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Probabilistic Machine Learning

* Machine Learning is all about data.

e Stochastic, chaotic and/or complex process

 Noisily observed

e Partially observed

 Probability theory is a rich language to express these uncertainties.

e Probabilistic models

e Graphical tool to visualize complex models for complex problems.

e Complex models can be built from simpler parts.

e Computational tools to derive algorithmic solutions.

e Separation of modelling questions from algorithmic questions.
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Probabilistic Modelling

®* Data: x,xz,....,Xn.
* Latent variables: y;,ys,...,yu.

® Parameter: 0.

* A probabilistic model is a parametrized joint distribution over variables.
P(x,...,Zn,Y1,---,Yn|0)

e Typically interpreted as a generative model of data.

* Inference, of latent variables given observed data:

P(xy,...,Zn,Y1,---,Yn|0)
P(z1,...,2,|0)

P(y1,...,yn’$1,...,xn,6’) —
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Probabilistic Modelling

e Learning, typically by maximum likelihood:

MY = argmax P(x1,...,2,|0)
0
e Prediction:
P(xn—l—la yn—l—l’aj‘la ooy i, 9)

e Classification:
argmax P(x,.11/|0°)

C

* Visualization, interpretation, summarization.

e Standard algorithms: EM, junction tree, variational inference, MCMC...
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Bayesian Modelling

e Prior distribution:
P(0)

e Posterior distribution (both inference and learning):

P(xy,...,Zn,Yy1,---,Yn|0)P(0)
P(xy,...,x,)

Py, ..., yn,0|x1,...,25) =
e Prediction:
P(tpsilze, ... z0) = /P(mn+1\9)P((9]aj1, L x)db

e Classification:
Plansalaf oo a5) = [ Plana0)PO%Jat, ... a5)a0
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Model-based Clustering

e Model for data from heterogeneous unknown T gD

sources.

e Each cluster (source) modelled using a parametric
model (e.g. Gaussian).

e Data item r:
z;|m ~ Discrete(m)
) & @

* Mixing proportions:

7= (m1,...,mx)|a ~ Dirichlet(a/K, . . ., a/K) ﬂ)
e Cluster k:

0| H ~ H




Hidden Markov Models

e Popular model for time series data.

e Unobserved dynamics modelled using a Markov model

e Observations modelled as independent conditioned on current state.
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Collaborative Filtering

Data: for each user i ratings R for a subset of

Problem: predict how much users would like

seen.

R;i|&,m; ~ N(&Tﬁja o)

User Features
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Bayesian Nonparametrics

[Hjort et al 2010]
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Bayesian Nonparametrics

e What is a nonparametric model?

e A really large parametric model;

e A parametric model where the number of parameters increases with
data;

e A family of distributions that is dense in some large space relevant to
the problem at hand.
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Reason 1: Model Selection and Averaging

e Model selection/averaging typically very expensive computationally.
e Used to prevent overfitting and underfitting.

e But a well-specified Bayesian model should not overfit anyway.

* By using a very large Bayesian model or one that grows with amount of
data, we will not underfit either.

e Bayesian nonparametric models.

e Note it is not panacea: incorrect specifications can still lead to misfit
models and low generalization performance.
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Reason 2: Large Function Spaces

e Large function spaces.

e More straightforward to infer the
infinite-dimensional objects
themselves.

e Bayesian nonparametric models.
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duck
chicken

seal
dolphin

mouse

_rat
squirrel
cat
cCow
sheep
pIg
deer
horse

T LT

tiger
lion
lettuce

cucumber
carrot

potato
radish

* Learning structures. hions

tangerine

ora]pg_e;
rapefrui
d Pemon

apple

stram%gﬁfg
nectarin
pineapple

drill

e Nonparametric priors _ e

sometimes end up S
simpler than parametric
priors.

III ”LLITUJ

e Bayesian prior over
combinatorial structures.

U|[1]

tomahaw
crowbar
screwdriver
wrencr

namme
sledgehammer

=l

shovel
Poe
rake

acht

Yehip
submarine
helicopter

train

us
motorcycle
bike
wheelbarrow

[Adams et al 2010, Blundell et al 2010] ricycle

=
c<
-+
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Reason 4: Novel and Useful Properties

e Many interesting Bayesian nonparametric models with interesting and
useful properties:

e Exchangeability.

e Zipf, Heap and other power laws
(Pitman-Yor process, power-law IBP).

e Flexible ways of building complex models

(Hierarchical nonparametric models, dependent Dirichlet processes).
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Are Nonparametric Models Nonparametric?

e Nonparametric just means not parametric: cannot be described by a
fixed set of parameters.

e Nonparametric models still have parameters, they just have an
infinite number of them.

e No free lunch: cannot learn from data unless you make assumptions.

* Nonparametric models still make modelling assumptions, they are
just less constrained than the typical parametric models.

* Models can be nonparametric in one sense and parametric in another:
semiparametric models.



I: The Dirichlet Process

lI: Beyond the Dirichlet Process
l1l: Even Further Afield

Key concepts:
stochastic processes
partitions
exchangeability
hierarchical modelling
power-laws



Part |:
The Dirichlet Process
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Dirichlet Process

e Cornerstone of modern Bayesian nonparametrics.
e Rediscovered many times as the infinite limit of finite mixture models.

e Formally defined by [Ferguson 1973] as a distribution over measures.

e Can be derived in different ways, and as special cases of different
processes.

e \We will derive:

e the infinite limit of a Gibbs sampler for finite mixture models

e the Chinese restaurant process

e the stick-breaking construction



Clustering and
Chinese Restaurant Processes



The Infinite Limit of
Finite Mixture Models
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Finite Mixture Models

e Model for clustering data into heterogeneous
unknown populations.
e Each cluster (source) modelled using a parametric Q

model (e.g. Gaussian). T @
e Data item 1
zi|m ~ Discrete(r) Y !
zi|zi, O ~ F(07,) ?

 Mixing proportions: ’'d
m = (m,...,7TK)|a ~ Dirichlet(a/K, ..., a/K) @

e Cluster k: i=1....n
05 |H ~ H




Finite Mixture Models

e Dirichlet distribution on the K-dimensional ‘

probability simplex {(n)l >k nk; 1} - @
'« a/K—1
P(dr|a) = 7 dm
[[, T'(a/K) — ’ I {
with I'(a) = fooo o tetdr .
e Standard distribution on probability vectors, due P
to conjugacy with multinomial. @/
1=1,..., n
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Dirichlet Distribution

(1,1,1) (2,2,2) (5,5, 5)

(2,5,5) (2,2,5) (0.7,0.7,0.7)
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Gibbs Sampling

7|others ~ Dmchlet(g +ni,..., % +nK)

T H
p(6;,, = Olothers) o h(6 H f(x;]0) Q

J:zj=k

p(z; = k|others) o< i f(x;|0;) ‘
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Gibbs Sampling

e All conditional distributions are simple to compute:
p(z; = k|others) o< i f(x;|0;)

7|others ~ Dmchlet(g +ni,..., % +nK)

T H
p(6;,, = Olothers) o h(6 H f(x;]0) Q

J:zj=k
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Gibbs Sampling

e All conditional distributions are simple to compute:
p(z; = k|others) o< i f(x;|0;)

7|others ~ D1r1(3hlet(g +ni,..., % +nK)

T H
p(6;,, = Olothers) o h(6 H f(x;]0) Q

J:zj=k

e Not as efficient as collapsed Gibbs sampling, which ?

integrates out wr, 87s:

p(zi = klothers) oc XL f(a;|{; : j#i, 25 =k})

rd
Flail{ay s 5=k} o [ @) F(ilo) T Fojl)as (=)

]#’I/:ZJ:]{ 1=1,..., n

e Conditional distributions can be efficiently
computed if F is conjugate to H.



Infinite Limit of Collapsed Gibbs Sampler

e We will take K = .

* Imagine a very large value of K.

e There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

p(zi = klothers) = nn_; ;rfaf(ﬂfi!{xj L jF# 1,25 =Fk}) ﬁ’D
K—-K*
/
o]

o
P(z; = kempty|others) = — 1K+ &f(a;i]{})

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]



Infinite Limit of Collapsed Gibbs Sampler

e We will take K = .

* Imagine a very large value of K.

e There are at most n < K occupied clusters, so most @ @
components are empty. We can lump these empty

components together:

" o
p(zi = klothers) = —~——— f(a,|{a; : j #i,2=k})
o /k::1 ..... K

P(2; = kempty|Others) =

[Neal 2000, Rasmussen 2000, Ishwaran & Zarepour 2002]
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Making Sense of the Infinite Limit

e The actual infinite limit of the finite mixture model does not make sense:

e any particular cluster will get a mixing proportion of 0.
* Better ways of making this infinite limit precise:

e Chinese restaurant process.

e Stick-breaking construction.

e Both are different views of the Dirichlet process (DP).

* DPs can be thought of as infinite dimensional Dirichlet distributions.

® The K = o Gibbs sampler is for DP mixture models.



Chinese Restaurant Process

[Aldous 1985, Pitman 2006]
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Partitions

* A partition g of a set S is:

e A disjoint family of non-empty subsets of S whose union in §.

e S ={Alice, Bob, Charles, David, Emma, Florence}.

* o ={ {Alice, David}, {Bob, Charles, Emma}, {Florence} }.

Bob
Charles

Alice

David
Emma

e Denote the set of all partitions of S as Ps.
e Random partitions are random variables taking values in Ps.

e We will work with partitions of S = [n] = {1,2,...n}.
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Chinese Restaurant Process

O OO O

e Fach customer comes into restaurant and sits at a table:

e P(sit at new table) = -

Oé_l_zcégnc _Oé—l— Zcégnc

* Customers correspond to elements of S, and tables to clusters in o.

P(sit at table ¢) =

* Rich-gets-richer: large clusters more likely to attract more customers.

e Multiplying conditional probabilities together, the overall probability of
o, called the exchangeable partition probability function (EPPF), is:

IQIF
P(ola) = — Hr c|)

TL Oz
T ccpo

[Aldous 1985, Pitman 2006]



Number of Clusters

* The prior mean and variance of K are:

Ellp
Vilp

a,n

a,n

()

200

a(y(a -

_n)

a(y(a -

_n)

— () = alog (1 + %)
—YP(a)) + 2@ (a+n) — Y (a)) =~ alog (1 + %)

a% logI'(@)
0=30, d=0
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Model-based Clustering with
Chinese Restaurant Process
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Partitions in Model-based Clustering

e Partitions are the natural latent objects of
inference in clustering.

e Given a dataset S, partition it into

clusters of similar items. T ;‘& .
. & ..:3..‘._.... . .. .;::}
* Cluster c € ¢ described by a model ERCRCI ;"
.‘.,:'...
*
F(67)

parameterized by 6.

* Bayesian approach: introduce prior over g
and 6."; compute posterior over both.

® CRP mixture model: Use CRP prior over g,
and an iid prior H over cluster parameters.



CRP Mixture Model

" il
* Use CRP prior over g, and an iid prior H ()
over cluster parameters. \“\1/
e Model is as follows: o
e\
¢ ~ CRP(a) p (H )
0o~ H for c € p T/
z;|0", 0~ F(0%) force pwithi € c v !
-~ . ) (w02
e CRP prior induces a prior over partitions of
the data, where the number of clusters is i=1...n cEP

unknown a priori and part of the inference
process.



Finite Mixture Model

e Explicitly allow only K clusters in partition:

FaC

FaC
Oro

n cluster k has parameter 6k.

n data item /i assigned to k with mixing

pability .

e Gives a random partition with at most K

clusters.

* Priors on the other parameters:

m|a ~ Dirichlet(a/K, ..., a/K)
0| H ~ H

o W UNIVERSITY OF
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Induced Distribution over Partitions

D) ][ T'(ng +a/K)

PE) =T T/K) Thto

* P(z| ) describes a partition of the data set into clusters, and a labelling
of each cluster with a mixture component index.

* Induces a distribution over partitions ¢ (without labelling) of the data set:

['(«) I'(|c| + a/K)
1F(n+a)H ['a/K)

wherelz]y = z(z +b) -+ (x + (a — 1)b)

* Taking K — o, we get a proper distribution over partitions without a
limit on the number of clusters: Y
a1 (a
P(ola) T H ['(|c|)

TL Oﬂ
T ccpo

P(gla) = [K]=

cco
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Summary

e Chinese restaurant processes:

e distribution over partitions of a collection of objects.
e Can be used to build nonparametric model-based clustering models.
e Related to the infinite limit of finite mixture models.

e Random partitions are generally useful concepts for structure learning
problems.

e Other combinatorial structures can be built from partitions. , e.g.
hierarchical clustering using fragmentations and coagulations.



Dirichlet Processes



Exchangeability
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Chinese Restaurant Process

O OO O

e Fach customer comes into restaurant and sits at a table:

e P(sit at new table) = -

a+ZcEQnC _Oé—|— Zcégnc

P(sit at table ¢) =

e Multiplying conditional probabilities together, the overall probability of
o, called the exchangeable partition probability function (EPPF), is:

|Q|F
P(ola) = — Hr c|)

n—l—a
ccpo

* The probability of ¢ does not depend on the order of customers entering
restaurant! --- an exchangeable random partition.



Example: Preferential Attachment

e Flements inserted one at a time:

* [nserted into an existing cluster, or

¢ Into a new cluster.

e Example:

m={{1},{2}}
.

NN = = W

m={{1,6,7}, {2}, {3},{4,5}}

L

e Typically not exchangeable.
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Example: Uniform Partitions

e Uniform partitions

e exchangeable

¢ not self-consistent

1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15
1/15

{{1234}}

({123} (43}

({124} (3}

({12} 343} >{{12} EINRE
({12} 3} (41}

({134 21

({13} 241} >{{13} 21 35
({13} 2} (43}

({14} 233

TIRPEY {4}}>{{1} 231 s
(1) 2343

({14} 2 031}

TPt
{1} {2} {3}} 4/15
(1} {2} (3 4}}7

i 25 35 455

T ——(123)} 215
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Exchangeable Sequences of Variables

e \WWe have a sequence of data items X1, X2, X3, ...

e Model these with a joint distribution
P(X;, X2, X3,...)

e \We say that the sequence is (infinitely) exchangeable if for every finite
n, and every permutation o of [n]:

P(X1€ A1, Xo€ As,..., X, € A,)
:P(Xa(l) c Al,XJ(Q) c Ay, ... ,Xa(n) S An)

e Ordering of data items does not matter.

e Often a sensible modelling assumption.



Why Exchangeable Models?

e An infinitely exchangeable model means:

e The way data items are ordered or indexed does not matter.

e Model is unaffected by existence of additional unobserved data
items, e.g. test items.

e To predict m additional test items, we would need

P(X1,. s Xy Xty o s Xontorn)

e If model is not exchangeable, predictive probabilities will be
different for different values of m.

e There are scenarios where exchangeability is suitable or unsuitable.
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De Finetti’s Theorem

e |[f a sequence of random variables X1, X2, X3,... is exchangeable, then
there is a random probability measure G such that:

n

P(Xl EAl,XQ EAQ,...,Xn EAn) :/P(dG)HG(A'L)

1=1

e Given G, random variables are independent and identically distributed
according to G.

e ( captures all dependence structure underlying random variables.
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Random Probability Measure

oW
oW

nat o

nat o

oes a random probability measure mean?

oes a probability measure mean?

e A function P from the space of “events” to “probabilities” in [0,1].

* P(A) is the probability of event A.

e Satisfies certain properties, e.g.

P0) =0
P(AUB)=P(A)+P(B) itANB=10
P(A°) =1 — P(A)

* A random probability measure is a random function which satisfies
properties of probability measure.

e A random function is simple an (infinite) collection of random variables,
{ P(A) : Ais an event }. A stochastic process.
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Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e Fori=1,2,...:

N
e Return White with probability Now I/NB
and increment Nw by 1. .
e Return Black with probability N
Nw + Np

and increment Ng by 1.
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Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e Fori=1,2,...:

N
e Return White with probability Now I/NB
and increment Nw by 1. .
e Return Black with probability N
, Nw + Np
and increment Ng by 1. .




Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e For i1=1,2,...:

N
e Return White with probability Now X/NB
and increment Nw by 1. .
e Return Black with probability N
| Nw + Np
and increment Nz by 1. . .




Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e For i1=1,2,...:

N
e Return White with probability Now X/NB
and increment Nw by 1. .
e Return Black with probability N
| Nw + Np
and increment Nz by 1. . .




Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e For i1=1,2,...:

N
e Return White with probability Now X/NB
and increment Nw by 1. .
e Return Black with probability N
| Nw + Np
and increment Nz by 1. . .




Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O

e For 1=1,2,....
N
e Return White with probability N XVN
W B

and increment Nw by 1.

e Return Black with probability

Nw + Np

and increment Ng by 1.




Polya Urn

e Start with two positive numbers a and b.

e Set Nw=a, Ng=b. O O
e Fori=1,2,...: O

N
e Return White with probability N XVN
W B

and increment Nw by 1.

e Return Black with probability

Nw + Np

and increment Ng by 1.




Polya Urn

e Suppose after n iterations, the we drew
White nw times and Black ng times.

e The probability of the sequence of draws is:

a(a+1)---(a+nw—1)xb(b+1)---(b+np—1)
(a+b)(a+b+1)---(a+b+n—1)

aly ™ [b]; "

la + D]}

 This probability does not depend on the

sequential order of White and Black draws.
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De Finetti’s Theorem

e There is a random probability measure G such that:

n

P(Xl :Cl,XQZCQ,7Xn:Cn):/P(dG)HG(C’L)

1=1

where C;is a colour (White or Black) and G is a probability measure
over {White, Black}.

e G can be equivalently cast as a single number in [0,1], say the
probability G(White), so a “random probability measure” is just a
random number in [0, 1].

e \What is the distribution P of G?
e A Beta(a,b) distribution!
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Exchangeable Partitions and Sequences

e The CRP is an exchangeable random partition, not sequence.

e How does it relate to the notion of exchangeable sequences in de
Finetti’s Theorem?

e Construct a random sequence in the following way:
* For each c € g, define: 0. ~ H
e For each i € [n], define: 0;, =0
where c € g with j € c.

e The CRP mixture model is obtained with an observation model:
X;|0; ~ F(6;)



The Latent Process behind the CRP

* de Finetti’s Theorem applied to the exchangeable sequence 61, 6,, 03, ...
implies a random probability measure G making them iid.

e \What is this G?

* WWhat properties does this G have?
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Exchangeability in Bayesian Statistics

e Fundamental role of de Finetti’s Theorem in Bayesian statistics:

e From an assumption of exchangeability, we get a representation as a
Bayesian model with a prior over the latent parameter

P(X; € A1, Xo € Ay, ..., X, € A) / (dG) HG

e Generalizing infinitely exchangeable sequences lead to Bayesian models
for richly structured data. E.g.,

e exchangeability in network and relational data.
e hierarchical exchangeability in hierarchical Bayesian models.

e Markov exchangeability in sequence data.



Properties of
Dirichlet Processes
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Discreteness of Dirichlet Process

e Construct a random sequence in the following way:

* Draw partition: p ~ CRP (o)
* For each c € g, draw: 0 ~ H
* For each i € [n], set: 0; =0 where c € g with j € c.

e Equivalent to the following construction:
G ~ DP(a, H)
e Foreach i€ [n], draw: 6;|G ~ G

* Fach table c is associated with a value 6.". For large enough n the table
will have >1 customers.

e Every value drawn from G will have positive probability of being
repeatedly drawn. G is an atomic distribution. >
G = Z 7Tk597;
k=1
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Atomic Distributions

e Draws from Dirichlet processes will always be atomic:
O
G — Z 7Tk56;'_;
k=1

where Zcmc=1 and 0, € ©O.

* How to specify the joint distribution of {7, 6x"}?
e Stick-breaking construction.

e Poisson-Dirichlet distribution.
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Back to the Chinese Restaurant Process



Back to the Chinese Restaurant Process

e First customer sits at table 1.

R
Table 1 Other tables
1
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Back to the Chinese Restaurant Process

e First customer sits at table 1.

e Customers 2,3 sit at table 1. 3 Qo+

Table 1 Other tables
1,2,3 4

e Customer 4 sits at new table.
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Back to the Chinese Restaurant Process

e First customer sits at table 1.

e Customers 2,3 sit at table 1. 3 Qo+
e Customer 4 sits at new table. Table 1 Other tables
1,2,3 4
m
Table 2 Other tables

4
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Back to the Chinese Restaurant Process

e First customer sits at table 1.

e Customers 2,3 sit at table 1. 4 q+3
e Customer 4 sits at new table. Table 1 Other tables
1,2,3,5 46,7
e Customers 5,6 sit at tables 1, 2. 2 a+1
e Customer 7 sits at new table. Table 2 Other tables
4.6 7
m
e Decisions to sit at each table is a Polya urn.
Table 3 Other tables
e |nitial values are a=1, b=a. 7

e By de Finetti, decisions are equivalent to

first drawing Beta(1,a), and using that as
probability of sitting at table.
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Back to the Chinese Restaurant Process

e First customer sits at table 1.
v1 ~ Beta(l,a) 1 — 1,

e Customers 2,3 sit at table 1. /\

e Customer 4 sits at new table. Table 1 Other tables

e Customers 5,6 sit at tables 1, 2. U2 ~ BGW

e Customer 7 sits at new table. Table 2 Other tables

v3 ~ Beta(l,a) 1 — v

e Decisions to sit at each table is a Polya urn.
Table 3 Other tables

e |nitial values are a=1, b=a.

e By de Finetti, decisions are equivalent to

first drawing Beta(1,a), and using that as
probability of sitting at table.
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Stick-breaking Construction

e Stick-breaking construction for the joint distribution:
0, ~H vr ~ Beta(l, a) for k=1,2,....

k—1 o0
T = Vg H(l—vj) G:ZM&@Z
j=1 k=1

* m's are decreasing on average but not strictly.
e Distribution of {m«} is the Griffiths-Engen-McCloskey (GEM) distribution.

 Poisson-Dirichlet distribution [Kingman 1975] gives a strictly decreasing
ordering (but is not computationally tractable).



Marginal Distributions of Dirichlet Process




Marginal Distributions of Dirichlet Process

°letAcO.
* What is the marginal distribution of G(A)?




Marginal Distributions of Dirichlet Process

eletA c O.

* What is the marginal distribution of G(A)?

e Consider CRP again.

* Probability of Og€ A is
2 2 o

T+oa T+a T4+«

* Probability of Oni1€ A'is

H(A)

na+aH(A)

n-+o




Marginal Distributions of Dirichlet Process

°letAcO.
* What is the marginal distribution of G(A)?

e Consider CRP again.

* Probability of Og€ A is

2 2
| I & )
T+a TH+a 7T+ «

e Probability of On41 € A is nata(A4)

n-+o

e Again is a Polya urn, with initial values
a=aHA), b =aH(A).

¢ de Finetti’s Theorem: G(A) ~ Beta(aH(A), aH(A?))
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Means and Variances of Dirichlet Process

* o is called the strength, mass or concentration parameter.
e H is called the base distribution.

e Mean and variance:

where A is a measurable subset of ®.

e H is the mean of G, and «a is an inverse variance.



Marginal Distribution on a Partition of ©

* Suppose we a partition A;, Az, ... Axof O, i.e.
AU---UAg =06
e The vector (G(A1), G(A2), ... G(Ax)) is a probability vector.

e What is the marginal distribution of (G(A1), G(A2), ... G(AK))?
(G(A1),...,G(Ak)) ~ Dirichlet(aH(A1),...,aH(Ak))



Ferguson’s Definition of Dirichlet Processes

e A Dirichlet process (DP) is a random probability measure G over © such
that for any finite partition As,...Ax of O, i.e.

AU---UAg =06
we have
(G(A1),...,G(Ak)) ~ Dirichlet(aH (A1), ...,aH(Ak))

where & and H are parameters of the DP.

|[Ferguson 1973]



A draw from a Dirichlet Process

15000 -

10000 [

5000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Posterior Dirichlet Process

* Suppose

G ~ DP(a, H)

¢ \We can define random variables that are C distributed:

HZ’GNG fOI’iZl,...,n

e The usual Dirichlet-multinomial conjugacy carries over to the DP as
well:

G|01,. .. ,0n ~ DP(a + n, 2= 00y



Clustering Property of Dirichlet Process
G ~ DP(a, H)
0;|G~G fori=1,2,...

* The n variables 61,0,...,60, can take on K < n distinct values.

* Let the distinct values be 617,...,6«". This defines a partition of {1,...,n}
such that i is in cluster k if and only if 8, = 6«".

e The induced distribution over partitions is the Chinese restaurant
process.
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Marginalized Sampler plo~ CRP([n], )
0°|H ~ H for c € p
e “Marginalized” MCMC sampler. ;|0 ~ F'(67) for ¢ >4
e Marginalize out G, and Gibbs sample partition. /™

| X
e Conditional probability of cluster of data item i

P(pilpvi, %, 0) =P(pi|p\i) P(wi| pi, X4, 6)

(I

Tira Lpi=cepy | ,
Plpilpvi) = "ot 00 \ & J
(n— 14+« 1L p; = NEw ‘
P (3] pi, x4, 0) = < f(@il6p:) if pi =c€py - -
1 19 \Z7 \f f(gjz‘@)h(g)de lf p’L — nheéw @4 06
g =l.aam CEp

e A variety of methods to deal with new clusters.

e Difficulty lies in dealing with new clusters,
especially when prior H is not conjugate to F.

[Neal 2000]



Induced Prior on the Number of Clusters

* The prior expectation and variance of |p| are:
-n) — (o) ~ alog (1+ 2)
-n) = () + o (Y (a +n) —¢'(@)) & alog (1+ )

E/O Oé,n: — Oé(w(a_
V/O Oéan: — 04(15(04‘

0.25

0.21

0.15¢

0.1

0.05¢

alpha =1

0.12

| o1}

0.08

0.06

0.04;

1 0.02}

alpha =10

0.1

1 o0.08}

0.06

0.04

| 0.02}

alpha = 100

60 80 100



Part Il
Beyond the Dirchlet Process

hierarchical Bayesian nonparametrics
Pitman-Yor processes and power-laws
Indian buffet processes and feature allocation



Hierarchical Bayesian
Nonparametric Models

[Teh & Jordan 2010]



Nonparametric Building Blocks

e Fasy to construct complex probabilistic models
from simpler parts.

e Nonparametric Bayesian models are new classes
of components for the statistical modeller.

Dependent random measures;

Hierarchical nonparametric models.

Nested models.

S50 UNIVERSITY OF

%Y OXFORD




Hierarchical Dirichlet Process

[Teh et al 2006]



Topic Modelling
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human
genome
dna
genetic
genes
sequence
gene
molecular
sequencing
map
information
genetics
mapping
project
sequences

evolution
evolutionary
species
organisms
life
origin
biology
groups
phylogenetic
living
diversity
group
new
two
common

disease
host
bacteria
diseases
resistance
bacterial
new
strains
control
infectious
malaria
parasite
parasites
united
tuberculosis

computer
models
information
data
computers
system
network
systems
model
parallel
methods
networks
software
new
simulations

[Ble1 et al 2003, Griffiths & Steyvers 2004 ]



| atent Dirichlet Allocation

e Model a topic as a distribution over words that
tend to co-occur together among documents.

e Model words in documents as exchangeable
and documents as mixtures of topics.

m; ~ Dirichlet(a/K, ..., a/K)
0, ~ Dirichlet(8/W,...,8/W)

Zji‘ﬂ-j ~ Discrete(ﬂj)

:Ej’i‘zj’i) (9:7% ~ Discrete(@i:ji)

e A coupled multiple mixture model: one
mixture for each document, with mixture
components shared across documents.

e How many topics can we find in a corpus?

@

& 3 UNIVERSITY OF
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<

words i=1...nd

document j=1...D

(%)

topics k=1...K

[Ble1 et al 2003, Griffiths & Steyvers 2004 ]



Nonparametric Latent Dirichlet Allocation?

e Use a DP for each document.

L m“ _

- T \4 \4
e |f base distribution H is smooth, there is

no sharing of topics across documents.

e Solution: make H discrete.

e Put a DP prior on base distribution.




Hierarchical Dirichlet Process

e A hierarchy of Dirichlet processes:

Gy
G

DP(ag, H)
DP (a1, Go)

DP(as, Go)

e Extension to larger hierarchies straightforward:

G|Gpagg) ~ DP(ay, Gpagi))

e Hierarchical modelling are a widespread
technique to share statistical strength.

o w NIVERSITY OF

#5 OXFORD

h et al 2006]



OXFORD

Hierarchical Dirichlet Process
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HDP-LDA

Posterior over number of topics in HDP mixtures

15
Perplexity on test abstacts of LDA and HDP mixture

1050 T T I 1 T T T T
----- LDA

— HDP Mixture

1000

10
950

900

850

800

W Y
T |
| .

750 | | | | | | | | | |
10 20 30 40 50 60 70 &80 90 100 110 120 0 61 62 63 64 65 66 67 68 69 70 71 72 73

Number of LDA topics Number of topics



Chinese Restaurant Franchise

e (1 and G> can both be represented using CRPs.
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Chinese Restaurant Franchise

e (1 and G> can both be represented using CRPs.




Chinese Restaurant Franchise

0>

e (1 and G> can both be represented using CRPs.
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Chinese Restaurant Franchise

* (5o can also be represented using a CRP.

@)
0,

e (1 and G> can both be represented using CRPs.
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Chinese Restaurant Franchise

* (5o can also be represented using a CRP.

e (1 and G> can both be represented using CRPs.
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Hierarchical Bayesian Modelling

e An important overarching theme in modern statistics.

* In machine learning, have been used for multitask learning, transfer
learning, learning-to-learn and domain adaptation.

®

y y y

@) | @ |} @

i=1...n1 i=1...n2 i=1...n3

|Gelman et al, 1995, James & Stein 1961 ]
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Hierarchical Bayesian Nonparametrics

e Bayesian nonparametric models are increasingly used as building blocks
by modellers to build complex probabilistic models.

e Hierarchical modelling are a natural technique for combining building
blocks.

* Applications span computational linguistics, time series and sequential
models, vision, genetics etc.

e Dependent random measures:

e techniques for introducing dependencies among random measures
indexed by spatial or temporal covariates.

* Nested processes:

e technique for modelling heterogeneity in data.

[Teh and Jordan 2010]



Infinite Hidden Markov Model



Hidden Markov Models

7 ~ Dirichlet(a/K, ..., a/K) 2p|ze 1 ~ T,
(97; ~ H CIJt’Zt NH(@Z)
K

e Can we take K — o0?
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Infinite Hidden Markov Models

WkNDP( ,6) Zt‘Zt 1™~ Tz 4
Hk ~ H let‘ZtNH (9*

*@%@\4
@ coes

K

5 ~ GEM(O&Q)

« Cannot sitmply take K — oo for the model above; same failure as LDA.

* Again can use a hierarchical Dirichlet process to define an infinite hidden
Markov model.

[Beal et al 2002, Teh et al 2006]



Word Segmentation

T AKX - FREARETABORERE T, MUETH
185 A BUT 8 & SEHNF VB Bl £ HI L BB IK D
WC TS DITEDNHFULLWES O 8BS Z Fofc & WA S,
fi— 2R % B TIE O BEAO .

ShE—ERNH NMEER S E Z i &R Effi, ME —£ &t Y1
EEZE TR FEE, BT T2 AEWN EZEE, SN PR &
& Ak WL Eix .

e yuwanttusiD6bUk?



IHMM Word Segmentation

° want to see G book

v Y vy Y
y u w a n t t u S | D 6 b U Kk
yuwanttusiD6bUk

e Number of word types is unknown (and part of the output of learning).

e \We can use the infinite HMM coupled with a model to generate strings
of characters for each word.

|Goldwater et al 2006, Mochihashi et al 2009]



IHMM Word Segmentation

P R F BP BR BF LP LR LF
NGS-u 67.7 70.2 689 | 80.6 84.8 82.6 | 529 51.3 52.0
MBDP-1 | 67.0 694 68.2 | 80.3 843 823 | 53.6 51.3 524
DP 619 476 538 | 924 622 743 | 57.0 57.5 57.2
NGS-b 68.1 68.6 683 | 81.7 82.5 82.1 | 54.5 57.0 557
HDP 79.4 74.0 76.6 | 92.4 83.5 &87.7 | 67.9 58.9 63.1

Model MSR CITYU Kyoto

NPY(2) [80.2 (51.9) [82.4 (126.5) 62.1 (23.1)

NPY(3)|80.7 (48.8) |81.7 (128.3) |66.6 (20.6)

ZK0O8 [66.7(—) |69.2 (—) —




Pitman-Yor Process

[Aldous 1985, Pitman 2006]
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Chinese Restaurant Process

O OO O

e Fach customer comes into restaurant and sits at a table:

n
P(sit at table ¢) = -
( ) Q + ZCGP e
Q
P(sit at new table) =
( ) Q Zcép e

e Customers correspond to elements of set S, and tables to clusters in the
partition o of S.

e Multiplying conditional probabilities together, we get the overall
probability of o:




Two-parameter Chinese Restaurant Process

* The two-parameter Chinese restaurant process CRP([n],d,a) is a
distribution over P: (0 <d < 1, a > -d), described by the following

Process:
1 4 9
000 O
6 / 3

P(sit at table ¢) =

P(sit at new table) =

e Difference: discount parameter d.

e Expect to get more tables, and more tables with few customers.
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Pitman-Yor Process

®* The EPPF under CRP(|n],d,a) is

o |Q| 1
p<@>:[[+dn1H1— 2P = 2(z 4 b) - (2 + (m — 1)b)

cco

e The two-parameter CRP is exchangeable.

e The de Finetti measure is the Pitman-Yor process, which is a
generalization of the Dirichlet process.

[Perman et al 1992, Pitman & Yor 1997, Ishwaran & James 2001 ]
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Power-Law Properties
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Power-Laws In Pitman-Yor Processes

e Power-laws are commonly observed in nature and in human generated
data.

 Pitman-Yor processes exhibit power-law properties and can be used to
model data with such properties.

P(sit at table ¢) = P(sit at new table) =

e With more occupied tables, chance of even more tables becomes
higher.

e Tables with small occupancy numbers tend to have lower chance of
getting new customers.

[Pitman 2006, Goldwater et al 2006, Teh 2006]
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# tables

Power-Laws In Pitman-Yor Processes

a=10, d=[.9 .5 0]

10’

10°  10° 10

# customers

4

10

5

-_—t [
o [

»
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O
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o
N

proportion of tables with 1 customer
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Q
»

o
~
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Power-Laws In Pitman-Yor Processes

=30, d=0 o=1, d=.5

# customers per table

—h
O—L

o
T T T

—l
o

10 10 10
# tables # tables

—_k
o



o w NIVERSITY OF

#5 OXFORD

Power-Laws in English Word Frequencies

I | L) llllll I I lllllll I | L) llllll I . T L Hnii ] i 1 Trninl ] ] lllllﬂ
10° o~ Pitman-Yor
108 g - E].ag.lish text
O ~ | - = Dirichlet
D) 4 N
% W0 - — <
e TN
S 3 N —
,E 10 N N -~ g
o N N
9 .
= 10 N N
101 h - _ \.
v
100 ] 1 1 IIIIII ] 1 1 IIIIII ] 1 1 IIIIII ] 1 1 IIIIII ] 1 1 IIIIII ] |l l.llll
109 10! 102 103 104 10° 109

Rank (according to frequency)
[Wood et al 2011]



Segmenta

Power-Laws in Image

tions
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[Sudderth & Jordan 2009]
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Segment Labels (sorted by frequency)



Hierarchical Pitman-Yor
Language Model

|Goldwater et al 2006, Teh 2006]



n-gram Language Models



Sequence Models for Language and Text

 Probabilistic models for sequences of words and characters, e.g.
south, parks, road

s,o,uth _,parks _road

e n-gram language models are high order Markov models of such
discrete sequence:

P(sentence) = H P(word;|word; _ni11...word; 1)
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n-gram Language Models

e High order Markov models:
P(sentence) = H P(word;|word; _ni11...word; 1)

e Large vocabulary size means naively estimating parameters of this
model from data counts is problematic for N>2.

C(WOI‘di_N_H[ ce WOI‘dZ')

PML(Word”;‘Wordi_NH o word; ) = C(word;_n41...word;_1)

* Naive priors/regularization fail as well: most parameters have no

associated data.

e Smoothing.

e Hierarchical Bayesian models.
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Smoothing in Language Models

e Smoothing is a way of dealing with data sparsity by combining
large and small models together.

Psmooth (

word;|word} ;) n)Qn(word;|word;~, . ;)

iMz

e Combines expressive power of large models with better estimation
of small models (cf bias-variance trade-off).

psmeoth (road|south parks)

= A(3)Q3(road|south parks) +
A(2)Q2(road|parks) +
A(1)Q1(road|d)
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Smoothing in Language Models

relative performance of algorithms on WSJ/NAB corpus, 4-gram
0.1 ,

" abs-disc-interp - witten-bell-backoff
005 traz _

baseline

0.05 | .
. Jelinek-mercer

.kneser-ney
-0.15 |
kneser-ney-mod

0.2 ; . -
-0.25

03 r -

1 | 1

100 1000 10000 100000 le+06
training set size (sentences)

diff in test cross-entropy from baseline (bits/token)

* Interpolated and modified Kneser-Ney are best.

[Chen & Goodman 1999]



Hierarchical Pitman-Yor
Language Models



Context Tree
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e Context of conditional probabilities naturally organized

using a tree.

e Smoothing makes conditional probabilities

of neighbouring contexts more similar.

 [ater words in context more important

in predicting next word.
south parks

N

parks

l

to parks

along south parks at south parks

Psmooth(

road|south parks)

A(3)Q3(road|south parks) +
A(2)Q2(road|parks) +

)\(1)@1 (I‘O&C @)

~

I

.

university parks

7\
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Hierarchical Bayes on Context Tree

e Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

* G is a probability vector associated with context u.
Gy

N

parks

R TN

south parks to parks university parks

~ N SN\

Galong south parks at south parks
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Hierarchical Dirichlet Language Models

e What is P(Gu|Gpaw)? Obvious choice is the standard Dirichlet
distribution over probability vectors.

T N-1| IKN MKN HDLM
2x10° 2| 148.8 144.1 191.2
4x10% 2| 137.1 132.7 1727
6x10° 2| 130.6 126.7 162.3
8x 10° 21 125.9 122.3 154.7

10 x 106 2| 122.0 118.6 148.7
12 x 105 2| 119.0 115.8 144.0
14 x 10 2| 116.7 113.6 140.5
14 x 10 1] 169.9 169.2 180.6
14 x10° 3] 106.1 1024 136.6

e We will use Pitman-Yor processes instead.

[MacKay and Peto 1994]



Hierarchical Pitman-Yor Language Models

e Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

* Gu is a probability vector associated with context u.
Gy

e Place Pitman-Yor process prior on each Gu. / \

parks

R TN

south parks to parks unlver81ty parks

~ N SN\

Galong south parks at south parks

|Goldwater et al 2006, Teh 2006]



Hierarchical Pitman-Yor Language Models

e Significantly improved on the hierarchical Dirichlet language model.

e Results better Kneser-Ney smoothing, state-of-the-art language
models.

T N-1| IKN MKN HDLM HPYLM

2 % 10° 2 | 148.8 144.1 191.2 144.3
4 x 106 2 1 137.1 132.7 172.7 132.7
6 x 106 2 1 130.6 126.7 162.3 126.4
8 x 106 211259 122.3 154.7 121.9
10 x 10° 2 1 122.0 118.6 148.7 118.2
12 x 106 2 1119.0 115.8 144.0 115.4
14 x 106 2 1 116.7 113.6 140.5 113.2
14 x 10° 1] 169.9 169.2 180.6 169.3
14 x 106 3| 106.1 1024 136.6 101.9

e Similarity of perplexities not a surprise---Kneser-Ney can be derived

as a particular approximate inference method.
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Hierarchical Pitman-Yor Language Models

* Application of hierarchical Pitman-Yor processes to n-gram language
models:

e Hierarchical Bayesian modelling allows for sharing of statistical
strength and improved parameter estimation.

e Pitman-Yor processes has power law properties more suitable in
modelling linguistic data.

e State-of-the-art language models, theoretical justification for another
state-of-the-art model called interpolated Kneser-Ney.

e Can be combined with infinite HMM ideas, e.g. [Blunsom and Cohn
2011].
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Discovery Probabilities in Species Sampling

e Observe a sequence objects:

e sequence of words in a document corpus.

e sequence of organisms collected from an environment.

e What is the probability of a new observation being of a new species?

e Good-Turing estimator:
P(new species) ~ My
p ~ N

e Bayesian nonparametrics: probability of sitting at new table.

[Lijo1 et al 2007, Favaro et al 2012]



Feature Allocations and
Indian Buffet Processes



Clustered Representation

e Clustering uses a one-of-K representation of data.

Tables —>

5

-

O

3

O 000
¢ N

|| |

e Simple, limited representation of data.
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Distributed Representation

e Allow each data item to have multiple features.

Tables —> Dishes —>

&£ ’ &£
) )
- -
O O
2 2
s 000 ; o000
¢ N ¢ |

|| | |
e Example: multi-genre movies, multiple interests or expertises.

e Bayesian nonparametric: allow finite number of features per item, but
unbounded over items.
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Indian Buffet Process

“Many Indian restaurants
in London offer lunchtime
buffets with an apparently

Dishes —>

<>— Customers

* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Indian Buffet Process

“Many Indian restaurants

in London offer lunchtime
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* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Dishes —>

<>— Customer
[
a
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* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks

Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]



X

Sewd UNIVERSITY OF

g, 9),420):3D)

Indian Buffet Process
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infinite number of dishes”
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* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Indian Buffet Process

“Many Indian restaurants

in London offer lunchtime
buffets with an apparently
infinite number of dishes”

<>— Customers

* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Indian Buffet Process

“Many Indian restaurants
in London offer lunchtime
buffets with an apparently

infinite number of dishes”

<— CUSTOFV@FS

* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Indian Buffet Process

“Many Indian restaurants

in London offer lunchtime
buffets with an apparently
infinite number of dishes”

<>— Customers

* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]
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Indian Buffet Process

“Many Indian restaurants

in London offer lunchtime
buffets with an apparently
infinite number of dishes”

Dishes —

<— CusTcﬁpers

* First customer picks Poisson(a) number of dishes.

e Subsequently, customer n picks dish k with probability ni/n, and picks
Poisson(a/n) new dishes.

| Griffiths & Ghahramani1 2006, 2011]



Modelling Applications

e Fach data item X; is modelled by a set of features ..

e Community discovery: individuals belong to multiple communities.
e Protein complex: proteins participate in multiple complexes.

e Collaborative filtering: movies modelled by set of genres/actors, users
modelled by set of interests.

e |CA: signal vectors are linear combinations of multiple sources.

See references 1n [Griffiths & Ghahramani 2011]
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Infinite Independent Components Analysis

S
X; = Z WisY s
s=1

* where wis given non-Gaussian (heavy-tailed prior).

e Independent components analysis:

e One simple heavy-tailed prior is a mixture of zero-mean Gaussians.

e An extreme case: one of the Gaussians is degenerate with zero-variance.

e Allow infinite number of sources, but each signal is a linear
combination only of a finite number of them.

[Knowles & Ghahramani 2007, Teh et al 2007]
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IBP as an Exchangeable Feature Model

e The IBP is also exchangeable:

. >
e distribution of dishes picked does not DIShes ,
depend on customer order. e
e Construct an exchangeable sequence of %
set-valued variables as follows: +
3 o0
e For each dish k, define: O
o ~ H ¢
e For each customer /, define: H |
0; = {0; : customer i picked dish k} 0, = {07,050
e Exchangeable feature model, with an 0y = {6%,0%)
exchangeable feature probability _fnx p*
O3 = {6)37 94}

function (EFPF).

e de Finetti measure is a beta process. -
[Hjort 1990, Thibaux and Jordan 2007, Broderick et al 2013]
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Other Exchangeable Feature Models

* Three-parameter IBP:

® Parameters: a >0, c>-0,0<o< 1.

e Customer 1 tries Poisson(a) dishes:
e Customer n+1:
* tries dish k with probability (m-0)/(n+c);
* tries Poisson(al'(1+c)I'(n+c+0)/T'(n+1+c)I'(c+0)) new dishes.
e Also has some nice power-law properties.

e See also very nice extension by Caron [2012].

e Beta-negative-binomial and gamma-Poisson processes:

e allows for positive integral valued features.

[Kim & Lee 2001, Teh & Gorur 2009, Broderick et al 2012, Caron 2012]
[ Tits1ias 2008, Broderick et al 2012, Zhou & Carin 2012]



Part Ill:
Even Further Afield

Fragmentations, Coagulations, Trees
Sequence Memoizer
More Exchangeable Random Partitions
Relational Exchangeability



Coagulations,
Fragmentations, and
Trees
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Overview

e Bayesian nonparametric learning of trees and hierarchical partitions.
* Fragmentations and coagulations.

e Unifying view of various Bayesian nonparametric models for random
trees.



From Random Partitions
to Random Trees
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Bayesian Inference for Trees

e Computational and statistical methods for constructing trees:

e Algorithmic, not model-based.
e Maximum likelihood
* Maximum parsimony

e Bayesian inference: introduce prior over trees and compute posterior.

P(T|x) o« P(T)P(x|T)

e Bayesian nonparametric priors for P(T).

e Exchangeable models.

e Models for trees has to be nonparametric.
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome c
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢
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Trees as Sequences of Partitions

Phylogeny based on nucleotide differences in the gene for cytochrome ¢

numa
doq \ { donk
] 1 : p !tI " .." )
J  § MONKeYy g
('\ o ~leaar HeN 1N
chicken peng
\ 2 ¥ z rattie
~ A " N AN MW FTRAN RS e&s=ss OUWC " (4B [at=)
; 9 N @ | e <
0.§ & 0
pIgeon
.. 1 J 1.14 1.0
1 2 - ) f‘l 1 {
B ’
. +
) 6 '
6.9 scre m
moth
1
16.5
Candida
” o
- 3.9 (
3.
iICCha
7
) O |
= 9

Values are estimates of the
minimum number of nucleotide

+ * -~

substitutions that have occC

urred along the

neages in the gene coding for this protein.



Fragmenting Partitions

2141010KC
L1 x I I tt 1 I
e Sequence of finer and finer partitions.
o N (2 BEE @ @
e Fach cluster fragments until all T 1 f
clusters contain only 1 data item.
e (@)

e Can define a distribution over trees
using a Markov chain of fragmenting (1 25 6) (3789 )

partitions, with absorbing state Os } } }
(partition where all data items are in ‘

their own clusters). (123456789 )




Coagulating Partitions

e Sequence of coarser and coarser l
y y y y y

prtiions DEE @ @
 Each cluster formed by coagulating
smaller clusters until only 1 left.

e Can define a distribution over trees by '
using a Markov chain of coagulating (12568) (3789) @
partitions, with absorbing state 1s I
(partition where all data items are in
one cluster). Q 23456789)

@
OmOmOnOa0




Random Fragmentations and
Random Coagulations

[Bertoin 2006]



Coagulation and Fragmentation Operators
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Random Fragmentations

o Let C € P;yy and for each c € C let F. € P..
e Denote fragmentation of C by {Fc} as frag(C,{Fc}).
* Write ¢/ | C ~ FRAG(C,d, ) if o1 = frag(C,{Fc}) with
Fc ~ CRP(c,d, ) independently.

o A N
3 B 2
02
Wn © 3
= 6
2 © '
7 Coagulate
—
o =
/~\ Fragment
5 | 5
& 3| (4) (o &
o5 FI\®) R 5| F3 5
) 8
2 \_/ \_/
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Nested Chinese Restaurant Processes

/1\
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A tourist arrives at the city for an culinary vacation. On the first evening, he enters
the root Chinese restaurant and selects a table using the CRP distribution in Eq. (1).
On the second evening, he goes to the restaurant identified on the first night’s table
and chooses a second table using a CRP distribution based on the occupancy pattern
of the tables in the second night’s restaurant. He repeats this process forever. After
M tourists have been on vacation in the city, the collection of paths describes a
random subtree of the infinite tree; this subtree has a branching factor of at most
M at all nodes. See Figure 3 for an example of the first three levels from such a

random tree. [Blei et al 2004, 2010]
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Nested Topic Model
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Nested Chinese Restaurant Process

* Start with the null partition go = {[n]}.

e For each level I=1,2,... L:

e Fragmentations in different clusters (branches of the
hierarchical partition) operate independently.

e Nested Chinese restaurant processes (nCRP) define a
Markov chain of partitions, each of which is

exchangeab

e Can be usec

sequence, with de Finetti measure being the nested
Dirichlet process (nDP).

o= FRAG(g11,0, av)

e.

to define an infinitely exchangeable

[Bler et al 2004, 2010, Rodriguez et al JASA 2008]



Random Coagulations

* et g1 € P and 02 € Py

* Denote coagulation of g; by g» as coag(es, 02).

* Write C | 01 ~ COAG(p1,d, ) if C = coag(e1, ¢2) with

Ol
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Coagulation of Random Partitions

» Consider a Chinese restaurant franchise corresponding to a two level HDP:
{{1,3,6,2,7},{4,5,8}, {9}}

Go ~ DP(ag, H)
Gl‘GQ ~ DP(Oél, G())

1,3,6},12,7},14.5,8}, {9}}

» Corresponds to a random coagulation with:
p1 ~ CRP([9],0, 1)
polp1 ~ COAG(p1,0, ap)

[Teh et al 2006]



Chinese Restaurant Franchise

e For a simple linear hierarchy of DPs (restaurants
linearly chained together), the Chinese restaurant
franchise (CRF) is a sequence of coagulations:

e At the lowest level [+7, we start with the trivial
partition g7 = {{1},{2},...,{n}}.

e For each level I =L [-1,...,1:

o= COAG(g+1,0, o)

e This is also Markov chain of partitions.

OaOREINORO
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Hierarchical Dirichlet/Pitman-Yor Processes

e Each partition in the Chinese restaurant franchise is
again exchangeable.

* The corresponding de Finetti measure is a Hierarchical
Dirichlet process (HDP).

G1|Gi-1 ~ DP(a;, Gi—1)

e The CRF has not been used as a model of hierarchical
partitions. Typically it is only used as a convenient
representation for inference in the HDP and HPYP.

D oo @&
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Random Trees

e Nonparametric models of trees are natural.
e Construction of random trees as Markov chains of random partitions.

e Models are infinitely exchangeable.



Continuum Limit of
Partition-valued Markov Chains
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Trees with Infinitely Many Levels

‘ A/L
e Random trees described so far all consist of a finite number @ ,,
of levels L. “
e We can be “nonparametric” about the number of levels of AL
random trees.
* Allow a finite amount of change even with an infinite .
number of levels, by decreasing the change per level. ®

o

l A/L
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Dirichlet Diffusion Trees

RSl b AN
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In general, the 7th point in the data set is obtained by following a path from the origin
that initially coincides with the path to the previous i —1 data points. If the new path
has not diverged at a time when paths to past data points diverged, the new path chooses
between these past paths with probabilities proportional to the numbers of past paths that
went each way. If at time ¢, the new path is following a path traversed by m previous
paths, the probability that it will diverge from this path within an infinitesimal interval
of duration dt is a(t)dt/m. Once divergence occurs, the new path moves independently of

previous paths. [Neal 2003]
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Dirichlet Diffusion Trees

e The Dirichlet diffusion tree (DFT) hierarchical partitioning structure can
be derived from the continuum limit of a nCRP:

* Start with the null partition go = {[n]}.

e For each time ¢, define
ordi = FRAG(0.,0,a(t)dt)

e The continuum limit of the Markov chain of partitions becomes a
continuous time partition-valued Markov process: a fragmentation
process.

e Generalization to Pitman-Yor diffusion trees.

[Neal 2003, Knowles & Ghahramani 2011]
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Kingman’s Coalescent

e Taking the continuum limit of the one-parameter (Markov chain) CRF
leads to another partition-valued Markov process: Kingman’s coalescent.

* Start with the trivial partition go = {{7},{2},...,{n}}.

e For each time t < O:
odt = COAG(gy,0,a(t)/dt)

e This is the simplest example of a coalescence or coagulation
process.

e A standard genealogical process in genetics.

* A generalization called A-coalescent.

[Kingman 1982a,b, Pitman 1999]



Kingman’s Coalescent

e Derived from the Wright-
Fisher model of population
genetics.

e Model of the genealogies of
n haploid individuals
among a size N population.

e Gives a tree-structured
genealogy because each
individual assumed to have
one parent.
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Kingman’s Coalescent
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Other Models

e Both Dirichlet diffusion trees and Kingman'’s coalescent are priors over
binary trees, i.e. every internal node has exactly 2 children.

e Generalizations allow for more than 2 children.

e Both models are priors over ultrametric trees, i.e. all observations are at
leaves which are equidistant from the root.

e Can generalize by allowing observations at different distances from
root.

e Constructions for other types of random trees:

e Gibbs fragmentation trees
e Continuum random trees
e Standard additive coalescent

e Combining fragmentations and coagulations to get stationary Markov
chains over partitions.
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Sequence Memoizer



Sequence Models for Language and Text

 Probabilistic models for sequences of words and characters, e.g.
south, parks, road

s,o,uth _,parks _road

e n-gram language models are high order Markov models of such
discrete sequence:

P(sentence) = H P(word;|word; _ni11...word; 1)



Context Tree
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e Context of conditional probabilities naturally organized

using a tree.

e Smoothing makes conditional probabilities

of neighbouring contexts more similar.

 [ater words in context more important

in predicting next word.
south parks

N

parks

l

to parks

along south parks at south parks

Psmooth(

road|south parks)

A(3)Q3(road|south parks) +
A(2)Q2(road|parks) +

)\(1)@1 (I‘O&C @)

~

I

.

university parks

7\
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Hierarchical Pitman-Yor Process

e Parametrize the conditional probabilities of Markov model:
P(word; = w|word!”; Nyl = u) = Gy(w)

Gu — [Gu (w)]wEVocabulary

* G is a probability vector associated with context u.
Gy

N

parks

R TN

south parks to parks university parks

~ N SN\

Galong south parks at south parks
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Non-Markov Models for Language and Text

e Model the conditional probabilities of each possible word occurring
after each possible context (of unbounded length).

e Use hierarchical Pitman-Yor process prior to share
information across all contexts.

Gy
e Hierarchy is infinitely deep. / \

. Gparks
* Sequence memoizer. / l
GSOU.th parks Gto parks Guniversity parks
Galong south parks Gat south parks .

meet at south parks

SRR



Model Size: Infinite -> O(T?)

e The sequence memoizer model is very large (actually, infinite).

e Given a training sequence (e.g.: 0,a,c,a,c), most of the model can be
ignored (integrated out), leaving a finite number of
nodes in context tree.

e But there are still O(T2) number of P?
G

nodes in the context tree.
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Duality of Coagulation and Fragmentation

e The following statements are equivalent:
(I) 02 ~ CRP([TL], d27 deg) and 91’Q2 ™~ CRP(QZ) d17 Ck)
(II) C ~ CRP([TL], dldg, deg) and Fc’C ~ CRP(C, dg, —dldg) Ve € C

N N\
| A |
3 - B 2
|
s © 3
) 6
2 (® y
7 Coagulate
ﬁ
B
\_/ \_/
02 = N C
c f?Fragment 5
8 )c 3] (4) (9 &)
5 Fl) RIS R g
) 8
2 < U
/D \J \J
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Closure under Marginalization

e Marginalizing out internal Pitman-Yor processes is equivalent to
coagulating the corresponding Chinese restaurant processes.

Gla) Gl

Glea) PY (02d3, d2ds, Gig))

PY(92d37 d37 G[Ca] )

v v
G[aca] G[aca]

e Fragmentation and coagulation duality means that the coagulated
partition is also Chinese restaurant process distributed.

e Corresponding Pitman-Yor process is the resulting marginal distribution
Of G[aca] | G[a]

[Wood et al 2009, Gasthaus & Teh 2010, Wood et al 2011}
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Model Size: Infinite -> O(T?) -> O(2T)

e The sequence memoizer model is very large (actually, infinite).

e Given a training sequence (e.g.: 0,a,c,a,c), most of the model can be
ignored (integrated out), leaving a finite number of
nodes in context tree.

e But there are still O(T?) number of
nodes in the context tree.

* Integrate out non-branching, non-leaf
nodes leaves O(T) nodes.

e Conditional distributions
still Pitman-Yor due to

closure property.
oac

G[oacac c

O
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Comparison to Finite Order HPYLM
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Compression Results

Model Average bits/byte
gzIp 2.61
bzip2 2.11
CTW 1.99
PPM 1.93
Sequence Memoizer 1.89

Calgary corpus

SM inference: particle filter

PPM: Prediction by Partial Matching
CTW: Context Tree Weigting

Online inference, entropic coding.
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Exchangeable Random Partitions:
beyond Dirichlet and Pitman-Yor
Processes



Exchangeable Random Partitions

* A random partition ¢ of [n] is exchangeable if it is invariant to
permutations of [n].

P(0 = { {Alice, David}, {Bob, Charles, Emma}, {Florence} })
= P(o = { {Charles, Florence}, {Alice, David, Emma}, {Bob} })

* The signature of g is a sequence of the sizes of the clusters in g.

e The probability function of an exchangeable partition has to be a
symmetric function of its signature:

P(o = {c1, c2, ..., c}) = f(n1, ny, ..., nk) where nk = |cyl.

e Exchangeable partition probability functions (EPPFs).
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Kingman’s Theory

* Exchangeable random partitions ¢ & random probability measures.

=Given an exchangeable random partition ¢:

* For each c € ¢: define: 0F ~ H

* For each i € [n], define:  §; = 0* wherecepwithiec.

e de Finetti’s Theorem implies random probability measure G.

<Given random probability measure G:
* For each j, define: 0;,|G ~ G

* Construct a partition ¢ where each cluster c € g consists of indices i
where 6; all take on the same value.

[Kingman 1975]
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Kingman’s Theory

* Exchangeable random partitions ¢ & random probability measures G.

e G can have both discrete and continuous components:

K
G = moGo + 0p*
molo l;mc 0 /\/r\\//\’\

* Discrete components: clusters in ¢ with infinite size.

* Continuous component: clusters in ¢ with size exactly 1 (dust).
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Completely Random Measures

e General construction of random probability measures without
continuous component.

* Completely random measure (CRM) u:

e Given any disjoint subsets A and B: p(A) 1L u(B)

e Related to infinitely divisible distributions.

e A random variable X is infinitely divisible if for every n, there are n
iid random variables Xi such that 2; X; = X.

e Examples: Gaussian, gamma, Poisson, negative-binomial, Cauchy, stable.

[Kingman 1967]



Example: Gamma Process

I'(a)
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Example: Gamma Process
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Example: Gamma Process
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Example: Gamma Process
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Example: Gamma Process
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Example: Gamma Process
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Example: Gamma Process
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Example: Gamma Process
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5

4.5

4_

3.5

3_

2.9

2_

1.5

1

0.5

0

0

bl

0.1 0.2

['(0/4)

Ll

0.3 0.4

I'(0/4)

Ll

0.5 0.6

0.7 0.8 0.9

['(0/4) ['(0/4)

Ll LA

1




3 UNIVERSITY OF

% OXFORD

Example: Gamma Process
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Completely Random Measures

* Completely random measure (CRM) u:
e Given any disjoint subsets A and B: p(A) 1L u(B)

e CRMs can always be decomposed into 3 independent components:
J K
A TR I
j=1 k=1

® 1o is a (non-random) measure,
* {#;*} are not random, {z;} are independent positive random variables,

e {(mx, B\*)} is drawn from a Poisson process over R* x © with intensity
v(w,0) called the Lévy measure.

[Kingman 1967]
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Completely Random Measures
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Examples

* Gamma process:
v(w,0) = aw e " h(0)

® Beta process:
v(w,0) = cw '1(0 < w < 1)h(H)

e Stable process:

_ r —~1-d
v(w,d) = N d)w h(6)
e Stable-beta process: -
V(w,e) _ 8} ( ‘|‘5) w_l_d(l L w)5+d—11(0 <w< 1)h((9)

'(1—d)I'(8+d) -
e Generalized gamma process:

v(w,l) = F(la— d)w_l_de_Twh(é’)
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Normalized Random Measures

e Normalizing a CRM gives a random probability measure:

G = p/u(O)

e Normalizing a gamma process gives the Dirichlet process.

e The largest class of tractable NRMs studied so far are the normalized
generalized gamma processes.

e Tractable (almost) closed for EPPFs.

e Like the Pitman-Yor, also has power-law properties.

e Pitman-Yor process is not a NRM, but is a mixture of normalized
generalized gamma processes instead.

[James et al 2005 and many others, Favaro & Teh 2013 ]



rewndy UNIVERSITY OF

#5 OXFORD

Families of Exchangeable Random Partitions

I~y
plT ~ CRM(v|u(©) =T)
G=u/T Poisson
Kingman P(p) =
/ \ V(n,lel) [TW(le)
Normalized . cce
Random G1bbs

1t ~ CRM(v) Measure Type
C = 1/u(®) \ / \
Normalized

Generalized Pitman-Yor Mixtures of

Finite Dirichlets
Gamma
Normalized/ \ / '
.. Normalized
Inverse Dirichlet
Stable

Gaussian
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Consistency of BNP Models for Clustering

e Some recent works have shown that DP mixture models are *not*
consistent if used to estimate the number of components.

e This is in fact not surprising:

e Basic assumption is that the data comes from a finite mixture model,
but DP mixture models assume infinite number of clusters.

e Which assumption is reasonable? Finite or infinite number of clusters?



Relational
Exchangeability
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Relational Exchangeability

e Data: for each user i ratings R;; for a subset of products j.

* Sensible assumption: users are exchangeable and products are

exchangeable. Product Features

OlOL
e Aldous-Hoover: generalization of
de Finetti’s Theorem: @
* User representation §&; @ ‘ ‘
: : & ®
* [nteraction function ¥ o @
Ry ~ F(¥(E0n)) ()———()

[Aldous 1981, Hoover 1979, Kallenberg 2005, Orbanz and Roy 2013 ]

* Product representation #;

User Features
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Relational Exchangeability

e Social or interaction networks:

* rows and columns index the same objects.

e Array of variables is square, can be symmetric or asymmetric.

e Aldous-Hoover representation:
* Symmetric case: Ri; = Rj; ~ F(V(&,§5))
with symmetric ¥.
* Asymmetric case: (Rij, Rjs) ~ F(V(&,5))

with asymmetric V.



A Few Final Words
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Summary

e Introduction to Bayesian learning and Bayesian nonparametrics.
e Dirichlet processes:

e Infinite [imit of finite mixture models.

* Chinese restaurant processes, stick-breaking construction.

e Ferguson’s Definition
e Hierarchical Bayesian nonparametric models.

e [nfinite hidden Markov models.
* Pitman-Yor processes:

e Two-parameter Chinese restaurant processes.

e Power-law properties.

e Hierarchical Pitman-Yor processes and the sequence memoizer.
e Feature allocation and Indian buffet processes.

e Coagulations, fragmentations, trees.
e Exchangeable random partitions.
e Relational Exchangeability
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What Were Not Covered Here

e Gaussian processes.
e Other nonparametric dynamical models.
e Dependent random measures.

e Combinatorial stochastic processes and their relationship to data
structures and programming languages.

* Frequentist properties, convergence and asymptotics.



Future of Bayesian Nonparametrics

e Augmenting the standard modelling toolbox of machine learning.
e Development of better inference algorithms and software toolkits.
e Exploration of novel stochastic processes.

* More applications in machine learning and beyond.
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Other Tutorials and Reviews

e Mike Jordan’s tutorial at NIPS 2005.
e Z7oubin Ghahramani’s tutorial at UAI 2005.
e Peter Orbanz’ tutorial at MLSS 2009.

* My own tutoria

¢ Introduction to

s at previous MLSS and N

Dirichlet process [Teh 201

IPS 2011.

0], nonparametric Bayes

[Orbanz & Teh 2010, Gershman & Blei 2011], hierarchical Bayesian
nonparametric models [Teh & Jordan 2010]/

e Bayesian nonparametrics book [Hjort et al 2010].
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Appendix



Tiny Bit of Probability Theory

e A g-algebra Z is a family of subsets of a set © such that

® 2 is not empty;
*if Ae2then O
*if A Ay...e 2t

A€ 2;

nen UA; € 2.

* (O, 2) is a measure space and A € 2 are the measurable sets.

e A measure U over

°* U(@) =0,

(©, 2) is a function Y : 2 —[0,] such that

o if Aj, As,... € X are disjoint then p(uiA;) = Zi P(A);

* a probability measure is one where p(0Q) = 1.

e Everything we consider here will be measurable.




Tiny Bit of Probability Theory

e Given two measure spaces (0, 2) and (A, ®) a functionf: © = A'is
measurable if f7(A) € 2 for every A € ®.

e |[f Pis a probability measure on (O, 2), a random variable X taking
values in A is simply a measurable function X : © = A.

* This of the probability space (0, Z, P) as a black-box random
number generator, and X as a fixed function taking random samples
in © and producing random samples in A.

* The probability of an event A € ® is P(X € A) = P(X'(A)).

e A stochastic process is simply a collection of random variables {Xi}; <
over the same measure space (0O, ), where [ is an index set.

* /| can be an infinite (even uncountably infinite) set.



Projectivity and Exchangeability






Projective and Exchangeable Models of Data

e There will be 1 test item.
Will this change your predictions? ()
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Projective and Exchangeable Models of Data

¢ 02202

* There will be 1 test item.

Will this change your predictions? () “

X1
X3

* There will be 5 additional test items. y Xs

Will this change your predictions? !

X6
>
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Projective and Exchangeable Models of Data

2 22222

e There will be 1 test item.
Will this change your predictions?

* There will be 5 additional test items. Xs
Will this change your predictions?

 Item labels were permuted. >
Will this change your predictions?




Consistency and Projectivity

* Let ¢ be a partition of S, and S’ c S be a subset. The projection of ¢ onto
S’ is the partition of S” defined by g:

PROJ(g, ) ={cnS |cnS #3,ce S}

* |.e., all elements of S except those in S” are removed from .

e For example,

PROJ({{1,3,6},12,7},14,5,8},19}}, [6]) = {{1,3,6},12},14,5}}



rewndy UNIVERSITY OF

=% OXFORD

Consistent/Projective Random Partitions

e A sequence of distributions P1,P2,... over P13, P21,... is projective or
consistent if

pmNPm

Pn — PROJ(IOma [n])

Pr({pm : PROJ(pm, [n]) = pn}) = Pulpn)

e Such a sequence can be extended to a distribution over Py.

e The Chinese restaurant process is projective since:

e The finite mixture model is, and

e also it is defined sequentially.

e A projective model is one that does not change when more data items
are introduced (and can be learned sequentially in a self-consistent



Exchangeable Random Partitions

e A distribution over partitions Ps is exchangeable if it is invariant to
permutations of S: For example,

Plo=1l1,3,6},12,7},14,5,8},191}) =
P(e = {1o(1), 6(3), 0(6)},10(2), 6(7)},{0(4), 0(5), 0(8)},{6(9)}})
where S = [9] ={1,...,9}, and o is a permutation of [9].
e The Chinese restaurant process satisfies exchangeability:

* The finite mixture model is exchangeable (iid given parameters).

* The probability of ¢ under the CRP does not depend on the identities
of elements of S.

e An exchangeable is one that does not depend on the (arbitrary) way data
items are indexed.



Infinitely Exchangeable Random Variables

° |et be an infinitely exchangeable sequence of random
varidblek2, L3, - - -

P(a:l, “e ,CIZ‘n) — P(Zg(l), ce ,xa(n))
for all n and permutations o of [n].

e Generalization of i.i.d. variables, and can be constructed as mixtures of
such:

n

Plzy.....x,) = /P(G) I P(x:|G)dG

1=1

e de Finetti’s Theorem: infinitely exchangeable sequences can always be
represented as mixtures of i.i.d. variables. Further the latent parameter
G is unique, called the de Finetti measure.
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Dirichlet Process

e Since the CRP is projective and exchangeable, we can define an
infinitely exchangeable sequence as follows:

e Sample ¢ ~ CRP(N, o).

*Forcegp: x1@ X4 Xq
X3 X2 X5 o000
e sample y- ~ H. @ @
efFori=1,2,...:

e set x; = y- where i € c.

* The resulting de Finetti measure is the DP with parameters a and H.

[Ferguson 1973, Blackwell & MacQueen 1973 ]



Why Infinitely Exchangeable Models?

e A model for a dataset x7,x2,...,x, is a joint distribution P(x7,x2,...,Xn).
e An infinitely exchangeable model means:

e The way data items are ordered or indexed does not matter.

e Model is unaffected by existence of additional unobserved data
items, e.g. test items.

* To predict m additional test items, we would need
P(X],...,Xn, Xn+],...,Xn+m)

e [f model is not infinitely exchangeable, predictive probabilities
will be different for different values of m.

e There are scenarios where infinite exchangeability is suitable or
unsuitable.
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Exchangeability in Bayesian Statistics

e Fundamental role of de Finetti’s Theorem in Bayesian statistics:

e From an assumption of exchangeability, we get a representation as a
Bayesian model with a prior over the latent parameter.

Pley.....x,) = /P(G) [[ PeiGaG

e Generalizing infinitely exchangeable sequences lead to Bayesian models
for richly structured data. E.g.,

e exchangeability in network and relational data.
e hierarchical exchangeability in hierarchical Bayesian models.

e Markov exchangeability in sequence data.



