.

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y, t):=(y-t)^{2}$
- Conditional expectation: $\mu_{P}(x):=\mathbb{E}_{P}(Y \mid x)$.
- Conditional variance: $\sigma_{P}^{2}(x):=\mathbb{E}_{P}\left(Y^{2} \mid x\right)-\mu^{2}(x)$.

Optimal Risk

- μ_{P} is the only Bayes predictor and $\mathcal{R}_{L, P}^{*}=\mathbb{E}_{P_{X}} \sigma_{P}^{2}$.
- Excess risk: $\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}=\left\|f-\mu_{P}\right\|_{L_{2}\left(P_{x}\right)}^{2}$.

Least squares regression aims at estimating the conditional mean.

Naïve Risk

- Naïve risk: $\mathcal{R}_{L, P}^{\dagger}=\operatorname{var} P_{Y}$.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $L(y, t):=|y-t|$
- Conditional medians: $m_{P}(x):=\operatorname{median}_{P}(Y \mid x)$.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $L(y, t):=|y-t|$
- Conditional medians: $m_{P}(x):=\operatorname{median}_{P}(Y \mid x)$.

Optimal Risk

- The medians m_{P} are the only Bayes predictors.
- Excess risk: $\mathcal{R}_{L, P}\left(f_{n}\right)-\mathcal{R}_{L, P}^{*} \rightarrow 0$ implies $f_{n} \rightarrow m_{P}$ in probability P_{X}. Absolute value regression aims at estimating the conditional median.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $L(y, t):=|y-t|$
- Conditional medians: $m_{P}(x):=\operatorname{median}_{P}(Y \mid x)$.

Optimal Risk

- The medians m_{P} are the only Bayes predictors.
- Excess risk: $\mathcal{R}_{L, P}\left(f_{n}\right)-\mathcal{R}_{L, P}^{*} \rightarrow 0$ implies $f_{n} \rightarrow m_{P}$ in probability P_{X}. Absolute value regression aims at estimating the conditional median.

Naïve Risk

- Naïve risk: $\mathcal{R}_{L, P}^{\dagger}=$ median P_{Y}.

Questions in Statistical Learning I

Asymptotic Learning

A learning method is called universally consistent if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{R}_{L, P}\left(f_{D}\right)=\mathcal{R}_{L, P}^{*} \quad \text { in probability } P^{\infty} \tag{1}
\end{equation*}
$$

for every probability measure P on $X \times Y$.

Questions in Statistical Learning I

Asymptotic Learning

A learning method is called universally consistent if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{R}_{L, P}\left(f_{D}\right)=\mathcal{R}_{L, P}^{*} \quad \text { in probability } P^{\infty} \tag{1}
\end{equation*}
$$

for every probability measure P on $X \times Y$.

Good News

Many learning methods are universally consistent.
First result: Stone (1977), AoS

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_{n} \searrow 0$, if

$$
\mathbb{E}_{D \sim P^{n}} \mathcal{R}_{L, P}\left(f_{D}\right) \leq \mathcal{R}_{L, P}^{*}+C_{P} a_{n}, \quad n \geq 1
$$

Similar: learning rates in probability.

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_{n} \searrow 0$, if

$$
\mathbb{E}_{D \sim P^{n}} \mathcal{R}_{L, P}\left(f_{D}\right) \leq \mathcal{R}_{L, P}^{*}+C_{P} a_{n}, \quad n \geq 1
$$

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI)
If $|X|=\infty,|Y| \geq 2$, and L "non-trivial", then it is impossible to obtain a learning rate that is independent of P.

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_{n} \searrow 0$, if

$$
\mathbb{E}_{D \sim P^{n}} \mathcal{R}_{L, P}\left(f_{D}\right) \leq \mathcal{R}_{L, P}^{*}+C_{P} a_{n}, \quad n \geq 1
$$

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI)
If $|X|=\infty,|Y| \geq 2$, and L "non-trivial", then it is impossible to obtain a learning rate that is independent of P.

Remark

If $|X|<\infty$, then it is usually easy to obtain a uniform learning rate for which C_{P} depends on $|X|$.

Questions in Statistical Learning III

Relative Learning Rates

- Let \mathcal{P} be a set of distributions on $X \times Y$.
- A learning method learns \mathcal{P} with rate $a_{n} \searrow 0$, if, for all $P \in \mathcal{P}$,

$$
\mathbb{E}_{D \sim P^{n}} \mathcal{R}_{L, P}\left(f_{D}\right) \leq \mathcal{R}_{L, P}^{*}+C_{P} a_{n}, \quad n \geq 1
$$

- The rate optimal $\left(a_{n}\right)$ is minmax optimal, if, in addition, there is no learning method that learns \mathcal{P} with a rate $\left(b_{n}\right)$ such that $b_{n} / a_{n} \rightarrow 0$.

Questions in Statistical Learning III

Relative Learning Rates

- Let \mathcal{P} be a set of distributions on $X \times Y$.
- A learning method learns \mathcal{P} with rate $a_{n} \searrow 0$, if, for all $P \in \mathcal{P}$,

$$
\mathbb{E}_{D \sim P^{n}} \mathcal{R}_{L, P}\left(f_{D}\right) \leq \mathcal{R}_{L, P}^{*}+C_{P} a_{n}, \quad n \geq 1
$$

- The rate optimal $\left(a_{n}\right)$ is minmax optimal, if, in addition, there is no learning method that learns \mathcal{P} with a rate $\left(b_{n}\right)$ such that $b_{n} / a_{n} \rightarrow 0$.

Tasks

- Identify interesting ("realistic") classes \mathcal{P} with good optimal rates.
- Find learning algorithms that achieve these rates.

Example of Optimal Rates

Classical Least Squares Example

- $X=[0,1]^{d}, Y=[-1,1], L$ is least squares.
- W^{m} Sobolev space on X with order of smoothness $m>d / 2$.
- \mathcal{P} the set of P such that $f_{L, P}^{*} \in W^{m}$ with norm bounded by K.
- Optimal rate is $n^{-\frac{2 m}{2 m+d}}$.

Example of Optimal Rates

Classical Least Squares Example

- $X=[0,1]^{d}, Y=[-1,1], L$ is least squares.
- W^{m} Sobolev space on X with order of smoothness $m>d / 2$.
- \mathcal{P} the set of P such that $f_{L, P}^{*} \in W^{m}$ with norm bounded by K.
- Optimal rate is $n^{-\frac{2 m}{2 m+d}}$.

Remarks

- The smoother target $\mu=f_{L, P}^{*}$ is, the better it can be learned.
- The larger the input dimension is, the harder learning becomes.
- There exists various learning algorithms achieving the optimal rate.
- They usually require us to know m in advance.

Questions in Statistical Learning IV

Assumptions for Adaptivity

- Usually one has a familiy $\left(\mathcal{P}_{\theta}\right)_{\theta \in \Theta}$ of large sets \mathcal{P}_{θ} of distributions.
- Each set \mathcal{P}_{θ} has its own optimal rate.
- We don't know whether $P \in \mathcal{P}_{\theta}$ for some θ, but we hope so.
- If $P \in \mathcal{P}_{\theta}$, we don't know θ and we have no mean to estimate it.

Questions in Statistical Learning IV

Assumptions for Adaptivity

- Usually one has a familiy $\left(\mathcal{P}_{\theta}\right)_{\theta \in \Theta}$ of large sets \mathcal{P}_{θ} of distributions.
- Each set \mathcal{P}_{θ} has its own optimal rate.
- We don't know whether $P \in \mathcal{P}_{\theta}$ for some θ, but we hope so.
- If $P \in \mathcal{P}_{\theta}$, we don't know θ and we have no mean to estimate it.

Task

We seek learning algorithms that are

- universally consistent.
- learn all \mathcal{P}_{θ} with the optimal rate without knowing θ.

Such learning algorithms are adaptive to the unknown θ.

Questions in Statistical Learning V

Finite Sample Estimates

- Assume that our algorithm has some hyper-parameters $\lambda \in \Lambda$.
- For each $P, \lambda, \delta \in(0,1)$ and $n \geq 1$ we seek an $\varepsilon(P, \lambda, \delta, n)$ such that

$$
\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*} \leq \varepsilon(P, \lambda, \delta, n)
$$

with probability P^{n} not smaller than $1-\delta$.

Questions in Statistical Learning V

Finite Sample Estimates

- Assume that our algorithm has some hyper-parameters $\lambda \in \Lambda$.
- For each $P, \lambda, \delta \in(0,1)$ and $n \geq 1$ we seek an $\varepsilon(P, \lambda, \delta, n)$ such that

$$
\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*} \leq \varepsilon(P, \lambda, \delta, n)
$$

with probability P^{n} not smaller than $1-\delta$.

Remarks

- If there exists a sequence $\left(\lambda_{n}\right)$ with

$$
\lim _{n \rightarrow \infty} \varepsilon\left(P, \lambda_{n}, \delta, n\right)=0
$$

for all P and δ, then the algorithm can be made universally consistent.

- We automatically obtain learning rates for such sequences.
- If $|X|=\infty$ and \ldots, then such $\varepsilon(P, \lambda, \delta, n)$ must depend on P.

Questions in Statistical Learning VI

Generalization Error Bounds

- Goal: Estimate risk $\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)$ by the performance of $f_{D, \lambda}$ on D.
- Find $\varepsilon(\lambda, \delta, n)$ such that with probability P^{n} not smaller than $1-\delta$:

$$
\mathcal{R}_{L, P}\left(f_{D, \lambda}\right) \leq \mathcal{R}_{L, D}\left(f_{D, \lambda}\right)+\varepsilon(\lambda, \delta, n) .
$$

Questions in Statistical Learning VI

Generalization Error Bounds

- Goal: Estimate risk $\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)$ by the performance of $f_{D, \lambda}$ on D.
- Find $\varepsilon(\lambda, \delta, n)$ such that with probability P^{n} not smaller than $1-\delta$:

$$
\mathcal{R}_{L, P}\left(f_{D, \lambda}\right) \leq \mathcal{R}_{L, D}\left(f_{D, \lambda}\right)+\varepsilon(\lambda, \delta, n) .
$$

Remarks

- $\varepsilon(\lambda, \delta, n)$ must not depend on P since we do not know P.
- $\varepsilon(\lambda, \delta, n)$ can be used to derive parameter selection strategies such as structural risk minimization.
- Alternative: Use second data set D^{\prime} and $\mathcal{R}_{L, D^{\prime}}\left(f_{D, \lambda}\right)$ as an estimate.

Summary

A "good" learning algorithm:

- Is universally consistent.
- Is adaptive for realistic classes of distributions.

Summary

A "good" learning algorithm:

- Is universally consistent.
- Is adaptive for realistic classes of distributions.
- Can be modified to new problems that have a different loss.
- Has a good record on real-world problems.
- Runs efficiently on a computer.

Empirical Risk Minimization

Definition

Let \mathcal{F} be a set of functions $X \rightarrow \mathbb{R}$. A learning method whose predictors satisfy $f_{D} \in \mathcal{F}$ and

$$
\mathcal{R}_{L, D}\left(f_{D}\right)=\min _{f \in \mathcal{F}} \mathcal{R}_{L, D}(f)
$$

is called empirical risk minimization (ERM).

Empirical Risk Minimization

Definition

Let \mathcal{F} be a set of functions $X \rightarrow \mathbb{R}$. A learning method whose predictors satisfy $f_{D} \in \mathcal{F}$ and

$$
\mathcal{R}_{L, D}\left(f_{D}\right)=\min _{f \in \mathcal{F}} \mathcal{R}_{L, D}(f)
$$

is called empirical risk minimization (ERM).

Remarks

- Not every \mathcal{F} makes ERM possible.
- ERM is, in general, not unique.
- ERM may not be computationally feasible.

Empirical Risk Minimization

Danger of underfitting

- ERM can never produce predictors with risk better than

$$
\mathcal{R}_{L, P, \mathcal{F}}^{*}:=\inf \left\{\mathcal{R}_{L, P}(f): f \in \mathcal{F}\right\} .
$$

- Example: L least squares, $X=[0,1], P_{X}$ uniform distribution, $f_{L, P}^{*}$ not linear, and \mathcal{F} set of linear functions, then

$$
\mathcal{R}_{L, P, \mathcal{F}}^{*}>\mathcal{R}_{L, P}^{*}
$$

and thus ERM cannot be consistent.

Empirical Risk Minimization

Danger of overfitting

- If \mathcal{F} is too large, ERM may overfit.
- Example: L least squares, $X=[0,1], P_{X}$ uniform distribution, $f_{L, P}^{*}=\mathbf{1}_{X}, \mathcal{R}_{L, P}^{*}=0$, and \mathcal{F} set of all functions. Then

$$
f_{D}(x)= \begin{cases}y_{i} & \text { if } x=x_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

satisfies $\mathcal{R}_{L, D}\left(f_{D}\right)=0$ but $\mathcal{R}_{L, P}\left(f_{D}\right)=1$.

Summary of Last Session

- Risk of a predictor $f: X \rightarrow \mathbb{R}$ is

$$
\mathcal{R}_{L, P}(f):=\int_{X \times Y} L(x, y, f(x)) d P(x, y)
$$

- Bayes risk $\mathcal{R}_{L, P}^{*}$ is the smallest possible risk. A Bayes predictor $f_{L, P}^{*}$ achieves this minimal risk.

Summary of Last Session

- Risk of a predictor $f: X \rightarrow \mathbb{R}$ is

$$
\mathcal{R}_{L, P}(f):=\int_{X \times Y} L(x, y, f(x)) d P(x, y)
$$

- Bayes risk $\mathcal{R}_{L, P}^{*}$ is the smallest possible risk. A Bayes predictor $f_{L, P}^{*}$ achieves this minimal risk.
- Learning is

$$
\mathcal{R}_{L, P}\left(f_{D}\right) \rightarrow \mathcal{R}_{L, P}^{*}
$$

- Asymptotically, this is possible, but no uniform rates are possible.
- We seek adaptive learning algorithms. Ideally, these are fully automated.

Regularized ERM

Definition

Let \mathcal{F} be a non-empty set of functions $X \rightarrow \mathbb{R}$ and $\Upsilon: \mathcal{F} \rightarrow[0, \infty)$ be a map. A learning method whose predictors satisfy $f_{D} \in \mathcal{F}$ and

$$
\Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)=\inf _{f \in \mathcal{F}}\left(\Upsilon(f)+\mathcal{R}_{L, D}(f)\right)
$$

is called regularized empirical risk minimization (RERM).

Regularized ERM

Definition

Let \mathcal{F} be a non-empty set of functions $X \rightarrow \mathbb{R}$ and $\Upsilon: \mathcal{F} \rightarrow[0, \infty)$ be a map. A learning method whose predictors satisfy $f_{D} \in \mathcal{F}$ and

$$
\Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)=\inf _{f \in \mathcal{F}}\left(\Upsilon(f)+\mathcal{R}_{L, D}(f)\right)
$$

is called regularized empirical risk minimization (RERM).

Remarks

- $\Upsilon=0$ yields ERM.
- All remarks about ERM apply to RERM, too.

Examples of Regularized ERM I

General Dictionary Methods

For bounded $h_{1}, \ldots, h_{m}: X \rightarrow \mathbb{R}$ consider

$$
\mathcal{F}:=\left\{f_{c}:=\sum_{i=1}^{m} c_{i} h_{i}:\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{R}^{m}\right\},
$$

Examples of Regularized ERM I

General Dictionary Methods

For bounded $h_{1}, \ldots, h_{m}: X \rightarrow \mathbb{R}$ consider

$$
\mathcal{F}:=\left\{f_{c}:=\sum_{i=1}^{m} c_{i} h_{i}:\left(c_{1}, \ldots, c_{m}\right) \in \mathbb{R}^{m}\right\},
$$

Examples of Regularizers

- ℓ_{1}-regularization: $\Upsilon\left(f_{c}\right)=\lambda\|c\|_{1}=\lambda \sum_{i=1}^{m}\left|c_{i}\right|$,
- ℓ_{2}-regularization: $\Upsilon\left(f_{c}\right)=\lambda\|c\|_{2}=\lambda \sum_{i=1}^{m}\left|c_{i}\right|^{2}$,
- ℓ_{∞}-regularization: $\Upsilon\left(f_{c}\right)=\lambda\|c\|_{\infty}=\lambda \max _{i}\left|c_{i}\right|$,
or, in case of dependent h_{i}, we take the infimum over all representations.

Examples of Regularized ERM II

Further Examples

- Support Vector Machines
- Regularized Decision Trees

Regularized ERM: Norm Regularizers

Conventions

- Whenever we consider regularizers they will be of the form

$$
\Upsilon(f)=\lambda\|f\|_{E}^{\alpha}, \quad f \in \mathcal{F},
$$

where $\alpha \geq 1$ and $E:=\mathcal{F}$ is a vector space of functions $X \rightarrow \mathbb{R}$.

Regularized ERM: Norm Regularizers

Conventions

- Whenever we consider regularizers they will be of the form

$$
\Upsilon(f)=\lambda\|f\|_{E}^{\alpha}, \quad f \in \mathcal{F},
$$

where $\alpha \geq 1$ and $E:=\mathcal{F}$ is a vector space of functions $X \rightarrow \mathbb{R}$.

- In this case, we additionally assume that

$$
\|f\|_{\infty} \leq\|f\|_{E}, \quad f \in E
$$

Regularized ERM: Norm Regularizers

Conventions

- Whenever we consider regularizers they will be of the form

$$
\Upsilon(f)=\lambda\|f\|_{E}^{\alpha}, \quad f \in \mathcal{F},
$$

where $\alpha \geq 1$ and $E:=\mathcal{F}$ is a vector space of functions $X \rightarrow \mathbb{R}$.

- In this case, we additionally assume that

$$
\|f\|_{\infty} \leq\|f\|_{E}, \quad f \in E
$$

- In the following, we assume that the optimization problem also has a solution f_{P}, when we replace D by P :

$$
f_{P} \in \arg \min _{f \in \mathcal{F}} \Upsilon(f)+\mathcal{R}_{L, P}(f)
$$

The Classical Argument I

Ansatz

- Assume that we have a data set D and an $\varepsilon>0$ such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon
$$

The Classical Argument I

Ansatz

- Assume that we have a data set D and an $\varepsilon>0$ such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon
$$

- Then we obtain

$$
\begin{aligned}
& \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right) \\
= & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, D}\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)
\end{aligned}
$$

The Classical Argument I

Ansatz

- Assume that we have a data set D and an $\varepsilon>0$ such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon
$$

- Then we obtain

$$
\begin{aligned}
& \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right) \\
= & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, D}\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right) \\
\leq & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)+\varepsilon
\end{aligned}
$$

The Classical Argument I

Ansatz

- Assume that we have a data set D and an $\varepsilon>0$ such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon
$$

- Then we obtain

$$
\begin{aligned}
& \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right) \\
= & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, D}\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right) \\
\leq & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)+\varepsilon \\
\leq & \Upsilon\left(f_{P}\right)+\mathcal{R}_{L, D}\left(f_{P}\right)+\varepsilon
\end{aligned}
$$

The Classical Argument I

Ansatz

- Assume that we have a data set D and an $\varepsilon>0$ such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon
$$

- Then we obtain

$$
\begin{aligned}
& \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right) \\
= & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, D}\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right) \\
\leq & \Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)+\varepsilon \\
\leq & \Upsilon\left(f_{P}\right)+\mathcal{R}_{L, D}\left(f_{P}\right)+\varepsilon \\
\leq & \Upsilon\left(f_{P}\right)+\mathcal{R}_{L, P}\left(f_{P}\right)+2 \varepsilon
\end{aligned}
$$

The Classical Argument II

Discussion

- The uniform bound

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon \tag{2}
\end{equation*}
$$

led to the inequality

$$
\Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, P}^{*} \leq \Upsilon\left(f_{P}\right)+\mathcal{R}_{L, P}\left(f_{P}\right)-\mathcal{R}_{L, P}^{*}+2 \varepsilon .
$$

The Classical Argument II

Discussion

- The uniform bound

$$
\begin{equation*}
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon \tag{2}
\end{equation*}
$$

led to the inequality

$$
\Upsilon\left(f_{D}\right)+\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, P}^{*} \leq \Upsilon\left(f_{P}\right)+\mathcal{R}_{L, P}\left(f_{P}\right)-\mathcal{R}_{L, P}^{*}+2 \varepsilon .
$$

- Since $\Upsilon\left(f_{D}\right) \geq 0$, all what remains to be done, is to estimate
- the probability of (2)
- the regularization error $\Upsilon\left(f_{P}\right)+\mathcal{R}_{L, P}\left(f_{P}\right)-\mathcal{R}_{L, P}^{*}$.

The Classical Argument III

Union Bound

- Assume that \mathcal{F} is finite.
- The union bound gives

$$
\begin{aligned}
& P\left(D: \sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon\right) \\
& =1-P\left(D: \sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|>\varepsilon\right) \\
& \geq 1-\sum_{f \in \mathcal{F}} P\left(D:\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|>\varepsilon\right)
\end{aligned}
$$

The Classical Argument III

Union Bound

- Assume that \mathcal{F} is finite.
- The union bound gives

$$
\begin{aligned}
& P\left(D: \sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \varepsilon\right) \\
& =1-P\left(D: \sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|>\varepsilon\right) \\
& \geq 1-\sum_{f \in \mathcal{F}} P\left(D:\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|>\varepsilon\right)
\end{aligned}
$$

Consequences

- It suffices to bound $P\left(D:\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|>\varepsilon\right)$ for all f.
- No assumptions on P are made so far. In particular, so far data D does not need to be i.i.d. nor even random.

The Classical Argument IV

Hoeffding's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_{1}, \ldots, \xi_{n}: \Omega \rightarrow[a, b]$ be independent random variables. Then, for all $\tau>0, n \geq 1$, we have

$$
Q\left(\left|\frac{1}{n} \sum_{i=1}^{n}\left(\xi_{i}-\mathbb{E}_{Q} \xi_{i}\right)\right| \geq(b-a) \sqrt{\frac{\tau}{2 n}}\right) \leq 2 e^{-\tau} .
$$

The Classical Argument IV

Hoeffding's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_{1}, \ldots, \xi_{n}: \Omega \rightarrow[a, b]$ be independent random variables. Then, for all $\tau>0, n \geq 1$, we have

$$
Q\left(\left|\frac{1}{n} \sum_{i=1}^{n}\left(\xi_{i}-\mathbb{E}_{Q} \xi_{i}\right)\right| \geq(b-a) \sqrt{\frac{\tau}{2 n}}\right) \leq 2 e^{-\tau}
$$

Application

- Consider $\Omega:=(X \times Y)^{n}$ and $Q:=P^{n}$.
- For $\xi_{i}(D):=L\left(x_{i}, y_{i}, f\left(x_{i}\right)\right)$ we have $a=0$ and

$$
\frac{1}{n} \sum_{i=1}^{n}\left(\xi_{i}-\mathbb{E}_{P^{n}} \xi_{i}\right)=\mathcal{R}_{L, D}(f)-\mathcal{R}_{L, P}(f)
$$

- Assuming $L(x, y, f(x)) \leq B$ makes application of Hoeffding possible.

The Classical Argument V

Theorem for ERM

Let $L: X \times Y \times \mathbb{R} \rightarrow[0, \infty)$ be a loss, \mathcal{F} be a non-empty finite set of functions $f: X \rightarrow \mathbb{R}$, and $B>0$ be a constant such that

$$
L(x, y, f(x)) \leq B, \quad(x, y) \in X \times Y, f \in \mathcal{F}
$$

The Classical Argument V

Theorem for ERM

Let $L: X \times Y \times \mathbb{R} \rightarrow[0, \infty)$ be a loss, \mathcal{F} be a non-empty finite set of functions $f: X \rightarrow \mathbb{R}$, and $B>0$ be a constant such that

$$
L(x, y, f(x)) \leq B, \quad(x, y) \in X \times Y, f \in \mathcal{F} .
$$

Then we have

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln (2|\mathcal{F}|)}{n}}\right) \geq 1-e^{-\tau} .
$$

Remarks

- Does not specify approximation error $\mathcal{R}_{L, P, \mathcal{F}}^{*}-\mathcal{R}_{L, P}^{*}$.
- If $|\mathcal{F}|=\infty$, the bound becomes meaningless.
- What happens, if we consider RERM with non-trivial regularizer?

ERM for Infinite \mathcal{F} : The General Approach

So far...

The union bound was the "trick" to make a conclusion from an estimate of

$$
\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \geq \varepsilon
$$

for a single f to all $f \in \mathcal{F}$. For infinite \mathcal{F}, this does not work!

ERM for Infinite \mathcal{F} : The General Approach

So far ...

The union bound was the "trick" to make a conclusion from an estimate of

$$
\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \geq \varepsilon
$$

for a single f to all $f \in \mathcal{F}$. For infinite \mathcal{F}, this does not work!

General Approach

Given some $\delta>0$, find a finite \mathcal{N}_{δ} set of functions such that

$$
\sup _{f \in \mathcal{F}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right| \leq \sup _{f \in \mathcal{N}_{\delta}}\left|\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, D}(f)\right|+\delta
$$

Then apply the union bound for \mathcal{N}_{δ}. The rest remains unchanged.

ERM for Infinite \mathcal{F} : The General Approach

The old inequality

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln (2|\mathcal{F}|)}{n}}\right) \geq 1-e^{-\tau}
$$

The new inequality

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln \left(2\left|\mathcal{N}_{\delta}\right|\right)}{n}}+\delta\right) \geq 1-e^{-\tau}
$$

ERM for Infinite \mathcal{F} : The General Approach

The old inequality

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln (2|\mathcal{F}|)}{n}}\right) \geq 1-e^{-\tau}
$$

The new inequality

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln \left(2\left|\mathcal{N}_{\delta}\right|\right)}{n}}+\delta\right) \geq 1-e^{-\tau}
$$

Tasks

- For each $\delta>0$, find a small set \mathcal{N}_{δ}.
- Optimize the right-hand side wrt. δ.

Covering Numbers

Definition

Let (M, d) be a metric space, $A \subset M$, and $\varepsilon>0$. The ε-covering number of A is defined by

$$
\mathcal{N}(A, d, \varepsilon):=\inf \left\{n \geq 1: \exists x_{1}, \ldots, x_{n} \in M \text { such that } A \subset \bigcup_{i=1}^{n} B_{d}\left(x_{i}, \varepsilon\right)\right\}
$$

where $\inf \emptyset:=\infty$, and $B_{d}\left(x_{i}, \varepsilon\right)$ is the ball with radius ε and center x_{i}.

Covering Numbers

Definition

Let (M, d) be a metric space, $A \subset M$, and $\varepsilon>0$. The ε-covering number of A is defined by
$\mathcal{N}(A, d, \varepsilon):=\inf \left\{n \geq 1: \exists x_{1}, \ldots, x_{n} \in M\right.$ such that $\left.A \subset \bigcup_{i=1}^{n} B_{d}\left(x_{i}, \varepsilon\right)\right\}$
where $\inf \emptyset:=\infty$, and $B_{d}\left(x_{i}, \varepsilon\right)$ is the ball with radius ε and center x_{i}.

- x_{1}, \ldots, x_{n} is called an ε-net.
- $\mathcal{N}(A, d, \varepsilon)$ is the size of the smallest ε-net.

Covering Numbers II

- Every bounded $A \subset \mathbb{R}^{d}$ satisfies

$$
\mathcal{N}(A,\|\cdot\|, \varepsilon) \leq c \varepsilon^{-d}, \quad \varepsilon>0
$$

where $c>0$ is a constant and the norm $\|\cdot\|$ does only influence c.

Covering Numbers II

- Every bounded $A \subset \mathbb{R}^{d}$ satisfies

$$
\mathcal{N}(A,\|\cdot\|, \varepsilon) \leq c \varepsilon^{-d}, \quad \varepsilon>0
$$

where $c>0$ is a constant and the norm $\|\cdot\|$ does only influence c.

- For sets \mathcal{F} of functions $f: X \rightarrow \mathbb{R}$, the behavior of $\mathcal{N}(\mathcal{F},\|\cdot\|, \varepsilon)$ may be very different!
- The literature is full of estimates of $\ln \mathcal{N}(\mathcal{F},\|\cdot\|, \varepsilon)$.
- A typical estimate looks like

$$
\ln \mathcal{N}\left(B_{E},\|\cdot\|_{F}, \varepsilon\right) \leq c \varepsilon^{-2 p}, \quad \varepsilon>0
$$

Here p may depend on the input dimension and the smoothness of the functions in E.

ERM with Infinite Sets

Theorem

- Let L be Lipschitz in its third argument, Lipschitz constant $=1$.
- Assume that $\|L \circ f\|_{\infty} \leq B$ for all $f \in \mathcal{F}$.
- Let $\mathcal{N}_{\varepsilon}$ be a minimal ε-net of \mathcal{F}, i.e. $\left|\mathcal{N}_{\varepsilon}\right|=\mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty}, \varepsilon\right)$.

ERM with Infinite Sets

Theorem

- Let L be Lipschitz in its third argument, Lipschitz constant $=1$.
- Assume that $\|L \circ f\|_{\infty} \leq B$ for all $f \in \mathcal{F}$.
- Let $\mathcal{N}_{\varepsilon}$ be a minimal ε-net of \mathcal{F}, i.e. $\left|\mathcal{N}_{\varepsilon}\right|=\mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty}, \varepsilon\right)$.

Then we have

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+2 \ln \left(2\left|\mathcal{N}_{\varepsilon}\right|\right)}{n}}+2 \varepsilon\right) \geq 1-e^{-\tau} .
$$

Using Covering Numbers VII

Example

- Let L satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty}, \varepsilon\right) \leq c \varepsilon^{-2 p}$.

Using Covering Numbers VII

Example

- Let L satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty}, \varepsilon\right) \leq c \varepsilon^{-2 p}$.
- Then we have

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+4 c \varepsilon^{-2 p}}{n}}+2 \varepsilon\right) \geq 1-e^{-\tau} .
$$

Using Covering Numbers VII

Example

- Let L satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}\left(\mathcal{F},\|\cdot\|_{\infty}, \varepsilon\right) \leq c \varepsilon^{-2 p}$.
- Then we have

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+B \sqrt{\frac{2 \tau+4 c \varepsilon^{-2 p}}{n}}+2 \varepsilon\right) \geq 1-e^{-\tau} .
$$

- Optimizing wrt. ε gives a constant K_{p} such that

$$
P^{n}\left(D: \mathcal{R}_{L, P}\left(f_{D}\right)<\mathcal{R}_{L, P, \mathcal{F}}^{*}+K_{p} c^{\frac{1}{2+2 p}} B \sqrt{\tau} n^{-\frac{1}{2+2 p}}\right) \geq 1-e^{-\tau}
$$

- For ERM over finite \mathcal{F}, we had " $p=0$ ".

Standard Analysis for RERM

Difficulties when Analyzing RERM

- We are interested in RERMs, where \mathcal{F} is a vector space E.
- Vector spaces E are never compact, thus $\ln \mathcal{N}\left(E,\|\cdot\|_{\infty}, \varepsilon\right)=\infty$.
- It seems that our approach does not work in this case.

Standard Analysis for RERM

Difficulties when Analyzing RERM

- We are interested in RERMs, where \mathcal{F} is a vector space E.
- Vector spaces E are never compact, thus $\ln \mathcal{N}\left(E,\|\cdot\|_{\infty}, \varepsilon\right)=\infty$.
- It seems that our approach does not work in this case.

Solution

RERM actually solves its optimization problem

$$
\Upsilon\left(f_{D}\right)+\mathcal{R}_{L, D}\left(f_{D}\right)=\inf _{f \in E}\left(\Upsilon(f)+\mathcal{R}_{L, D}(f)\right)
$$

over a set, which is significantly smaller than E.

Norm Bound for RERM

Lemma

Assume that $L(x, y, 0) \leq 1$. Then, for any RERM predictor $f_{D, \lambda} \in E$ we have

$$
\left\|f_{D, \lambda}\right\|_{E} \leq \lambda^{-1 / \alpha}
$$

Norm Bound for RERM

Lemma

Assume that $L(x, y, 0) \leq 1$. Then, for any RERM predictor $f_{D, \lambda} \in E$ we have

$$
\left\|f_{D, \lambda}\right\|_{E} \leq \lambda^{-1 / \alpha}
$$

Consequence

RERM optimization problem is actually solved over the ball with radius

$$
\lambda^{-1 / \alpha} .
$$

Norm Bound for RERM II

Proof
 Our assumptions $L(x, y, t) \geq 0$ and $L(x, y, 0) \leq 1$ yield

Norm Bound for RERM II

Proof

Our assumptions $L(x, y, t) \geq 0$ and $L(x, y, 0) \leq 1$ yield

$$
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha} \leq \lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, D}\left(f_{D, \lambda}\right)
$$

Norm Bound for RERM II

Proof

Our assumptions $L(x, y, t) \geq 0$ and $L(x, y, 0) \leq 1$ yield

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha} & \leq \lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, D}\left(f_{D, \lambda}\right) \\
& =\inf _{f \in E}\left(\lambda\|f\|_{E}^{\alpha}+\mathcal{R}_{L, D}(f)\right)
\end{aligned}
$$

Norm Bound for RERM II

Proof

Our assumptions $L(x, y, t) \geq 0$ and $L(x, y, 0) \leq 1$ yield

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha} & \leq \lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, D}\left(f_{D, \lambda}\right) \\
& =\inf _{f \in E}\left(\lambda\|f\|_{E}^{\alpha}+\mathcal{R}_{L, D}(f)\right) \\
& \leq \lambda\|0\|_{E}^{\alpha}+\mathcal{R}_{L, D}(0)
\end{aligned}
$$

Norm Bound for RERM II

Proof

Our assumptions $L(x, y, t) \geq 0$ and $L(x, y, 0) \leq 1$ yield

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha} & \leq \lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, D}\left(f_{D, \lambda}\right) \\
& =\inf _{f \in E}\left(\lambda\|f\|_{E}^{\alpha}+\mathcal{R}_{L, D}(f)\right) \\
& \leq \lambda\|0\|_{E}^{\alpha}+\mathcal{R}_{L, D}(0) \\
& \leq 1 .
\end{aligned}
$$

An Oracle Inequality

Theorem (Example)

- L Lipschitz continuous with $|L|_{1} \leq 1$ and $L(x, y, 0) \leq 1$.
- E vector space with norm $\|\cdot\|_{E}$ satisfying $\|\cdot\|_{\infty} \leq\|\cdot\|_{E}$.
- $\Upsilon(f)=\lambda\|f\|_{E}^{\alpha}$.
- We have $\ln \mathcal{N}\left(B_{E},\|\cdot\|_{\infty}, \varepsilon\right) \leq c \varepsilon^{-2 p}$

An Oracle Inequality

Theorem (Example)

- L Lipschitz continuous with $|L|_{1} \leq 1$ and $L(x, y, 0) \leq 1$.
- E vector space with norm $\|\cdot\|_{E}$ satisfying $\|\cdot\|_{\infty} \leq\|\cdot\|_{E}$.
- $\Upsilon(f)=\lambda\|f\|_{E}^{\alpha}$.
- We have $\ln \mathcal{N}\left(B_{E},\|\cdot\|_{\infty}, \varepsilon\right) \leq c \varepsilon^{-2 p}$

Then, for all $n \geq 1, \lambda \in(0,1], \tau \geq 1$, we have
$\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)<\lambda\left\|f_{P, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{P, \lambda}\right)+K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}$
with probability P^{n} not less than $1-e^{-\tau}$.

Consequences of the Oracle Inequality

Oracle inequality

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)< & \lambda\left\|f_{P, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{P, \lambda}\right) \\
& +K_{P} c^{\frac{1}{2+2 \rho}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
\end{aligned}
$$

Consequences of the Oracle Inequality

Oracle inequality

$\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}<\lambda\left\|f_{P, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{P, \lambda}\right)-\mathcal{R}_{L, P}^{*}$

$$
+K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 \rho}}
$$

Consequences of the Oracle Inequality

Oracle inequality

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}< & \lambda\left\|f_{P, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{P, \lambda}\right)-\mathcal{R}_{L, P, E}^{*} \\
& +\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*} \\
& +K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
\end{aligned}
$$

Consequences of the Oracle Inequality

Oracle inequality

$$
\begin{aligned}
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}< & \lambda\left\|f_{P, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{P, \lambda}\right)-\mathcal{R}_{L, P, E}^{*} \\
& +\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*} \\
& +K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
\end{aligned}
$$

- Regularization error:
- Approximation error:
- Statistical error:
$\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}$.
$K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}$.

Bounding the Remaining Errors

Lemma 1
If E is dense in $L_{1}\left(P_{X}\right)$, then $\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}=0$.

Lemma 2

We have $\lim _{\lambda \rightarrow 0} A(\lambda)=0$, and if there is an $f^{*} \in E$ with $\mathcal{R}_{L, P}(f)=\mathcal{R}_{L, P, E}^{*}$, then

$$
A(\lambda) \leq \lambda\left\|f^{*}\right\|_{E}^{\alpha} .
$$

Bounding the Remaining Errors

Lemma 1
If E is dense in $L_{1}\left(P_{X}\right)$, then $\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}=0$.

Lemma 2

We have $\lim _{\lambda \rightarrow 0} A(\lambda)=0$, and if there is an $f^{*} \in E$ with $\mathcal{R}_{L, P}(f)=\mathcal{R}_{L, P, E}^{*}$, then

$$
A(\lambda) \leq \lambda\left\|f^{*}\right\|_{E}^{\alpha} .
$$

Remarks

- A linear behaviour of A often requires such an f^{*}.
- A typical behavior is, for some $\beta \in(0,1]$, of the form

$$
A(\lambda) \leq c \lambda^{\beta}
$$

- A sufficient condition for such a behaviour can be described with the help of so-called "interpolation spaces of the real method".

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}=0$.

$$
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}<A(\lambda)+K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
$$

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}=0$.

$$
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}<A(\lambda)+K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
$$

Consequences

- Consistent, if $\lambda_{n} \rightarrow 0$ with $\lambda_{n} n^{\frac{\alpha}{2+2 p}} \rightarrow \infty$.

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}_{L, P, E}^{*}-\mathcal{R}_{L, P}^{*}=0$.

$$
\lambda\left\|f_{D, \lambda}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda}\right)-\mathcal{R}_{L, P}^{*}<A(\lambda)+K_{p} c^{\frac{1}{2+2 p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2 p}}
$$

Consequences

- Consistent, if $\lambda_{n} \rightarrow 0$ with $\lambda_{n} n^{\frac{\alpha}{2+2 p}} \rightarrow \infty$.
- If $A(\lambda) \leq c \lambda^{\beta}$, then

$$
\lambda_{n} \sim n^{-\frac{\alpha}{(\alpha \beta+1)(2+2 p)}}
$$

achieves "best" rate

$$
n^{-\frac{\alpha \beta}{(\alpha \beta+1)(2+2 p)}}
$$

Main Results for ERM II

Discussion

- Assumptions for consistency on E are minimal.
- More sophisticated algorithms can be devised from oracle inequality. For example, E could change with sample size, too.
- To achieve best learning rates, we need to know β.

Learning Rates: Hyper-Parameters III

Training-Validation Approach

Assume that L is clippable.

- Split data into equally sized parts D_{1} and D_{2}. We write $m:=n / 2$.
- Fix a finite set $\Lambda \subset(0,1]$ of candidate values for λ.
- For each $\lambda \in \Lambda$ compute $f_{D_{1}, \lambda}$.
- Pick the $\lambda_{D_{2}} \in \Lambda$ such that $\bar{f}_{D_{1}, \lambda_{D_{2}}}$ minimizes empirical risk $\mathcal{R}_{L, D_{2}}$.

Learning Rates: Hyper-Parameters III

Training-Validation Approach

Assume that L is clippable.

- Split data into equally sized parts D_{1} and D_{2}. We write $m:=n / 2$.
- Fix a finite set $\Lambda \subset(0,1]$ of candidate values for λ.
- For each $\lambda \in \Lambda$ compute $f_{D_{1}, \lambda}$.
- Pick the $\lambda_{D_{2}} \in \Lambda$ such that $\bar{f}_{D_{1}, \lambda_{D_{2}}}$ minimizes empirical risk $\mathcal{R}_{L, D_{2}}$.

Observation
Approach performs RERM on D_{1} and ERM over $\mathcal{F}:=\left\{\bar{f}_{D_{1}, \lambda}: \lambda \in \Lambda\right\}$ on D_{2}.

Learning Rates: Hyper-Parameters VI

Theorem

If Λ_{n} is a polynomially growing $n^{-\alpha / 2}$-net of $(0,1]$, our TV-RERM is consistent and enjoys the same best rates as RERM without knowing β.

Summary

Positive Aspects

- Finite sample estimates in forms of oracle inequalities.
- Consistency and learning rates.
- Adaptivity to best learning rates the analysis can provide.
- Framework applies to a variety of algorithms, e.g. SVMs with Gaussian kernels.
- Analysis is very robust to changes in the scenario.

Summary

Positive Aspects

- Finite sample estimates in forms of oracle inequalities.
- Consistency and learning rates.
- Adaptivity to best learning rates the analysis can provide.
- Framework applies to a variety of algorithms, e.g. SVMs with Gaussian kernels.
- Analysis is very robust to changes in the scenario.

Negative Aspect

- For RERM, the rates are never optimal!
- This analysis is out-dated.

Learning Rates: Non-Optimality I

- For RERM, with probability P^{n} not less than $1-e^{-\tau}$ we have

$$
\begin{equation*}
\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda_{n}}\right)-\mathcal{R}_{L, P}^{*} \leq C \sqrt{\tau} n^{-\frac{\alpha \beta}{2(\alpha \beta+1)(1+p)}} . \tag{3}
\end{equation*}
$$

Learning Rates: Non-Optimality I

- For RERM, with probability P^{n} not less than $1-e^{-\tau}$ we have

$$
\begin{equation*}
\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda_{n}}\right)-\mathcal{R}_{L, P}^{*} \leq C \sqrt{\tau} n^{-\frac{\alpha \beta}{2(\alpha \beta+1)(1+p)}} . \tag{3}
\end{equation*}
$$

- In the proof of this result we used $\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{\alpha} \leq 1$, but (3) shows

$$
\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{2} \leq C \sqrt{\tau} n^{-\frac{\alpha \beta}{2(\alpha \beta+1)(1+\rho)}} .
$$

For large n this estimate is sharper!

Learning Rates: Non-Optimality I

- For RERM, with probability P^{n} not less than $1-e^{-\tau}$ we have

$$
\begin{equation*}
\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{\alpha}+\mathcal{R}_{L, P}\left(f_{D, \lambda_{n}}\right)-\mathcal{R}_{L, P}^{*} \leq C \sqrt{\tau} n^{-\frac{\alpha \beta}{2(\alpha \beta+1)(1+p)}} . \tag{3}
\end{equation*}
$$

- In the proof of this result we used $\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{\alpha} \leq 1$, but (3) shows

$$
\lambda_{n}\left\|f_{D, \lambda_{n}}\right\|_{E}^{2} \leq C \sqrt{\tau} n^{-\frac{\alpha \beta}{2(\alpha \beta+1)(1+\rho)}} .
$$

For large n this estimate is sharper!

- Using the sharper estimate in the proof, we obtain a better learning rate.
- Argument can be iterated ...

Learning Rates: Non-Optimality II

Bernstein's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_{1}, \ldots, \xi_{n}: \Omega \rightarrow[-B, B]$ be independent random variables satisfying

- $\mathbb{E}_{Q} \xi_{i}=0$
- $\mathbb{E}_{Q} \xi_{i}^{2} \leq \sigma^{2}$

Then, for all $\tau>0, n \geq 1$, we have

$$
Q\left(\left|\frac{1}{n} \sum_{i=1}^{n} \xi_{i}\right| \geq \sqrt{\frac{2 \sigma^{2} \tau}{n}}+\frac{2 B \tau}{3 n}\right) \leq 2 e^{-\tau}
$$

Learning Rates: Non-Optimality III

- Some loss functions or distributions allow a variance bound

$$
\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V\left(\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}\right)^{\vartheta} .
$$

Learning Rates: Non-Optimality III

- Some loss functions or distributions allow a variance bound

$$
\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V\left(\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}\right)^{\vartheta} .
$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
- variance term, which is $O\left(n^{-1 / 2}\right)$
- supremum term, which is $O\left(n^{-1}\right)$

Learning Rates: Non-Optimality III

- Some loss functions or distributions allow a variance bound

$$
\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V\left(\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}\right)^{\vartheta} .
$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
- variance term, which is $O\left(n^{-1 / 2}\right)$
- supremum term, which is $O\left(n^{-1}\right)$
- Iteration in the proof:
- Initial analysis provides small excess risk with high probability
- Variance bound converts small excess risk into small variance
- Variance term in oracle inequality becomes smaller, leading to a faster rate

Learning Rates: Non-Optimality III

- Some loss functions or distributions allow a variance bound

$$
\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V\left(\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}\right)^{\vartheta} .
$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
- variance term, which is $O\left(n^{-1 / 2}\right)$
- supremum term, which is $O\left(n^{-1}\right)$
- Iteration in the proof:
- Initial analysis provides small excess risk with high probability
- Variance bound converts small excess risk into small variance
- Variance term in oracle inequality becomes smaller, leading to a faster rate
- Rates up to $O\left(n^{-1}\right)$ become possible. Iteration can be avoided!

Learning Rates: Non-Optimality IV

Further Reasons

- The fact that L is clippable, should be used to obtain a smaller supremum term.
- $\|\cdot\|_{\infty}$-covering numbers provide a worst-case tool.

Adaptivity of Standard SVMs

Theorem (Eberts \& S. 2011)

- Consider an SVM with least squares loss and Gaussian kernel k_{σ}.
- Pick λ and σ by a suitable training/validation approach.

Then, for $m \in(d / 2, \infty)$, the SVM learns every $f_{L, P}^{*} \in W^{m}(X)$ with the (essentially) optimal rate $n^{-\frac{2 m}{2 m+d}+\varepsilon}$ without knowing m.

Towards a Better Analysis for ERM I

Basic Setup

- We consider ERM over finite \mathcal{F}.
- We assume that a Bayes predictor $f_{L, P}^{*}$ exists.
- We consider excess losses

$$
h_{f}:=L \circ f-L \circ f_{L, P}^{*} .
$$

Thus $\mathbb{E}_{P} h_{f}=\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}$.

Towards a Better Analysis for ERM I

Basic Setup

- We consider ERM over finite \mathcal{F}.
- We assume that a Bayes predictor $f_{L, P}^{*}$ exists.
- We consider excess losses

$$
h_{f}:=L \circ f-L \circ f_{L, P}^{*}
$$

Thus $\mathbb{E}_{P} h_{f}=\mathcal{R}_{L, P}(f)-\mathcal{R}_{L, P}^{*}$.

- Variance bound: $\mathbb{E}_{P} h_{f}^{2} \leq V\left(\mathbb{E}_{P} h_{f}\right)^{\vartheta}$
- Supremum bound: $\left\|h_{f}\right\|_{\infty} \leq B$

Towards a Better Analysis for ERM II

Decomposition

- Let $f_{P} \in \mathcal{F}$ satisfy $\mathcal{R}_{L, P}\left(f_{P}\right)=\mathcal{R}_{L, P, \mathcal{F}}^{*}$.
- $\mathcal{R}_{L, D}\left(f_{D}\right) \leq \mathcal{R}_{L, D}\left(f_{P}\right)$ implies $\mathbb{E}_{D} h_{f_{D}} \leq \mathbb{E}_{D} h_{f_{P}}$.

Towards a Better Analysis for ERM II

Decomposition

- Let $f_{P} \in \mathcal{F}$ satisfy $\mathcal{R}_{L, P}\left(f_{P}\right)=\mathcal{R}_{L, P, \mathcal{F}}^{*}$.
- $\mathcal{R}_{L, D}\left(f_{D}\right) \leq \mathcal{R}_{L, D}\left(f_{P}\right)$ implies $\mathbb{E}_{D} h_{f_{D}} \leq \mathbb{E}_{D} h_{f_{p}}$.

This yields

$$
\begin{aligned}
\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, P}\left(f_{P}\right) & =\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{P} h_{f_{P}} \\
& \leq \mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}+\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}
\end{aligned}
$$

We will estimate the two differences separately.

Towards a Better Analysis for ERM III

Second Difference

We have $\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}=\mathbb{E}_{D}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)$.

Towards a Better Analysis for ERM III

Second Difference

We have $\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}=\mathbb{E}_{D}\left(h_{f_{p}}-\mathbb{E}_{P} h_{f_{p}}\right)$.

- Centered: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)=0$.
- Variance bound: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)^{2} \leq \mathbb{E}_{P} h_{f_{P}}^{2} \leq V\left(\mathbb{E}_{P} h_{f_{P}}\right)^{\vartheta}$
- Supremum bound: $\left\|h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right\|_{\infty} \leq 2 B$

Towards a Better Analysis for ERM III

Second Difference

We have $\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{p} h_{f_{P}}=\mathbb{E}_{D}\left(h_{f_{p}}-\mathbb{E}_{P} h_{f_{p}}\right)$.

- Centered: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)=0$.
- Variance bound: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)^{2} \leq \mathbb{E}_{P} h_{f_{P}}^{2} \leq V\left(\mathbb{E}_{P} h_{f_{P}}\right)^{\vartheta}$
- Supremum bound: $\left\|h_{f_{P}}-\mathbb{E}_{P} h_{f_{p}}\right\|_{\infty} \leq 2 B$

Bernstein yields

$$
\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}} \leq \sqrt{\frac{2 \tau V\left(\mathbb{E}_{P} h_{f_{P}}\right)^{\vartheta}}{n}}+\frac{4 B \tau}{3 n}
$$

Towards a Better Analysis for ERM III

Second Difference

We have $\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}=\mathbb{E}_{D}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)$.

- Centered: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)=0$.
- Variance bound: $\mathbb{E}_{P}\left(h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}}\right)^{2} \leq \mathbb{E}_{P} h_{f_{P}}^{2} \leq V\left(\mathbb{E}_{P} h_{f_{P}}\right)^{\vartheta}$
- Supremum bound: $\left\|h_{f_{P}}-\mathbb{E}_{P} h_{f_{p}}\right\|_{\infty} \leq 2 B$

Bernstein yields

$$
\begin{aligned}
\mathbb{E}_{D} h_{f_{P}}-\mathbb{E}_{P} h_{f_{P}} & \leq \sqrt{\frac{2 \tau V\left(\mathbb{E}_{P} h_{f_{P}}\right)^{\vartheta}}{n}}+\frac{4 B \tau}{3 n} \\
& \leq \mathbb{E}_{P} h_{f_{P}}+\left(\frac{2 V \tau}{n}\right)^{\frac{1}{2-\vartheta}}+\frac{4 B \tau}{3 n}
\end{aligned}
$$

Towards a Better Analysis for ERM IV

First Difference

To estimate the remaining term $\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}$, we define the functions

$$
g_{f, r}:=\frac{\mathbb{E}_{P} h_{f}-h_{f}}{\mathbb{E}_{P} h_{f}+r}, \quad f \in \mathcal{F}, r>0
$$

Towards a Better Analysis for ERM IV

First Difference

To estimate the remaining term $\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}$, we define the functions

$$
g_{f, r}:=\frac{\mathbb{E}_{P} h_{f}-h_{f}}{\mathbb{E}_{P} h_{f}+r}, \quad \quad f \in \mathcal{F}, r>0
$$

Bernstein Conditions

- Centered: $\mathbb{E}_{p} g_{f, r}=0$.

Towards a Better Analysis for ERM IV

First Difference

To estimate the remaining term $\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}$, we define the functions

$$
g_{f, r}:=\frac{\mathbb{E}_{P} h_{f}-h_{f}}{\mathbb{E}_{P} h_{f}+r}, \quad f \in \mathcal{F}, r>0
$$

Bernstein Conditions

- Centered: $\mathbb{E}_{P} g_{f, r}=0$.
- Variance bound:

$$
\mathbb{E}_{P} g_{f, r}^{2} \leq \frac{\mathbb{E}_{P} h_{f}^{2}}{\left(\mathbb{E}_{P} h_{f}+r\right)^{2}} \leq \frac{\mathbb{E}_{P} h_{f}^{2}}{r^{2-\vartheta}\left(\mathbb{E}_{P} h_{f}\right)^{\vartheta}} \leq V r^{\vartheta-2}
$$

Towards a Better Analysis for ERM IV

First Difference

To estimate the remaining term $\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}$, we define the functions

$$
g_{f, r}:=\frac{\mathbb{E}_{P} h_{f}-h_{f}}{\mathbb{E}_{P} h_{f}+r}, \quad f \in \mathcal{F}, r>0
$$

Bernstein Conditions

- Centered: $\mathbb{E}_{P} g_{f, r}=0$.
- Variance bound:

$$
\mathbb{E}_{P} g_{f, r}^{2} \leq \frac{\mathbb{E}_{P} h_{f}^{2}}{\left(\mathbb{E}_{P} h_{f}+r\right)^{2}} \leq \frac{\mathbb{E}_{P} h_{f}^{2}}{r^{2-\vartheta}\left(\mathbb{E}_{P} h_{f}\right)^{\vartheta}} \leq V r^{\vartheta-2}
$$

- Supremum bound: $\left\|g_{f, r}\right\|_{\infty} \leq\left\|\mathbb{E}_{P} h_{f}-h_{f}\right\|_{\infty} r^{-1} \leq 2 B r^{-1}$.

Towards a Better Analysis for ERM V

Application of Bernstein

With probability P^{n} not smaller than $1-|\mathcal{F}| e^{-\tau}$ we have

$$
\sup _{f \in \mathcal{F}} \mathbb{E}_{D} g_{f, r}<\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}+\frac{4 B \tau}{3 n r}
$$

Towards a Better Analysis for ERM V

Application of Bernstein

With probability P^{n} not smaller than $1-|\mathcal{F}| e^{-\tau}$ we have

$$
\sup _{f \in \mathcal{F}} \mathbb{E}_{D} g_{f, r}<\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}+\frac{4 B \tau}{3 n r}
$$

Transformation

The definition of $g_{f_{D}, r}$ and $f_{D} \in \mathcal{F}$ imply

$$
\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{D} h_{f_{D}}<\mathbb{E}_{P} h_{f_{D}}\left(\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}+\frac{4 B \tau}{3 n r}\right)+\sqrt{\frac{2 V \tau r^{\vartheta}}{n}}+\frac{4 B \tau}{3 n}
$$

Towards a Better Analysis for ERM VI

Combination of the three Estimates

$$
\begin{aligned}
\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{P} h_{f_{P}}< & \mathbb{E}_{P} h_{f_{P}}+\left(\frac{2 V \tau}{n}\right)^{\frac{1}{2-\vartheta}}+\frac{8 B \tau}{3 n} \\
& +\mathbb{E}_{P} h_{f_{D}}\left(\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}+\frac{4 B \tau}{3 n r}\right)+\sqrt{\frac{2 V \tau r^{\vartheta}}{n}}
\end{aligned}
$$

Towards a Better Analysis for ERM VI

Combination of the three Estimates

$$
\begin{aligned}
\mathbb{E}_{P} h_{f_{D}}-\mathbb{E}_{P} h_{f_{P}}< & \mathbb{E}_{P} h_{f_{P}}+\left(\frac{2 V \tau}{n}\right)^{\frac{1}{2-\vartheta}}+\frac{8 B \tau}{3 n} \\
& +\mathbb{E}_{P} h_{f_{D}}\left(\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}+\frac{4 B \tau}{3 n r}\right)+\sqrt{\frac{2 V \tau r^{\vartheta}}{n}}
\end{aligned}
$$

Transformation
$\left(1-\sqrt{\frac{2 V \tau}{n r^{2-\vartheta}}}-\frac{4 B \tau}{3 n r}\right) \mathbb{E}_{P} h_{f_{D}}<2 \mathbb{E}_{P} h_{f_{P}}+\left(\frac{2 V \tau}{n}\right)^{\frac{1}{2-\vartheta}}+\frac{8 B \tau}{3 n}+\sqrt{\frac{2 V \tau r^{\vartheta}}{n}}$

Final Step

For $r:=\left(\frac{8 V \tau}{n}\right)^{1 /(2-\vartheta)}$, the factor on the lhs. is not smaller than $1 / 3$.

A Better Oracle Inequality for ERM

Theorem

Assume that there are $\vartheta \in[0,1]$, and $V \geq B^{2-\vartheta}$ such that

- \mathcal{F} finite set of functions.
- Variance bound: $\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V \cdot\left(\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)\right)^{\vartheta}$
- Supremum bound: $\left\|L \circ f-L \circ f_{L, P}^{*}\right\|_{\infty} \leq B$

A Better Oracle Inequality for ERM

Theorem

Assume that there are $\vartheta \in[0,1]$, and $V \geq B^{2-\vartheta}$ such that

- \mathcal{F} finite set of functions.
- Variance bound: $\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)^{2} \leq V \cdot\left(\mathbb{E}_{P}\left(L \circ f-L \circ f_{L, P}^{*}\right)\right)^{\vartheta}$
- Supremum bound: $\left\|L \circ f-L \circ f_{L, P}^{*}\right\|_{\infty} \leq B$

Then, for $\tau>0$ and $n \geq 1$, we have with probability P^{n} not less than $1-e^{-\tau}$:

$$
\mathcal{R}_{L, P}\left(f_{D}\right)-\mathcal{R}_{L, P}^{*}<6\left(\mathcal{R}_{L, P, \mathcal{F}}^{*}-\mathcal{R}_{L, P}^{*}\right)+4\left(\frac{8 V(\tau+\ln (1+|\mathcal{F}|))}{n}\right)^{\frac{1}{2-\vartheta}}
$$

