Learning Theory

Ingo Steinwart University of Stuttgart

September 4, 2013

Informal Description of Supervised Learning

- X space of input samples
 Y space of labels, usually Y ⊂ ℝ.
- Already observed samples

$$D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

Informal Description of Supervised Learning

- X space of input samples Y space of labels, usually $Y \subset \mathbb{R}$.
- Already observed samples

$$D = ((x_1, y_1), \ldots, (x_n, y_n)) \in (X \times Y)^n$$

Goal:

With the help of D find a function $f_D : X \to \mathbb{R}$ such that $f_D(x)$ is a good prediction of the label y for new, unseen x.

Learning method:

Assigns to every training set *D* a predictor $f_D : X \to \mathbb{R}$.

Illustration: Binary Classification

Problem:

The labels are ± 1 .

Goal:

Make few mistakes on future data.

Illustration: Binary Classification

Problem:

The labels are ± 1 .

Goal:

Make few mistakes on future data.

Example:

Illustration: Binary Classification

Problem:

The labels are ± 1 .

Goal:

Make few mistakes on future data.

Example:

Illustration: Regression

Problem:

The labels are \mathbb{R} -valued.

Goal:

Estimate label y for new data x as accurate as possible.

Illustration: Regression

Problem:

The labels are \mathbb{R} -valued.

Goal:

Estimate label y for new data x as accurate as possible.

Example:

Data Generation

Assumptions

- *P* is an unknown probability measure on $X \times Y$.
- $D = ((x_1, y_1), \dots, (x_n, y_n)) \in (X \times Y)^n$ is sampled from P^n .
- Future samples (x, y) will also be sampled from P.

Data Generation

Assumptions

- *P* is an unknown probability measure on $X \times Y$.
- $D = ((x_1, y_1), \dots, (x_n, y_n)) \in (X \times Y)^n$ is sampled from P^n .
- Future samples (x, y) will also be sampled from *P*.

Consequences

- ► The label y for a given x is, in general, not deterministic.
- The past and the future "look the same".
- ▶ We seek algorithms that "work well" for many (or even all) P.

Performance Evaluation I

Loss Function

 $L: X \times Y \times \mathbb{R} \to [0, \infty)$ measures cost or loss L(x, y, t) of predicting label y by value t at point x.

Interpretation

- ► As the name suggests, we prefer predictions with small loss.
- L is chosen by us.
- Since future (x, y) are random, it makes sense to consider the average loss of a predictor.

Performance Evaluation II

Risk

The risk of a predictor $f: X \to \mathbb{R}$ is the average loss

$$\mathcal{R}_{L,P}(f) := \int_{X \times Y} L(x, y, f(x)) dP(x, y) .$$

For $D = ((x_1, y_1), \dots, (x_n, y_n))$ the empirical risk is

$$\mathcal{R}_{L,D}(f) := \frac{1}{n} \sum_{i=1}^{n} L(x_i, y_i, f(x_i)).$$

Interpretation

By the law of large numbers, we have P^{∞} -almost surely:

$$\mathcal{R}_{L,P}(f) = \lim_{|D| \to \infty} \mathcal{R}_{L,D}(f)$$

Thus, $\mathcal{R}_{L,P}(f)$ is the long-term average future loss when using f.

Performance Evaluation III

Bayes Risk and Bayes Predictor

The Bayes risk is the smallest possible risk

$$\mathcal{R}^*_{L,\mathcal{P}} := \infig\{ \, \mathcal{R}_{L,\mathcal{P}}(f) \mid f : X o \mathbb{R} \; (\mathsf{measurable}) \; ig\} \; .$$

A Bayes predictor is any function $f_{L,P}^*: X \to \mathbb{R}$ that satisfies

$$\mathcal{R}_{L,P}(f^*_{L,P}) = \mathcal{R}^*_{L,P}$$

Performance Evaluation III

Bayes Risk and Bayes Predictor

The Bayes risk is the smallest possible risk

$$\mathcal{R}^*_{L,\mathcal{P}} := \inf ig\{ \, \mathcal{R}_{L,\mathcal{P}}(f) \mid f : X o \mathbb{R} \; (\mathsf{measurable}) \; ig\} \; .$$

A Bayes predictor is any function $f_{L,P}^*: X \to \mathbb{R}$ that satisfies

$$\mathcal{R}_{L,P}(f^*_{L,P}) = \mathcal{R}^*_{L,P}$$

Interpretation

- We will never find a predictor whose risk is smaller than \mathcal{R}_{LP}^* .
- We seek a predictor $f: X \to \mathbb{R}$ whose excess risk

$$\mathcal{R}_{L,P}(f) - \mathcal{R}^*_{L,P}$$

is close to 0.

Performance Evaluation IV

Best Naïve Risk

The best naïve risk is the smallest risk one obtains by ignoring X:

$$\mathcal{R}_{L,P}^{\dagger} := \inf ig\{ \mathcal{R}_{L,P}(c\mathbf{1}_X) \mid c \in \mathbb{R} ig\} \;.$$

Remarks

- The best naïve risk (and its minimizer) is usually easy to estimate.
- Using fancy learning algorithms only makes sense, if $\mathcal{R}_{L,P}^* < \mathcal{R}_{L,P}^{\dagger}$.

Performance Evaluation IV

Best Naïve Risk

The best naïve risk is the smallest risk one obtains by ignoring X:

$$\mathcal{R}_{L,P}^{\dagger} := \inf ig\{ \mathcal{R}_{L,P}(c\mathbf{1}_X) \mid c \in \mathbb{R} ig\} \;.$$

Remarks

- > The best naïve risk (and its minimizer) is usually easy to estimate.
- Using fancy learning algorithms only makes sense, if $\mathcal{R}_{L,P}^* < \mathcal{R}_{L,P}^{\dagger}$.

Equality

- Typically: $\mathcal{R}_{L,P}^{\dagger} = \mathcal{R}_{L,P}^{*}$ iff there is a constant Bayes predictor.
- If $P = P_X \otimes P_Y$, then $\mathcal{R}_{L,P}^{\dagger} = \mathcal{R}_{L,P}^*$, but the converse is false.

Learning Goals I

Binary Classification: $Y = \{-1, 1\}$

L(y, t) := 1_{(-∞,0]}(y sign t) penalizes predictions t with sign t ≠ y.
 R_{L,P}(f) = P({(x, y) : sign f(x) ≠ y}).

Learning Goals I

Binary Classification: $Y = \{-1, 1\}$

L(y, t) := 1_{(-∞,0]}(y sign t) penalizes predictions t with sign t ≠ y.
 R_{L,P}(f) = P({(x, y) : sign f(x) ≠ y}).

Optimal Risk

Let $\eta(x) := P(Y = 1|x)$ be the probability of a positive label at $x \in X$.

- Bayes risk: $\mathcal{R}^*_{L,P} = \mathbb{E}_{P_X} \min\{\eta, 1-\eta\}.$
- f is Bayes predictor iff $(2\eta 1)$ sign $f \ge 0$.

Learning Goals I

Binary Classification: $Y = \{-1, 1\}$

L(y, t) := 1_{(-∞,0]}(y sign t) penalizes predictions t with sign t ≠ y.
 R_{L,P}(f) = P({(x, y) : sign f(x) ≠ y}).

Optimal Risk

Let $\eta(x) := P(Y = 1|x)$ be the probability of a positive label at $x \in X$.

- Bayes risk: $\mathcal{R}^*_{L,P} = \mathbb{E}_{P_X} \min\{\eta, 1-\eta\}.$
- f is Bayes predictor iff $(2\eta 1)$ sign $f \ge 0$.

Naïve Risk

► Naïve risk:
$$\mathcal{R}_{L,P}^{\dagger} = \min\{P(Y=1), 1 - P(Y=1)\}$$

•
$$\mathcal{R}^{\dagger}_{L,P} = \mathcal{R}^{*}_{L,P}$$
 iff $\eta \geq 1/2$ or $\eta \leq 1/2$

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y,t) := (y-t)^2$
- Conditional expectation: $\mu_P(x) := \mathbb{E}_P(Y|x)$.
- Conditional variance: $\sigma_P^2(x) := \mathbb{E}_P(Y^2|x) \mu^2(x).$

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y,t) := (y-t)^2$
- Conditional expectation: $\mu_P(x) := \mathbb{E}_P(Y|x)$.
- Conditional variance: $\sigma_P^2(x) := \mathbb{E}_P(Y^2|x) \mu^2(x).$

Optimal Risk

- μ_P is the only Bayes predictor and $\mathcal{R}^*_{L,P} = \mathbb{E}_{P_X} \sigma_P^2$.
- Excess risk: $\mathcal{R}_{L,P}(f) \mathcal{R}^*_{L,P} = \|f \mu_P\|^2_{L_2(P_X)}$.

Least squares regression aims at estimating the conditional mean.

Learning Goals II

Least Squares Regression: $Y \subset \mathbb{R}$

- $L(y,t) := (y-t)^2$
- Conditional expectation: $\mu_P(x) := \mathbb{E}_P(Y|x)$.
- Conditional variance: $\sigma_P^2(x) := \mathbb{E}_P(Y^2|x) \mu^2(x).$

Optimal Risk

- μ_P is the only Bayes predictor and $\mathcal{R}^*_{L,P} = \mathbb{E}_{P_X} \sigma_P^2$.
- Excess risk: $\mathcal{R}_{L,P}(f) \mathcal{R}^*_{L,P} = \|f \mu_P\|^2_{L_2(P_X)}$.

Least squares regression aims at estimating the conditional mean.

Naïve Risk

• Naïve risk:
$$\mathcal{R}_{L,P}^{\dagger} = \text{var } P_Y$$
.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $\blacktriangleright L(y,t) := |y-t|$
- Conditional medians: $m_P(x) := \text{median}_P(Y|x)$.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $\blacktriangleright L(y,t) := |y-t|$
- Conditional medians: $m_P(x) := \text{median}_P(Y|x)$.

Optimal Risk

- ▶ The medians *m_P* are the only Bayes predictors.
- Excess risk: $\mathcal{R}_{L,P}(f_n) \mathcal{R}^*_{L,P} \to 0$ implies $f_n \to m_P$ in probability P_X .

Absolute value regression aims at estimating the conditional median.

Learning Goals III

Absolute Value Regression: $Y \subset \mathbb{R}$

- $\blacktriangleright L(y,t) := |y-t|$
- Conditional medians: $m_P(x) := \text{median}_P(Y|x)$.

Optimal Risk

- ▶ The medians *m_P* are the only Bayes predictors.
- Excess risk: $\mathcal{R}_{L,P}(f_n) \mathcal{R}^*_{L,P} \to 0$ implies $f_n \to m_P$ in probability P_X .

Absolute value regression aims at estimating the conditional median.

Naïve Risk

• Naïve risk:
$$\mathcal{R}_{L,P}^{\dagger} = \text{median } P_Y$$
.

Questions in Statistical Learning I

Asymptotic Learning

A learning method is called universally consistent if

$$\lim_{n \to \infty} \mathcal{R}_{L,P}(f_D) = \mathcal{R}^*_{L,P} \qquad \text{ in probability } P^\infty \qquad (1)$$

for every probability measure P on $X \times Y$.

Questions in Statistical Learning I

Asymptotic Learning

A learning method is called universally consistent if

$$\lim_{n \to \infty} \mathcal{R}_{L,P}(f_D) = \mathcal{R}^*_{L,P} \qquad \text{ in probability } P^{\infty}$$

for every probability measure P on $X \times Y$.

Good News

Many learning methods are universally consistent. *First result:* Stone (1977), AoS

(1)

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_n \searrow 0$, if

$$\mathbb{E}_{D\sim P^n}\mathcal{R}_{L,P}(f_D) \leq \mathcal{R}^*_{L,P} + C_P a_n, \qquad n \geq 1.$$

Similar: learning rates in probability.

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_n \searrow 0$, if

$$\mathbb{E}_{D\sim P^n}\mathcal{R}_{L,P}(f_D) \leq \mathcal{R}^*_{L,P} + C_P a_n, \qquad n \geq 1.$$

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI) If $|X| = \infty$, $|Y| \ge 2$, and *L* "non-trivial", then it is impossible to obtain a learning rate that is independent of *P*.

Questions in Statistical Learning II

Learning Rates

A learning method learns for a distribution P with rate $a_n \searrow 0$, if

$$\mathbb{E}_{D\sim P^n}\mathcal{R}_{L,P}(f_D) \leq \mathcal{R}^*_{L,P} + C_P a_n, \qquad n \geq 1.$$

Similar: learning rates in probability.

Bad News (Devroye, 1982, IEEE TPAMI) If $|X| = \infty$, $|Y| \ge 2$, and *L* "non-trivial", then it is impossible to obtain a learning rate that is independent of *P*.

Remark

If $|X| < \infty$, then it is usually easy to obtain a uniform learning rate for which C_P depends on |X|.

Questions in Statistical Learning III

Relative Learning Rates

- Let \mathcal{P} be a set of distributions on $X \times Y$.
- A learning method learns \mathcal{P} with rate $a_n \searrow 0$, if, for all $P \in \mathcal{P}$,

$$\mathbb{E}_{D\sim P^n}\mathcal{R}_{L,P}(f_D) \leq \mathcal{R}^*_{L,P} + C_P a_n, \qquad n \geq 1.$$

The rate optimal (a_n) is minmax optimal, if, in addition, there is no learning method that learns P with a rate (b_n) such that b_n/a_n → 0.

Questions in Statistical Learning III

Relative Learning Rates

- Let \mathcal{P} be a set of distributions on $X \times Y$.
- ▶ A learning method learns \mathcal{P} with rate $a_n \searrow 0$, if, for all $P \in \mathcal{P}$,

$$\mathbb{E}_{D\sim P^n}\mathcal{R}_{L,P}(f_D) \leq \mathcal{R}^*_{L,P} + C_P a_n, \qquad n \geq 1.$$

The rate optimal (a_n) is minmax optimal, if, in addition, there is no learning method that learns P with a rate (b_n) such that b_n/a_n → 0.

Tasks

- ▶ Identify interesting ("realistic") classes \mathcal{P} with good optimal rates.
- Find learning algorithms that achieve these rates.

Example of Optimal Rates

Classical Least Squares Example

- $X = [0, 1]^d$, Y = [-1, 1], L is least squares.
- W^m Sobolev space on X with order of smoothness m > d/2.
- \mathcal{P} the set of P such that $f_{L,P}^* \in W^m$ with norm bounded by K.
- Optimal rate is $n^{-\frac{2m}{2m+d}}$.

Example of Optimal Rates

Classical Least Squares Example

- $X = [0, 1]^d$, Y = [-1, 1], *L* is least squares.
- W^m Sobolev space on X with order of smoothness m > d/2.
- \mathcal{P} the set of P such that $f_{L,P}^* \in W^m$ with norm bounded by K.

• Optimal rate is
$$n^{-\frac{2m}{2m+d}}$$

Remarks

- The smoother target $\mu = f_{L,P}^*$ is, the better it can be learned.
- The larger the input dimension is, the harder learning becomes.
- > There exists various learning algorithms achieving the optimal rate.
- They usually require us to know *m* in advance.

Questions in Statistical Learning IV

Assumptions for Adaptivity

- Usually one has a familiy $(\mathcal{P}_{\theta})_{\theta \in \Theta}$ of large sets \mathcal{P}_{θ} of distributions.
- Each set \mathcal{P}_{θ} has its own optimal rate.
- We don't know whether $P \in \mathcal{P}_{\theta}$ for some θ , but we hope so.
- If $P \in \mathcal{P}_{\theta}$, we don't know θ and we have no mean to estimate it.

Questions in Statistical Learning IV

Assumptions for Adaptivity

- ▶ Usually one has a familiy $(\mathcal{P}_{\theta})_{\theta \in \Theta}$ of large sets \mathcal{P}_{θ} of distributions.
- Each set \mathcal{P}_{θ} has its own optimal rate.
- We don't know whether $P \in \mathcal{P}_{\theta}$ for some θ , but we hope so.
- If $P \in \mathcal{P}_{\theta}$, we don't know θ and we have no mean to estimate it.

Task

We seek learning algorithms that are

- universally consistent.
- learn all \mathcal{P}_{θ} with the optimal rate without knowing θ .

Such learning algorithms are adaptive to the unknown θ .
Questions in Statistical Learning V

Finite Sample Estimates

- Assume that our algorithm has some hyper-parameters $\lambda \in \Lambda$.
- ▶ For each *P*, λ , $\delta \in (0, 1)$ and $n \ge 1$ we seek an $\varepsilon(P, \lambda, \delta, n)$ such that

$$\mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}^*_{L,P} \leq \varepsilon(P,\lambda,\delta,n)$$

with probability P^n not smaller than $1 - \delta$.

Questions in Statistical Learning V

Finite Sample Estimates

- Assume that our algorithm has some hyper-parameters $\lambda \in \Lambda$.
- ▶ For each *P*, λ , $\delta \in (0,1)$ and $n \ge 1$ we seek an $\varepsilon(P, \lambda, \delta, n)$ such that

$$\mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}^*_{L,P} \leq \varepsilon(P,\lambda,\delta,n)$$

with probability P^n not smaller than $1 - \delta$.

Remarks

• If there exists a sequence (λ_n) with

$$\lim_{n\to\infty}\varepsilon(P,\lambda_n,\delta,n)=0$$

for all P and δ , then the algorithm can be made universally consistent.

- We automatically obtain learning rates for such sequences.
- If $|X| = \infty$ and ..., then such $\varepsilon(P, \lambda, \delta, n)$ must depend on P.

Questions in Statistical Learning VI

Generalization Error Bounds

- Goal: Estimate risk $\mathcal{R}_{L,P}(f_{D,\lambda})$ by the performance of $f_{D,\lambda}$ on D.
- Find $\varepsilon(\lambda, \delta, n)$ such that with probability P^n not smaller than 1δ :

 $\mathcal{R}_{L,P}(f_{D,\lambda}) \leq \mathcal{R}_{L,D}(f_{D,\lambda}) + \varepsilon(\lambda, \delta, n).$

Questions in Statistical Learning VI

Generalization Error Bounds

- Goal: Estimate risk $\mathcal{R}_{L,P}(f_{D,\lambda})$ by the performance of $f_{D,\lambda}$ on D.
- Find $\varepsilon(\lambda, \delta, n)$ such that with probability P^n not smaller than 1δ :

$$\mathcal{R}_{L,P}(f_{D,\lambda}) \leq \mathcal{R}_{L,D}(f_{D,\lambda}) + \varepsilon(\lambda, \delta, n).$$

Remarks

- $\varepsilon(\lambda, \delta, n)$ must not depend on *P* since we do not know *P*.
- ε(λ, δ, n) can be used to derive parameter selection strategies such as structural risk minimization.
- Alternative: Use second data set D' and $\mathcal{R}_{L,D'}(f_{D,\lambda})$ as an estimate.

A "good" learning algorithm:

- Is universally consistent.
- ► Is adaptive for *realistic* classes of distributions.

Summary

A "good" learning algorithm:

- Is universally consistent.
- ► Is adaptive for *realistic* classes of distributions.
- Can be modified to new problems that have a different loss.
- ► Has a good record on real-world problems.
- Runs efficiently on a computer.

> . . .

Definition

Let \mathcal{F} be a set of functions $X \to \mathbb{R}$. A learning method whose predictors satisfy $f_D \in \mathcal{F}$ and

$$\mathcal{R}_{L,D}(f_D) = \min_{f \in \mathcal{F}} \mathcal{R}_{L,D}(f)$$

is called empirical risk minimization (ERM).

Definition

Let \mathcal{F} be a set of functions $X \to \mathbb{R}$. A learning method whose predictors satisfy $f_D \in \mathcal{F}$ and

$$\mathcal{R}_{L,D}(f_D) = \min_{f\in\mathcal{F}}\mathcal{R}_{L,D}(f)$$

is called empirical risk minimization (ERM).

Remarks

- Not every \mathcal{F} makes ERM possible.
- ERM is, in general, not unique.
- ERM may not be computationally feasible.

Danger of underfitting

> ERM can never produce predictors with risk better than

$$\mathcal{R}^*_{L,P,\mathcal{F}} := \inf \{ \mathcal{R}_{L,P}(f) : f \in \mathcal{F} \}.$$

► Example: L least squares, X = [0,1], P_X uniform distribution, f^{*}_{L,P} not linear, and F set of linear functions, then

$$\mathcal{R}^*_{L,P,\mathcal{F}} > \mathcal{R}^*_{L,P} \,,$$

and thus ERM cannot be consistent.

Danger of overfitting

- If \mathcal{F} is too large, ERM may overfit.
- Example: *L* least squares, X = [0, 1], P_X uniform distribution, $f_{L,P}^* = \mathbf{1}_X$, $\mathcal{R}_{L,P}^* = 0$, and \mathcal{F} set of all functions. Then

$$f_D(x) = egin{cases} y_i & ext{ if } x = x_i ext{ for some } i \ 0 & ext{ otherwise.} \end{cases}$$

satisfies $\mathcal{R}_{L,D}(f_D) = 0$ but $\mathcal{R}_{L,P}(f_D) = 1$.

Summary of Last Session

• Risk of a predictor $f: X \to \mathbb{R}$ is

$$\mathcal{R}_{L,P}(f) := \int_{X \times Y} L(x, y, f(x)) dP(x, y) .$$

▶ Bayes risk R^{*}_{L,P} is the smallest possible risk. A Bayes predictor f^{*}_{L,P} achieves this minimal risk.

Summary of Last Session

• Risk of a predictor $f: X \to \mathbb{R}$ is

$$\mathcal{R}_{L,P}(f) := \int_{X \times Y} L(x, y, f(x)) dP(x, y) .$$

- ▶ Bayes risk R^{*}_{L,P} is the smallest possible risk. A Bayes predictor f^{*}_{L,P} achieves this minimal risk.
- Learning is

$$\mathcal{R}_{L,P}(f_D) o \mathcal{R}^*_{L,P}$$

- Asymptotically, this is possible, but no uniform rates are possible.
- ► We seek adaptive learning algorithms. Ideally, these are fully automated.

Regularized ERM

Definition

Let \mathcal{F} be a non-empty set of functions $X \to \mathbb{R}$ and $\Upsilon : \mathcal{F} \to [0, \infty)$ be a map. A learning method whose predictors satisfy $f_D \in \mathcal{F}$ and

$$\Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) = \inf_{f \in \mathcal{F}} \left(\Upsilon(f) + \mathcal{R}_{L,D}(f) \right)$$

is called regularized empirical risk minimization (RERM).

Regularized ERM

Definition

Let \mathcal{F} be a non-empty set of functions $X \to \mathbb{R}$ and $\Upsilon : \mathcal{F} \to [0, \infty)$ be a map. A learning method whose predictors satisfy $f_D \in \mathcal{F}$ and

$$\Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) = \inf_{f \in \mathcal{F}} \left(\Upsilon(f) + \mathcal{R}_{L,D}(f) \right)$$

is called regularized empirical risk minimization (RERM).

Remarks

- $\Upsilon = 0$ yields ERM.
- ► All remarks about ERM apply to RERM, too.

Examples of Regularized ERM I

General Dictionary Methods

For bounded $h_1, \ldots, h_m : X \to \mathbb{R}$ consider

$$\mathcal{F} := \left\{ f_{\mathsf{c}} := \sum_{i=1}^{m} c_{i} h_{i} : (c_{1}, \ldots, c_{m}) \in \mathbb{R}^{m} \right\},\$$

Examples of Regularized ERM I

General Dictionary Methods

For bounded $h_1, \ldots, h_m : X \to \mathbb{R}$ consider

$$\mathcal{F} := \left\{ f_c := \sum_{i=1}^m c_i h_i : (c_1, \ldots, c_m) \in \mathbb{R}^m \right\},\$$

Examples of Regularizers

- ℓ_1 -regularization: $\Upsilon(f_c) = \lambda ||c||_1 = \lambda \sum_{i=1}^m |c_i|,$
- ℓ_2 -regularization: $\Upsilon(f_c) = \lambda \|c\|_2 = \lambda \sum_{i=1}^m |c_i|^2$,
- ℓ_{∞} -regularization: $\Upsilon(f_c) = \lambda \|c\|_{\infty} = \lambda \max_i |c_i|,$

or, in case of dependent h_i , we take the infimum over all representations.

Examples of Regularized ERM II

Further Examples

▶ ...

- Support Vector Machines
- Regularized Decision Trees

Regularized ERM: Norm Regularizers

Conventions

Whenever we consider regularizers they will be of the form

 $\Upsilon(f) = \lambda \|f\|_E^{\alpha}, \qquad f \in \mathcal{F},$

where $\alpha \geq 1$ and $E := \mathcal{F}$ is a vector space of functions $X \to \mathbb{R}$.

Regularized ERM: Norm Regularizers

Conventions

Whenever we consider regularizers they will be of the form

$$\Upsilon(f) = \lambda \|f\|_E^{lpha}, \qquad f \in \mathcal{F},$$

where $\alpha \geq 1$ and $E := \mathcal{F}$ is a vector space of functions $X \to \mathbb{R}$.

In this case, we additionally assume that

 $\|f\|_{\infty} \leq \|f\|_{E}, \qquad f \in E.$

Regularized ERM: Norm Regularizers

Conventions

Whenever we consider regularizers they will be of the form

$$\Upsilon(f) = \lambda \|f\|_E^{lpha}, \qquad f \in \mathcal{F},$$

where $\alpha \geq 1$ and $E := \mathcal{F}$ is a vector space of functions $X \to \mathbb{R}$.

In this case, we additionally assume that

$$\|f\|_{\infty} \leq \|f\|_{E}, \qquad f \in E.$$

In the following, we assume that the optimization problem also has a solution f_P, when we replace D by P:

$$f_{\mathbf{P}} \in \arg\min_{f \in \mathcal{F}} \Upsilon(f) + \mathcal{R}_{L,\mathbf{P}}(f)$$

Ansatz

▶ Assume that we have a data set D and an $\varepsilon > 0$ such that

$$\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon$$

Ansatz

 \blacktriangleright Assume that we have a data set D and an $\varepsilon > 0$ such that

$$\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon$$

$$\begin{aligned} \Upsilon(f_D) &+ \mathcal{R}_{L,P}(f_D) \\ &= \Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,D}(f_D) + \mathcal{R}_{L,D}(f_D) \end{aligned}$$

Ansatz

 \blacktriangleright Assume that we have a data set D and an $\varepsilon > 0$ such that

$$\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon$$

$$\begin{split} & \Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) \\ &= & \Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,D}(f_D) + \mathcal{R}_{L,D}(f_D) \\ &\leq & \Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) + \varepsilon \end{split}$$

Ansatz

 \blacktriangleright Assume that we have a data set D and an $\varepsilon > 0$ such that

$$\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon$$

$$\begin{split} &\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) \\ = &\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,D}(f_D) + \mathcal{R}_{L,D}(f_D) \\ \leq &\Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) + \varepsilon \\ \leq &\Upsilon(f_P) + \mathcal{R}_{L,D}(f_P) + \varepsilon \end{split}$$

Ansatz

 \blacktriangleright Assume that we have a data set D and an $\varepsilon > 0$ such that

$$\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon$$

$$\begin{split} &\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) \\ &= &\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,D}(f_D) + \mathcal{R}_{L,D}(f_D) \\ &\leq &\Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) + \varepsilon \\ &\leq &\Upsilon(f_P) + \mathcal{R}_{L,D}(f_P) + \varepsilon \\ &\leq &\Upsilon(f_P) + \mathcal{R}_{L,P}(f_P) + 2\varepsilon \end{split}$$

Discussion

The uniform bound

$$\sup_{f \in \mathcal{F}} \left| \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f) \right| \le \varepsilon$$
(2)

led to the inequality

$$\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}^*_{L,P} \leq \Upsilon(f_P) + \mathcal{R}_{L,P}(f_P) - \mathcal{R}^*_{L,P} + 2\varepsilon.$$

Discussion

The uniform bound

$$\sup_{f \in \mathcal{F}} \left| \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f) \right| \le \varepsilon$$
(2)

led to the inequality

$$\Upsilon(f_D) + \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,P}^* \leq \Upsilon(f_P) + \mathcal{R}_{L,P}(f_P) - \mathcal{R}_{L,P}^* + 2\varepsilon.$$

• Since $\Upsilon(f_D) \ge 0$, all what remains to be done, is to estimate

- the probability of (2)
- the regularization error $\Upsilon(f_P) + \mathcal{R}_{L,P}(f_P) \mathcal{R}^*_{L,P}$.

Union Bound

- ► Assume that *F* is finite.
- The union bound gives

$$\begin{split} & P(D:\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon) \\ &= 1 - P(D:\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| > \varepsilon) \\ &\geq 1 - \sum_{f\in\mathcal{F}} P(D: \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| > \varepsilon) \end{split}$$

Union Bound

- ► Assume that *F* is finite.
- The union bound gives

$$\begin{split} & P(D:\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \leq \varepsilon) \\ &= 1 - P(D:\sup_{f\in\mathcal{F}} \left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| > \varepsilon) \\ &\geq 1 - \sum_{f\in\mathcal{F}} P(D:\left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| > \varepsilon) \end{split}$$

Consequences

- ▶ It suffices to bound $P(D : |\mathcal{R}_{L,P}(f) \mathcal{R}_{L,D}(f)| > \varepsilon)$ for all f.
- No assumptions on P are made so far. In particular, so far data D does not need to be i.i.d. nor even random.

Hoeffding's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_1, \ldots, \xi_n : \Omega \to [a, b]$ be independent random variables. Then, for all $\tau > 0$, $n \ge 1$, we have

$$Q\left(\left|\frac{1}{n}\sum_{i=1}^{n}(\xi_{i}-\mathbb{E}_{Q}\xi_{i})\right|\geq (b-a)\sqrt{\frac{\tau}{2n}}\right)\leq 2e^{-\tau}$$

Hoeffding's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_1, \ldots, \xi_n : \Omega \to [a, b]$ be independent random variables. Then, for all $\tau > 0$, $n \ge 1$, we have

$$Q\left(\left|\frac{1}{n}\sum_{i=1}^{n}(\xi_{i}-\mathbb{E}_{Q}\xi_{i})\right|\geq(b-a)\sqrt{\frac{\tau}{2n}}
ight)\leq2e^{- au}$$

Application

- Consider $\Omega := (X \times Y)^n$ and $Q := P^n$.
- For $\xi_i(D) := L(x_i, y_i, f(x_i))$ we have a = 0 and

$$\frac{1}{n}\sum_{i=1}^n (\xi_i - \mathbb{E}_{P^n}\xi_i) = \mathcal{R}_{L,D}(f) - \mathcal{R}_{L,P}(f).$$

• Assuming $L(x, y, f(x)) \leq B$ makes application of Hoeffding possible.

Theorem for ERM

Let $L: X \times Y \times \mathbb{R} \to [0, \infty)$ be a loss, \mathcal{F} be a non-empty finite set of functions $f: X \to \mathbb{R}$, and B > 0 be a constant such that

$$L(x, y, f(x)) \leq B$$
, $(x, y) \in X \times Y, f \in \mathcal{F}$.

Theorem for ERM

Let $L: X \times Y \times \mathbb{R} \to [0, \infty)$ be a loss, \mathcal{F} be a non-empty finite set of functions $f: X \to \mathbb{R}$, and B > 0 be a constant such that

$$L(x,y,f(x)) \leq B$$
, $(x,y) \in X \times Y, f \in \mathcal{F}$.

Then we have

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}_{L,P,\mathcal{F}}^*+B\sqrt{\frac{2\tau+2\ln(2|\mathcal{F}|)}{n}}\right)\geq 1-e^{-\tau}$$

Remarks

- ▶ Does not specify approximation error $\mathcal{R}^*_{L,P,\mathcal{F}} \mathcal{R}^*_{L,P}$.
- If $|\mathcal{F}| = \infty$, the bound becomes meaningless.
- What happens, if we consider RERM with non-trivial regularizer?

ERM for Infinite \mathcal{F} : The General Approach

So far ...

The union bound was the "trick" to make a conclusion from an estimate of

$$\left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \geq \varepsilon$$

for a single f to all $f \in \mathcal{F}$. For infinite \mathcal{F} , this does not work!

ERM for Infinite \mathcal{F} : The General Approach

So far ...

The union bound was the "trick" to make a conclusion from an estimate of

$$\left|\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f)\right| \geq \varepsilon$$

for a single f to all $f \in \mathcal{F}$. For infinite \mathcal{F} , this does not work!

General Approach

Given some $\delta > 0$, find a finite \mathcal{N}_{δ} set of functions such that

$$\sup_{f \in \mathcal{F}} \left| \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f) \right| \leq \sup_{f \in \mathcal{N}_{\delta}} \left| \mathcal{R}_{L,P}(f) - \mathcal{R}_{L,D}(f) \right| + \delta$$

Then apply the union bound for \mathcal{N}_{δ} . The rest remains unchanged.

ERM for Infinite \mathcal{F} : The General Approach

The old inequality

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}^*_{L,P,\mathcal{F}}+B\sqrt{rac{2 au+2\ln(2|\mathcal{F}|)}{n}}
ight)\geq 1-e^{- au}.$$

The new inequality

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}^*_{L,P,\mathcal{F}}+B\sqrt{\frac{2\tau+2\ln(2|\mathcal{N}_{\delta}|)}{n}}+\delta\right)\geq 1-e^{-\tau}.$$
ERM for Infinite \mathcal{F} : The General Approach

The old inequality

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}^*_{L,P,\mathcal{F}}+B\sqrt{rac{2 au+2\ln(2|\mathcal{F}|)}{n}}
ight)\geq 1-e^{- au}\,.$$

The new inequality

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}_{L,P,\mathcal{F}}^*+B\sqrt{\frac{2\tau+2\ln(2|\mathcal{N}_{\delta}|)}{n}}+\delta\right)\geq 1-e^{-\tau}.$$

Tasks

- For each $\delta > 0$, find a small set \mathcal{N}_{δ} .
- Optimize the right-hand side wrt. δ .

Covering Numbers

Definition

Let (M, d) be a metric space, $A \subset M$, and $\varepsilon > 0$. The ε -covering number of A is defined by

$$\mathcal{N}(A, d, \varepsilon) := \inf \left\{ n \ge 1 : \exists x_1, \dots, x_n \in M \text{ such that } A \subset \bigcup_{i=1}^n B_d(x_i, \varepsilon)
ight\}$$

where $\inf \emptyset := \infty$, and $B_d(x_i, \varepsilon)$ is the ball with radius ε and center x_i .

Covering Numbers

Definition

Let (M, d) be a metric space, $A \subset M$, and $\varepsilon > 0$. The ε -covering number of A is defined by

$$\mathcal{N}(A, d, \varepsilon) := \inf \left\{ n \ge 1 : \exists x_1, \dots, x_n \in M \text{ such that } A \subset \bigcup_{i=1}^n B_d(x_i, \varepsilon)
ight\}$$

where $\inf \emptyset := \infty$, and $B_d(x_i, \varepsilon)$ is the ball with radius ε and center x_i .

- x_1, \ldots, x_n is called an ε -net.
- *N*(*A*, *d*, ε) is the size of the smallest ε-net.

Covering Numbers II

• Every bounded $A \subset \mathbb{R}^d$ satisfies

$$\mathcal{N}(A, \|\cdot\|, \varepsilon) \leq c \varepsilon^{-d}, \qquad \quad \varepsilon > 0$$

where c > 0 is a constant and the norm $\|\cdot\|$ does only influence c.

Covering Numbers II

• Every bounded $A \subset \mathbb{R}^d$ satisfies

$$\mathcal{N}(A, \|\cdot\|, arepsilon) \leq c arepsilon^{-d} \,, \qquad \qquad arepsilon > 0$$

where c > 0 is a constant and the norm $\|\cdot\|$ does only influence c.

- For sets *F* of functions *f* : X → ℝ, the behavior of *N*(*F*, || · ||, ε) may be very different!
- The literature is full of estimates of $\ln \mathcal{N}(\mathcal{F}, \|\cdot\|, \varepsilon)$.
- A typical estimate looks like

$$\ln \mathcal{N}(B_{\boldsymbol{E}}, \|\cdot\|_{\boldsymbol{F}}, \varepsilon) \le c\varepsilon^{-2p}, \qquad \varepsilon > 0$$

Here p may depend on the input dimension and the smoothness of the functions in E.

ERM with Infinite Sets

Theorem

- ▶ Let *L* be Lipschitz in its third argument, Lipschitz constant = 1.
- Assume that $||L \circ f||_{\infty} \leq B$ for all $f \in \mathcal{F}$.
- Let $\mathcal{N}_{\varepsilon}$ be a minimal ε -net of \mathcal{F} , i.e. $|\mathcal{N}_{\varepsilon}| = \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon)$.

ERM with Infinite Sets

Theorem

- Let *L* be Lipschitz in its third argument, Lipschitz constant = 1.
- Assume that $||L \circ f||_{\infty} \leq B$ for all $f \in \mathcal{F}$.
- Let $\mathcal{N}_{\varepsilon}$ be a minimal ε -net of \mathcal{F} , i.e. $|\mathcal{N}_{\varepsilon}| = \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon)$.

Then we have

$$P^{n}\left(D:\mathcal{R}_{L,P}(f_{D})<\mathcal{R}_{L,P,\mathcal{F}}^{*}+B\sqrt{\frac{2\tau+2\ln(2|\mathcal{N}_{\varepsilon}|)}{n}}+2\varepsilon\right)\geq 1-e^{-\tau}$$

Using Covering Numbers VII

Example

- ► Let *L* satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon) \leq c\varepsilon^{-2p}$.

Using Covering Numbers VII

Example

- ► Let *L* satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon) \leq c\varepsilon^{-2p}$.
- Then we have

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}^*_{L,P,\mathcal{F}}+B\sqrt{rac{2 au+4carepsilon^{-2p}}{n}}+2arepsilon
ight)\geq 1-e^{- au}\,.$$

Using Covering Numbers VII

Example

- ► Let *L* satisfy assumptions on previous theorem.
- Let \mathcal{F} set of functions with $\ln \mathcal{N}(\mathcal{F}, \|\cdot\|_{\infty}, \varepsilon) \leq c\varepsilon^{-2p}$.
- Then we have

$$P^n\left(D:\mathcal{R}_{L,P}(f_D)<\mathcal{R}_{L,P,\mathcal{F}}^*+B\sqrt{\frac{2\tau+4c\varepsilon^{-2\rho}}{n}}+2\varepsilon\right)\geq 1-e^{-\tau}.$$

• Optimizing wrt. ε gives a constant K_p such that

$$P^{n}\left(D:\mathcal{R}_{L,P}(f_{D})<\mathcal{R}_{L,P,\mathcal{F}}^{*}+K_{p}c^{\frac{1}{2+2p}}B\sqrt{\tau n^{-\frac{1}{2+2p}}}\right)\geq 1-e^{-\tau}$$

• For ERM over finite \mathcal{F} , we had "p = 0".

Standard Analysis for RERM

Difficulties when Analyzing RERM

- We are interested in RERMs, where \mathcal{F} is a vector space E.
- Vector spaces *E* are never compact, thus $\ln \mathcal{N}(E, \|\cdot\|_{\infty}, \varepsilon) = \infty$.
- It seems that our approach does not work in this case.

Standard Analysis for RERM

Difficulties when Analyzing RERM

- We are interested in RERMs, where \mathcal{F} is a vector space E.
- Vector spaces *E* are never compact, thus $\ln \mathcal{N}(E, \|\cdot\|_{\infty}, \varepsilon) = \infty$.
- It seems that our approach does not work in this case.

Solution

RERM actually solves its optimization problem

$$\Upsilon(f_D) + \mathcal{R}_{L,D}(f_D) = \inf_{f \in E} \Big(\Upsilon(f) + \mathcal{R}_{L,D}(f) \Big)$$

over a set, which is significantly smaller than E.

Lemma

Assume that $L(x, y, 0) \leq 1$. Then, for any RERM predictor $f_{D,\lambda} \in E$ we have

 $\|f_{D,\lambda}\|_E \leq \lambda^{-1/\alpha} \,.$

Lemma

Assume that $L(x, y, 0) \leq 1$. Then, for any RERM predictor $f_{D,\lambda} \in E$ we have

$$\|f_{D,\lambda}\|_E \leq \lambda^{-1/lpha}$$

Consequence

RERM optimization problem is actually solved over the ball with radius

 $\lambda^{-1/\alpha}$.

Proof

Proof

$$\lambda \| f_{D,\lambda} \|_E^{\alpha} \leq \lambda \| f_{D,\lambda} \|_E^{\alpha} + \mathcal{R}_{L,D}(f_{D,\lambda})$$

Proof

$$\begin{aligned} \lambda \| f_{D,\lambda} \|_{E}^{\alpha} &\leq \lambda \| f_{D,\lambda} \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f_{D,\lambda}) \\ &= \inf_{f \in E} \left(\lambda \| f \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f) \right) \end{aligned}$$

Proof

$$\begin{split} \lambda \| f_{D,\lambda} \|_{E}^{\alpha} &\leq \lambda \| f_{D,\lambda} \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f_{D,\lambda}) \\ &= \inf_{f \in E} \left(\lambda \| f \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f) \right) \\ &\leq \lambda \| 0 \|_{E}^{\alpha} + \mathcal{R}_{L,D}(0) \end{split}$$

Proof

$$\begin{split} \lambda \| f_{D,\lambda} \|_{E}^{\alpha} &\leq \lambda \| f_{D,\lambda} \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f_{D,\lambda}) \\ &= \inf_{f \in E} \left(\lambda \| f \|_{E}^{\alpha} + \mathcal{R}_{L,D}(f) \right) \\ &\leq \lambda \| 0 \|_{E}^{\alpha} + \mathcal{R}_{L,D}(0) \\ &\leq 1 \,. \end{split}$$

An Oracle Inequality

Theorem (Example)

- L Lipschitz continuous with $|L|_1 \leq 1$ and $L(x, y, 0) \leq 1$.
- *E* vector space with norm $\|\cdot\|_E$ satisfying $\|\cdot\|_{\infty} \leq \|\cdot\|_E$.
- $\Upsilon(f) = \lambda \|f\|_E^{\alpha}$.
- We have $\ln \mathcal{N}(B_E, \|\cdot\|_{\infty}, \varepsilon) \leq c \varepsilon^{-2p}$

An Oracle Inequality

Theorem (Example)

- L Lipschitz continuous with $|L|_1 \leq 1$ and $L(x, y, 0) \leq 1$.
- *E* vector space with norm $\|\cdot\|_E$ satisfying $\|\cdot\|_{\infty} \leq \|\cdot\|_E$.
- $\Upsilon(f) = \lambda \|f\|_E^{\alpha}$.
- We have $\ln \mathcal{N}(B_E, \|\cdot\|_{\infty}, \varepsilon) \leq c \varepsilon^{-2p}$

Then, for all $n\geq 1$, $\lambda\in(0,1]$, $au\geq 1$, we have

 $\lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) < \lambda \|f_{P,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{P,\lambda}) + \mathcal{K}_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}}$

with probability P^n not less than $1 - e^{-\tau}$.

Oracle inequality

 $\lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) \qquad < \lambda \|f_{P,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{P,\lambda})$

$$+K_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}}$$

Oracle inequality

$$\lambda \|f_{D,\lambda}\|_E^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^* < \lambda \|f_{P,\lambda}\|_E^{\alpha} + \mathcal{R}_{L,P}(f_{P,\lambda}) - \mathcal{R}_{L,P}^*$$

$$+K_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}}$$

Oracle inequality

$$\begin{split} \lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^{*} &< \lambda \|f_{P,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{P,\lambda}) - \mathcal{R}_{L,P,E}^{*} \\ &+ \mathcal{R}_{L,P,E}^{*} - \mathcal{R}_{L,P}^{*} \\ &+ \mathcal{K}_{\rho} c^{\frac{1}{2+2p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2p}} \end{split}$$

Oracle inequality

$$\begin{split} \lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^{*} &< \lambda \|f_{P,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{P,\lambda}) - \mathcal{R}_{L,P,E}^{*} \\ &+ \mathcal{R}_{L,P,E}^{*} - \mathcal{R}_{L,P}^{*} \\ &+ \mathcal{K}_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}} \end{split}$$

- Regularization error:
- Approximation error:
- Statistical error:

$$\begin{split} & \mathcal{A}(\lambda) := \lambda \| f_{\mathcal{P},\lambda} \|_{E}^{\alpha} + \mathcal{R}_{L,\mathcal{P}}(f_{\mathcal{P},\lambda}) - \mathcal{R}_{L,\mathcal{P},E}^{*} \\ & \mathcal{R}_{L,\mathcal{P},E}^{*} - \mathcal{R}_{L,\mathcal{P}}^{*} \\ & \mathcal{K}_{p} c^{\frac{1}{2+2p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2p}} . \end{split}$$

Bounding the Remaining Errors

Lemma 1 If *E* is dense in $L_1(P_X)$, then $\mathcal{R}^*_{L,P,E} - \mathcal{R}^*_{L,P} = 0$.

Lemma 2

We have $\lim_{\lambda\to 0} A(\lambda) = 0$, and if there is an $f^* \in E$ with $\mathcal{R}_{L,P}(f) = \mathcal{R}^*_{L,P,E}$, then $A(\lambda) \leq \lambda \|f^*\|_F^{\alpha}$.

Bounding the Remaining Errors

Lemma 1 If *E* is dense in $L_1(P_X)$, then $\mathcal{R}^*_{L,P,E} - \mathcal{R}^*_{L,P} = 0$.

Lemma 2

We have $\lim_{\lambda\to 0} A(\lambda) = 0$, and if there is an $f^* \in E$ with $\mathcal{R}_{L,P}(f) = \mathcal{R}^*_{L,P,E}$, then $A(\lambda) \leq \lambda \|f^*\|_E^{\alpha}$.

Remarks

- ► A linear behaviour of A often requires such an f^{*}.
- A typical behavior is, for some $\beta \in (0,1]$, of the form

 $A(\lambda) \leq c \lambda^{eta}$

A sufficient condition for such a behaviour can be described with the help of so-called "interpolation spaces of the real method".

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}^*_{L,P,E} - \mathcal{R}^*_{L,P} = 0.$

$$\lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^{*} < A(\lambda) + K_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}}$$

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}^*_{L,P,E} - \mathcal{R}^*_{L,P} = 0.$

$$\lambda \| f_{D,\lambda} \|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^{*} < A(\lambda) + K_{p} c^{\frac{1}{2+2p}} \sqrt{\tau} \lambda^{-\frac{1}{\alpha}} n^{-\frac{1}{2+2p}}$$

Consequences

• Consistent, if $\lambda_n \to 0$ with $\lambda_n n^{\frac{\alpha}{2+2p}} \to \infty$.

Main Results for RERM

Oracle inequality

We assume $\mathcal{R}^*_{L,P,E} - \mathcal{R}^*_{L,P} = 0.$

$$\lambda \|f_{D,\lambda}\|_{E}^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda}) - \mathcal{R}_{L,P}^{*} < A(\lambda) + K_{p}c^{\frac{1}{2+2p}}\sqrt{\tau}\lambda^{-\frac{1}{\alpha}}n^{-\frac{1}{2+2p}}$$

Consequences

- Consistent, if $\lambda_n \to 0$ with $\lambda_n n^{\frac{\alpha}{2+2p}} \to \infty$.
- If $A(\lambda) \leq c\lambda^{\beta}$, then

$$\lambda_n \sim n^{-\frac{\alpha}{(\alpha\beta+1)(2+2p)}}$$

achieves "best" rate

$$n^{-\frac{\alpha\beta}{(\alpha\beta+1)(2+2p)}}$$

Main Results for ERM II

Discussion

- ► Assumptions for consistency on *E* are minimal.
- More sophisticated algorithms can be devised from oracle inequality. For example, *E* could change with sample size, too.
- To achieve best learning rates, we need to know β .

Learning Rates: Hyper-Parameters III

Training-Validation Approach

Assume that L is clippable.

- Split data into equally sized parts D_1 and D_2 . We write m := n/2.
- Fix a finite set $\Lambda \subset (0, 1]$ of candidate values for λ .
- For each $\lambda \in \Lambda$ compute $f_{D_1,\lambda}$.
- ▶ Pick the $\lambda_{D_2} \in \Lambda$ such that $\bar{f}_{D_1,\lambda_{D_2}}$ minimizes empirical risk \mathcal{R}_{L,D_2} .

Learning Rates: Hyper-Parameters III

Training-Validation Approach

Assume that L is clippable.

- Split data into equally sized parts D_1 and D_2 . We write m := n/2.
- Fix a finite set $\Lambda \subset (0, 1]$ of candidate values for λ .
- For each $\lambda \in \Lambda$ compute $f_{D_1,\lambda}$.
- ▶ Pick the $\lambda_{D_2} \in \Lambda$ such that $\overline{f}_{D_1,\lambda_{D_2}}$ minimizes empirical risk \mathcal{R}_{L,D_2} .

Observation

Approach performs RERM on D_1 and ERM over $\mathcal{F} := \{\overline{f}_{D_1,\lambda} : \lambda \in \Lambda\}$ on D_2 .

Learning Rates: Hyper-Parameters VI

Theorem

If Λ_n is a polynomially growing $n^{-\alpha/2}$ -net of (0, 1], our TV-RERM is consistent and enjoys the same best rates as RERM without knowing β .

Summary

Positive Aspects

- Finite sample estimates in forms of oracle inequalities.
- Consistency and learning rates.
- Adaptivity to best learning rates the analysis can provide.
- Framework applies to a variety of algorithms, e.g. SVMs with Gaussian kernels.
- Analysis is very robust to changes in the scenario.

Summary

Positive Aspects

- Finite sample estimates in forms of oracle inequalities.
- Consistency and learning rates.
- Adaptivity to best learning rates the analysis can provide.
- Framework applies to a variety of algorithms, e.g. SVMs with Gaussian kernels.
- Analysis is very robust to changes in the scenario.

Negative Aspect

- ► For RERM, the rates are never optimal!
- This analysis is out-dated.
▶ For RERM, with probability P^n not less than $1 - e^{-\tau}$ we have

$$\lambda_n \| f_{D,\lambda_n} \|_E^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda_n}) - \mathcal{R}_{L,P}^* \le C \sqrt{\tau} n^{-\frac{\alpha\beta}{2(\alpha\beta+1)(1+p)}}.$$
(3)

▶ For RERM, with probability P^n not less than $1 - e^{-\tau}$ we have

$$\lambda_n \| f_{D,\lambda_n} \|_E^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda_n}) - \mathcal{R}_{L,P}^* \le C \sqrt{\tau} n^{-\frac{\alpha\beta}{2(\alpha\beta+1)(1+\rho)}}.$$
(3)

▶ In the proof of this result we used $\lambda_n \| f_{D,\lambda_n} \|_E^{\alpha} \leq 1$, but (3) shows

$$\lambda_n \|f_{D,\lambda_n}\|_E^2 \leq C\sqrt{\tau} n^{-\frac{\alpha\beta}{2(\alpha\beta+1)(1+p)}}.$$

For large *n* this estimate is sharper!

▶ For RERM, with probability P^n not less than $1 - e^{-\tau}$ we have

$$\lambda_n \| f_{D,\lambda_n} \|_E^{\alpha} + \mathcal{R}_{L,P}(f_{D,\lambda_n}) - \mathcal{R}_{L,P}^* \le C \sqrt{\tau} n^{-\frac{\alpha\beta}{2(\alpha\beta+1)(1+p)}}.$$
(3)

▶ In the proof of this result we used $\lambda_n \| f_{D,\lambda_n} \|_E^{\alpha} \leq 1$, but (3) shows

$$\lambda_n \|f_{D,\lambda_n}\|_E^2 \leq C\sqrt{\tau} n^{-\frac{\alpha\beta}{2(\alpha\beta+1)(1+p)}}.$$

For large n this estimate is sharper!

- ▶ Using the sharper estimate in the proof, we obtain a better learning rate.
- Argument can be iterated

Bernstein's Inequality

Let (Ω, \mathcal{A}, Q) be a probability space and $\xi_1, \ldots, \xi_n : \Omega \to [-B, B]$ be independent random variables satisfying

•
$$\mathbb{E}_Q \xi_i = 0$$

•
$$\mathbb{E}_Q \xi_i^2 \le \sigma^2$$

Then, for all $\tau > 0$, $n \ge 1$, we have

$$Q\left(\left|\frac{1}{n}\sum_{i=1}^{n}\xi_{i}\right|\geq\sqrt{\frac{2\sigma^{2}\tau}{n}}+\frac{2B\tau}{3n}\right)\leq 2e^{-\tau}.$$

$$\mathbb{E}_{P}(L \circ f - L \circ f_{L,P}^{*})^{2} \leq V(\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*})^{\vartheta}$$

$$\mathbb{E}_{P}(L \circ f - L \circ f_{L,P}^{*})^{2} \leq V \big(\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*})^{\vartheta}$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
 - variance term, which is $O(n^{-1/2})$
 - supremum term, which is $O(n^{-1})$

$$\mathbb{E}_{P}(L \circ f - L \circ f_{L,P}^{*})^{2} \leq V \big(\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*})^{\vartheta}$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
 - variance term, which is $O(n^{-1/2})$
 - supremum term, which is $O(n^{-1})$
- Iteration in the proof:
 - Initial analysis provides small excess risk with high probability
 - Variance bound converts small excess risk into small variance
 - Variance term in oracle inequality becomes smaller, leading to a faster rate
 - <u>►</u>

$$\mathbb{E}_{P}(L \circ f - L \circ f_{L,P}^{*})^{2} \leq V \big(\mathcal{R}_{L,P}(f) - \mathcal{R}_{L,P}^{*})^{\vartheta}$$

- Use Bernstein's inequality rather than Hoeffding's inequality leads to an oracle inequality with a
 - variance term, which is $O(n^{-1/2})$
 - supremum term, which is $O(n^{-1})$
- Iteration in the proof:
 - Initial analysis provides small excess risk with high probability
 - Variance bound converts small excess risk into small variance
 - Variance term in oracle inequality becomes smaller, leading to a faster rate
 - ▶ ...
- ▶ Rates up to $O(n^{-1})$ become possible. Iteration can be avoided!

Further Reasons

- The fact that L is clippable, should be used to obtain a smaller supremum term.
- $\|\cdot\|_{\infty}$ -covering numbers provide a worst-case tool.

Adaptivity of Standard SVMs

Theorem (Eberts & S. 2011)

- Consider an SVM with least squares loss and Gaussian kernel k_{σ} .
- Pick λ and σ by a suitable training/validation approach.

Then, for $m \in (d/2, \infty)$, the SVM learns every $f_{L,P}^* \in W^m(X)$ with the (essentially) optimal rate $n^{-\frac{2m}{2m+d}+\varepsilon}$ without knowing m.

Basic Setup

- We consider ERM over finite \mathcal{F} .
- We assume that a Bayes predictor $f_{L,P}^*$ exists.
- We consider excess losses

$$h_f := L \circ f - L \circ f_{L,P}^*$$
.

Thus $\mathbb{E}_P h_f = \mathcal{R}_{L,P}(f) - \mathcal{R}^*_{L,P}$.

Basic Setup

- ▶ We consider ERM over finite *F*.
- We assume that a Bayes predictor $f_{L,P}^*$ exists.
- We consider excess losses

$$h_f := L \circ f - L \circ f_{L,P}^* \,.$$

Thus $\mathbb{E}_P h_f = \mathcal{R}_{L,P}(f) - \mathcal{R}^*_{L,P}$.

- Variance bound: $\mathbb{E}_P h_f^2 \leq V(\mathbb{E}_P h_f)^{\vartheta}$
- Supremum bound: $||h_f||_{\infty} \leq B$

Decomposition

- Let $f_P \in \mathcal{F}$ satisfy $\mathcal{R}_{L,P}(f_P) = \mathcal{R}^*_{L,P,\mathcal{F}}$.
- ► $\mathcal{R}_{L,D}(f_D) \leq \mathcal{R}_{L,D}(f_P)$ implies $\mathbb{E}_D h_{f_D} \leq \mathbb{E}_D h_{f_P}$.

Decomposition

- Let $f_P \in \mathcal{F}$ satisfy $\mathcal{R}_{L,P}(f_P) = \mathcal{R}^*_{L,P,\mathcal{F}}$.
- ► $\mathcal{R}_{L,D}(f_D) \leq \mathcal{R}_{L,D}(f_P)$ implies $\mathbb{E}_D h_{f_D} \leq \mathbb{E}_D h_{f_P}$.

This yields

$$\begin{aligned} \mathcal{R}_{L,P}(f_D) - \mathcal{R}_{L,P}(f_P) &= \mathbb{E}_P h_{f_D} - \mathbb{E}_P h_{f_P} \\ &\leq \mathbb{E}_P h_{f_D} - \mathbb{E}_D h_{f_D} + \mathbb{E}_D h_{f_P} - \mathbb{E}_P h_{f_P} \end{aligned}$$

We will estimate the two differences separately.

Second Difference

We have $\mathbb{E}_D h_{f_P} - \mathbb{E}_P h_{f_P} = \mathbb{E}_D(h_{f_P} - \mathbb{E}_P h_{f_P}).$

Second Difference

We have $\mathbb{E}_D h_{f_P} - \mathbb{E}_P h_{f_P} = \mathbb{E}_D (h_{f_P} - \mathbb{E}_P h_{f_P}).$

- Centered: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P}) = 0.$
- ► Variance bound: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P})^2 \le \mathbb{E}_P h_{f_P}^2 \le V(\mathbb{E}_P h_{f_P})^\vartheta$
- Supremum bound: $\|h_{f_P} \mathbb{E}_P h_{f_P}\|_{\infty} \leq 2B$

Second Difference

We have $\mathbb{E}_D h_{f_P} - \mathbb{E}_P h_{f_P} = \mathbb{E}_D (h_{f_P} - \mathbb{E}_P h_{f_P}).$

- Centered: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P}) = 0.$
- ► Variance bound: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P})^2 \le \mathbb{E}_P h_{f_P}^2 \le V(\mathbb{E}_P h_{f_P})^\vartheta$
- Supremum bound: $\|h_{f_P} \mathbb{E}_P h_{f_P}\|_{\infty} \leq 2B$

Bernstein yields

$$\mathbb{E}_{D}h_{f_{P}} - \mathbb{E}_{P}h_{f_{P}} \leq \sqrt{\frac{2\tau V(\mathbb{E}_{P}h_{f_{P}})^{\vartheta}}{n}} + \frac{4B\tau}{3n}$$

Second Difference

We have $\mathbb{E}_D h_{f_P} - \mathbb{E}_P h_{f_P} = \mathbb{E}_D (h_{f_P} - \mathbb{E}_P h_{f_P}).$

- Centered: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P}) = 0.$
- ► Variance bound: $\mathbb{E}_P(h_{f_P} \mathbb{E}_P h_{f_P})^2 \le \mathbb{E}_P h_{f_P}^2 \le V(\mathbb{E}_P h_{f_P})^\vartheta$
- Supremum bound: $\|h_{f_P} \mathbb{E}_P h_{f_P}\|_{\infty} \leq 2B$

Bernstein yields

$$\begin{split} \mathbb{E}_{D}h_{f_{P}} - \mathbb{E}_{P}h_{f_{P}} &\leq \sqrt{\frac{2\tau V(\mathbb{E}_{P}h_{f_{P}})^{\vartheta}}{n}} + \frac{4B\tau}{3n} \\ &\leq \mathbb{E}_{P}h_{f_{P}} + \left(\frac{2V\tau}{n}\right)^{\frac{1}{2-\vartheta}} + \frac{4B\tau}{3n} \end{split}$$

٠

First Difference

To estimate the remaining term $\mathbb{E}_P h_{f_D} - \mathbb{E}_D h_{f_D}$, we define the functions

$$g_{f,r} := \frac{\mathbb{E}_P h_f - h_f}{\mathbb{E}_P h_f + r}, \qquad f \in \mathcal{F}, r > 0.$$

First Difference

To estimate the remaining term $\mathbb{E}_P h_{f_D} - \mathbb{E}_D h_{f_D}$, we define the functions

$$g_{f,r} := \frac{\mathbb{E}_P h_f - h_f}{\mathbb{E}_P h_f + r}, \qquad f \in \mathcal{F}, r > 0.$$

Bernstein Conditions

• Centered:
$$\mathbb{E}_P g_{f,r} = 0$$
.

First Difference

To estimate the remaining term $\mathbb{E}_P h_{f_D} - \mathbb{E}_D h_{f_D}$, we define the functions

$$g_{f,r} := \frac{\mathbb{E}_P h_f - h_f}{\mathbb{E}_P h_f + r}, \qquad f \in \mathcal{F}, r > 0.$$

Bernstein Conditions

- Centered: $\mathbb{E}_P g_{f,r} = 0.$
- Variance bound:

$$\mathbb{E}_{P}g_{f,r}^{2} \leq \frac{\mathbb{E}_{P}h_{f}^{2}}{(\mathbb{E}_{P}h_{f}+r)^{2}} \leq \frac{\mathbb{E}_{P}h_{f}^{2}}{r^{2-\vartheta}(\mathbb{E}_{P}h_{f})^{\vartheta}} \leq Vr^{\vartheta-2}$$

.

First Difference

To estimate the remaining term $\mathbb{E}_P h_{f_D} - \mathbb{E}_D h_{f_D}$, we define the functions

$$g_{f,r} := \frac{\mathbb{E}_P h_f - h_f}{\mathbb{E}_P h_f + r}, \qquad f \in \mathcal{F}, r > 0.$$

Bernstein Conditions

- Centered: $\mathbb{E}_P g_{f,r} = 0.$
- Variance bound:

$$\mathbb{E}_{P}g_{f,r}^{2} \leq \frac{\mathbb{E}_{P}h_{f}^{2}}{(\mathbb{E}_{P}h_{f}+r)^{2}} \leq \frac{\mathbb{E}_{P}h_{f}^{2}}{r^{2-\vartheta}(\mathbb{E}_{P}h_{f})^{\vartheta}} \leq Vr^{\vartheta-2}.$$

► Supremum bound: $\|g_{f,r}\|_{\infty} \leq \|\mathbb{E}_P h_f - h_f\|_{\infty} r^{-1} \leq 2Br^{-1}$.

Application of Bernstein

With probability P^n not smaller than $1 - |\mathcal{F}|e^{-\tau}$ we have

$$\sup_{f\in\mathcal{F}}\mathbb{E}_{D}g_{f,r} < \sqrt{\frac{2V\tau}{nr^{2-\vartheta}}} + \frac{4B\tau}{3nr}$$

Application of Bernstein

With probability P^n not smaller than $1 - |\mathcal{F}|e^{- au}$ we have

$$\sup_{f\in\mathcal{F}}\mathbb{E}_{D}g_{f,r} < \sqrt{\frac{2V\tau}{nr^{2-\vartheta}}} + \frac{4B\tau}{3nr}$$

Transformation

The definition of $g_{f_D,r}$ and $f_D \in \mathcal{F}$ imply

$$\mathbb{E}_{P}h_{f_{D}} - \mathbb{E}_{D}h_{f_{D}} < \mathbb{E}_{P}h_{f_{D}} \left(\sqrt{\frac{2V\tau}{nr^{2-\vartheta}}} + \frac{4B\tau}{3nr}\right) + \sqrt{\frac{2V\tau r^{\vartheta}}{n}} + \frac{4B\tau}{3n}$$

.

Combination of the three Estimates

$$\mathbb{E}_{P}h_{f_{D}} - \mathbb{E}_{P}h_{f_{P}} < \mathbb{E}_{P}h_{f_{P}} + \left(\frac{2V\tau}{n}\right)^{\frac{1}{2-\vartheta}} + \frac{8B\tau}{3n} \\ + \mathbb{E}_{P}h_{f_{D}}\left(\sqrt{\frac{2V\tau}{nr^{2-\vartheta}}} + \frac{4B\tau}{3nr}\right) + \sqrt{\frac{2V\tau r^{\vartheta}}{n}}$$

Combination of the three Estimates

$$\mathbb{E}_{P}h_{f_{D}} - \mathbb{E}_{P}h_{f_{P}} < \mathbb{E}_{P}h_{f_{P}} + \left(\frac{2V\tau}{n}\right)^{\frac{1}{2-\vartheta}} + \frac{8B\tau}{3n} \\ + \mathbb{E}_{P}h_{f_{D}}\left(\sqrt{\frac{2V\tau}{nr^{2-\vartheta}}} + \frac{4B\tau}{3nr}\right) + \sqrt{\frac{2V\tau r^{\vartheta}}{n}}$$

Transformation

$$\left(1-\sqrt{\frac{2V\tau}{nr^{2-\vartheta}}}-\frac{4B\tau}{3nr}\right)\mathbb{E}_{P}h_{f_{D}}<2\mathbb{E}_{P}h_{f_{P}}+\left(\frac{2V\tau}{n}\right)^{\frac{1}{2-\vartheta}}+\frac{8B\tau}{3n}+\sqrt{\frac{2V\tau r^{\vartheta}}{n}}$$

Final Step For $r := \left(\frac{8V\tau}{n}\right)^{1/(2-\vartheta)}$, the factor on the lhs. is not smaller than 1/3.

ERM

A Better Oracle Inequality for ERM

Theorem

Assume that there are $\vartheta \in [0,1]$, and $V \ge B^{2-\vartheta}$ such that

- \mathcal{F} finite set of functions.
- ► Variance bound: $\mathbb{E}_P (L \circ f L \circ f^*_{L,P})^2 \leq V \cdot (\mathbb{E}_P (L \circ f L \circ f^*_{L,P}))^\vartheta$
- ► Supremum bound: $||L \circ f L \circ f^*_{L,P}||_{\infty} \le B$

ERM

A Better Oracle Inequality for ERM

Theorem

Assume that there are $\vartheta \in [0,1]$, and $V \ge B^{2-\vartheta}$ such that

- *F* finite set of functions.
- ► Variance bound: $\mathbb{E}_{P}(L \circ f L \circ f_{L,P}^{*})^{2} \leq V \cdot (\mathbb{E}_{P}(L \circ f L \circ f_{L,P}^{*}))^{\vartheta}$
- ► Supremum bound: $||L \circ f L \circ f_{L,P}^*||_{\infty} \le B$

Then, for $\tau > 0$ and $n \ge 1$, we have with probability P^n not less than $1 - e^{-\tau}$:

$$\mathcal{R}_{L,P}(f_D) - \mathcal{R}^*_{L,P} < 6\left(\mathcal{R}^*_{L,P,\mathcal{F}} - \mathcal{R}^*_{L,P}\right) + 4\left(\frac{8V(\tau + \ln(1 + |\mathcal{F}|))}{n}\right)^{\frac{1}{2-\vartheta}}$$