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Statistical Learning Theory

1. started by Vapnik and Chervonenkis in the Sixties

2. model: we observe data generated by an unknown stochastic
regularity

3. learning = extraction of the regularity from the data

4. the analysis of the learning problem leads to notions of capacity
of the function classes that a learning machine can implement.

5. support vector machines use a particular type of function class:

classifiers with large “margins” in a feature space induced by a
kernel.

[51, 52]
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Finding a Good Function Class

e recall: separating hyperplanes in R? have a VC dimension of 3.

e more generally: separating hyperplanes in RY have a VC di-
mension of N + 1.

e hence: separating hyperplanes in high-dimensional feature
spaces have extremely large VC dimension, and may not gener-
alize well

e however, margin hyperplanes can still have a small VC dimen-
sion
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Kernels and Feature Spaces

Preprocess the data with

O: X —- H
r — d(x),

where H is a dot product space, and learn the mapping from ®(x)
to y |6].

e usually, dim(X) < dim(H)

e “Curse of Dimensionality”?

e crucial issue: capacity, not dimensionality
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Example: All Degree 2 Monomials

d:R? = R?

(21, m9) = (21, 29, 23) := (27, V2 2129, 23)
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General Product Feature Space

e oy

How about patterns x € RY and product features of order d?
Here, dim(H) grows like N9,
E.g N =16 x 16, and d = 5 — dimension 10"
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The Kernel Trick, N =d =2

(P(x), b)) = (37%’\/52561:62,:6%)(:6,%,\/533/133/2,37’22)T
= (z,2')
= k(x,x’)

— the dot product in K can be computed in R?
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The Kernel Trick, 11

More generally: z,2’ € RN deN:
d al '
<x,x/> = ij : :c;
j=1

— Z T - ""mjd'f’f;'l .x;d: (D(x), d(z")),
JyeesJq=1
where ® maps into the space spanned by all ordered products of
d input directions
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Mercer’s Theorem

If k is a continuous kernel of a positive definite integral oper-
ator on Lo(X) (where X is some compact space),

/ k(z, ) f(x)f(z") dx da’ > 0,
X

it can be expanded as
0.9
k(z,a) = Ai(a)y(2)
1=1

using eigenfunctions ¥; and eigenvalues A; > 0 [30].
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The Mercer Feature Map

In that case
VA1 ()
D(z) = (\/721#2(1’))
satisfies (@(z), D(2')) = k(z,2').
Proof:

VA1 () VA (2)
(D(x), D(2) < Vagua(z) |, | VAxa(z) >



Positive Definite Kernels

Let X be a nonempty set, and k£ : X x X — R. The following two
are equivalent:

e k is positive definite, i.e., k is symmetric, and for

—any set of training points x1,...,x;, € X and
—any at,...,am € R
Zaza]K > 0, where K;; = k(z;,z;)
1,]

e there exists a map ® into a dot product space H such that

k(z,2') = <<I>(x), <I>(:c’)>

H is a so-called reproducing kernel Hilbert space.

If for pairwise distinct points, > = 0 only if all a; = 0, call k
strictly p.d.



The Kernel Trick

e any algorithm that only depends on dot products can be “ker-
nelized”

e this way, we can apply linear methods to vectorial as well as
non-vectorial data

e think of the kernel as a nonlinear similarity measure
e examples of common kernels:
Polynomial  k(z,z') = ({(x,2") + o)
Gaussian k(z,2') = exp(—|lz — 2'||?/(262))

e Kernels are also known as covariance functions [58, 56, 59, 29|
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Properties of PD Kernels, 1

Assumption: ® maps X into a dot product space H; z, 2’ € X

Kernels from Feature Maps.
k(z,2') == (D(x),P(2")) is a pd kernel on X x X.

Kernels from Feature Maps, 11

K(A, B) = erA,x’eB k(x,2"),
where A, B are finite subsets of X, is also a pd kernel

(Hint: use the feature map ®(A) =" _, ®(z))
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Properties of PD Kernels, 2 [39, 43]

Assumption: k, ki, ko, ... arepd; z, 2’ € X

k(x,x) > 0 for all & (positivity on the Diagonat)

k(z,2')? < k(z, 2)k(2', 2") (Cavchy-Schuwars mequatity)

(Hint: compute the determinant of the Gram matrix)

k(z,z) =0 for all z = k(x,2") = 0 for all 2, 2" (vanishing Diagonais)
The following kernels are pd:

e ok, provided v > 0

o k1 + ko

o k(x,z') == limy o0 kn(x, ), provided it exists
okl ko

e tensor products, direct sums, convolutions [23]
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The Feature Space for PD Kernels (4, 1, 36]

e define a feature map
X — RY
r — k(. x).

E.g., for the Gaussian kernel: m

X X dX)  PX)
Next steps:
e turn ®(X) into a linear space

e endow it with a dot product satistying

(0(x), D(a")) = Kz, 2'), ie., (k. x), k(.. 7)) = k(z, ")
e complete the space to get a reproducing kernel Hilbert space
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Turn it Into a Linear Space

Form linear combinations

FO) =) k(. ),
i—1

g(.) =) Bik(.a})
j=1

(m,m’ € N, a;, B € R, xi,x; c X).

B. Scholkopf, MLSS Tiibingen 2013



Endow it With a Dot Product

(f.9) =) aifjk(z;, )

i=1 j=1

= > aglz) =) Bif(xh)
i=1 =1

e This is well-defined, symmetric, and bilinear (more later).

e So far, it also works for non-pd kernels
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The Reproducing Kernel Property

Two special cases:

e Assume

In this case, we have

e [f moreover

we have

k(. x), k(. 2")) = k(z, ).

k is called a reproducing kernel
(up to here, have not used positive definiteness)
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Endow it With a Dot Product, 11

e [t can be shown that (.,.) is a p.d. kernel on the set of functions

{f() 10% (.,$i>‘@i€R,ZCi€x}:

Z%V] <f27fj <Z%f2727]fj> )
— <Z @ik(.,xi),Zaik(.,xi)> — Zozzoz]k(xz,a:]) Z 0

e furthermore, it is strictly positive definite:
fl@)? = (f k(@) < (F ) k(@) k(@)
hence (f, f) = 0 implies f = 0.

e Complete the space in the corresponding norm to get a Hilbert
space H..
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The Empirical Kernel Map

Recall the feature map
®:xX — RY
r — k(. x).
e cach point is represented by its similarity to all other points

e how about representing it by its similarity to a sample of points?

Consider

Oyt X — R™

T k(.,x)\< = (k(z1,x),.. .,k(xm,g:))T

x:l,,xm)

B. Scholkopf, MLSS Tiibingen 2013



ctd.

e Dy(xy), ..., Pyy(xyy,) contain all necessary information about
CID(:Cl), Cee q)(llj‘m)

o the Gram matrix G;j = (Pp(x;), Pp(;)) satisfies G = K?
where Kij — /f(:l?i, .CE])

e modify @, to
o)X — ]le
v — K7 2(k(zy,2), ... . klzm,z)"
e this “whitened” map (“kernel PCA map”) satifies
(@), O () = k(2 25)
forallz,7=1,...,m.
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Properties of Kernel Matrices, 1 [37]

Suppose we are given distinct training patterns xq, ..., Ty, and a
positive definite m X m matrix K.

K can be diagonalized as K = SDS ", with an orthogonal matrix
S and a diagonal matrix D with nonnegative entries. Then

= (SDST);; = (S;, DS;) = <\/ESZ-, @sj>,
where the SZ- are the rows of S.

We have thus constructed a map ® into an m-dimensional feature
space H such that

= <(D(CEZ'), CD(CI?])> .
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Properties, II: Functional Calculus [42]

e K symmetric m X m matrix with spectrum o(K)
e f a continuous function on o(K)

e Then there is a symmetric matrix f(K) with eigenvalues in
flo(K)).
e compute f(K) via Taylor series, or eigenvalue decomposition of

K: If K = S'DS (D diagonal and S unitary), then f(K) =
S #(D)S, where f(D) is defined elementwise on the diagonal

e can treat functions of symmetric matrices like functions on R

(af +9)(K) = af(K)+g(K)
(f9)K) = [(K)g(K) = g(K)[(K)
oo .or) = A
o(f(K)) = flo(K))
(the C*-algebra generated by K is isomorphic to the set of
continuous functions on o(K))



Computing Distances in Feature Spaces

Clearly, if k is positive definite, then there exists a map ® such
that

|0(z) — (")||° = k(z,z) + k(2 &) — 2k(z,2)
(it is the usual feature map).
This embedding is referred to as a Hilbert space representation

as a distance. It turns out that this works for a larger class of
kernels, called conditionally positive definite.

In fact, all algorithms that are translationally invariant (i.e. inde-
pendent of the choice of the origin) in H work with cpd kernels
39].
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Kernels Local in the Image

Local products of degree di, global products of degree ds, overall
degree dy - do.
38]
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An Example of a Kernel Algorithm

Idea: classify points x := ®(x) in feature space according to which
of the two class means is closer.

Compute the sign of the dot product between w := ¢4 — c_ and
X — C.
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An Example of a Kernel Algorithm, ctd. [39]

1 |

fa) = san [—— 3 (@), 0@ - 3 (@), @)+
+ . m— .
{i:yi=+1} {iyi=—1}
= Z k(x, ;) Z k(x,x;)
{Z yi=+1} {Z yi=—1}

b = % (77?1/2 Z ]f([EZ',ZCj> — mia_ Z ]C(ZCZ', [Eﬂ) .

) yimy=—1} 10.9)yi=yj=+1}

e provides a geometric interpretation of Parzen windows
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An Example of a Kernel Algorithm, ctd.

e [ixercise: derive the Parzen windows classifier by computing the
distance criterion directly

e SVMs (ppt)
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An example of a kernel algorithm, revisited

X compact subset of a separable metric space, m,n € N.

Positive class X = {z,...,x;} C X
Negative class Y :={y1,...,yn} C X

RKHS means p(X) = =S k(z;,-), p(Y) = % k().

m 1=
Get a problem if p(X) = pu(Y)!
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When do the means coincide?

k(z,2") = (x,2'): the means coincide
k(z,2") = ((x,2") + 1)%:  all empirical moments up to order d coincide

k strictly pd: X=Y.

The mean “remembers’ each point that contributed to it.
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Proposition 1 Assume X.,Y are defined as above, k 1s
strictly pd, and for alli,j, x; # xj, and y; # y;.
If for some «;, 3; € R — {0}, we have

Z&’Lk(x’m) — Zﬂ]k(ij)a (1)
1=1 j=1

then X =Y.
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Proof (by contradiction)

W.lo.g., assume that x1 ¢ Y. Subtract > 5 8;k(y;, .) from (1),

and make it a sum over pairwise distinct points, to get
1

where z; = x1,v; = a1 # 0, and
20,--- € XUY —{x1}, 72, €R.
Take the RKHS dot product with » ;v,k(zj,.) to get

0="> yivjk(z, 2j).
iJ

with v #£ 0, hence k cannot be strictly pd.
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The mean map

1 m
K X:(xb ,$m)HE;]€($@, )
satisfies
l — l —
(1(X), f) = <m§;k< ) f> - 2 flo
and
(X)) = s [((X) =Y, Pl = sup |25 1@ = 23 f(w|

Note: Large distance = can find a function distinguishing the
samples
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Witness function

f = rrmaAT thus f(2) o< (u(X) = (Y ), k(z, )

Witness f for Gauss and Laplace data

1
—f
08l = = = (Gauss |/
A Lap'ace
0.6} -

Prob. density and f

This tunction is in the RKHS of a Gaussian kernel, but not in the
RKHS of the linear kernel.
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The mean map for measures

p, q Borel probability measures,
E, bz, 7)), Eppoglb(z,2')] < oo (||k(z,.)|| < M < oo is sufficient)

Define

p:p = Egoplk(z, )|
Note

(1(p), f) = Egmplf ()]

and

lu(p) — wiq)ll = ||;le121 Eonplf ()] = Exnglf(2)]].

Recall that in the finite sample case, for strictly p.d. kernels, u
was injective — how about now?

47, 17)
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Theorem 2 /15, 13/

p=qg<= sup |Epp(f(z)) —Ezql(f(z))| =0,
fEC(X)

where C(X) is the space of continuous bounded functions on

X.
Combine this with

lu(p) = mlq)ll = ||?ng1 Egnplf(2)] = Egnglf(2)]].

Replace C'(X) by the unit ball in an RKHS that is dense in C'(X)

— universal kernel [49], e.g., Gaussian.

Theorem 3 [19] If k is universal, then
p=q <= |ulp) —pgl =0
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e /; is invertible on its image
M = {u(p) | pis a probability distribution}
(the “marginal polytope”, [57])

e generalization of the moment generating function of a RV «
with distribution p:

My(.) = Bynp ]

This provides us with a convenient metric on probability distribu-
tions, which can be used to check whether two distributions are
different — provided that u is invertible.

B. Scholkopf, MLSS Tiibingen 2013



Fourier Criterion

Assume we have densities, the kernel is shift invariant (k(z,y) =
k(x —y)), and all Fourier transforms below exist.
Note that p is invertible ift

/ bz — y)ply) dy — / ke — y)aly) dy — p=q

1.e.

Ep—q)=0=p=q
(Sriperumbudur et al., 2008)

E.g., p is invertible if k has full support. Restricting the class of
distributions, weaker conditions suffice (e.g., if k£ has non-empty in-
terior, u is invertible for all distributions with compact support).
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Fourier Optics

Application: p source of incoherent light, I indicator of a finite
aperture. In Fraunhofer diffraction, the intensity image is o< p*f 2.
Set k = I2, then this equals w(p).

This k does not have full support, thus the imaging process is not
invertible for the class of all light sources (Abbe), but it is if we
restrict the class (e.g., to compact support).

Harmeling et al., CVPR 2013
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Application 1: Two-sample problem [19]

X, Y 1i1.d. m-samples from p, q, respectively.

|1(p) = 1(@)II° =Ey ey [k, )] = 2By g [k, )] + By g [k, )]
=E, vpyy~q [P((2,9), (2 )]
with
h((z,y), (@, y) = k(z,2') — k(z,y) — k(y, ') + k(y,y).

Define

D(p,9)* = B wpyy~ghl(2,9), (z',1)))
D(X,Y)? (@3, i), (25, 95))-

i#]

D(X,Y)? is an unbiased estimator of D(p, q)2.
[t’s easy to compute, and works on structured data.
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Theorem 4 Assume k is bounded.
D(X,Y)* converges to D(p,q)? in probability with rate O(m_%).

This could be used as a basis for a test, but uniform convergence bounds are often loose..

Theorem 5 We assume E (h?) < co. When p # ¢, then Vm(D(X,Y)? — D(p,q)?)
converges in distribution to a zero mean Gaussian with variance

o =4 (E (Eh(z,2))?] — [B.(h(z z’))]Q) .

When p = q, then m(D(X,Y)? — D(p, q)?) = mD(X,Y)? converges in distribution to

=1
where q ~ N(0,2) i.i.d., \; are the solutions to the eigenvalue equation
| B ta)dp(o) = At

and k(z;,x;) = k(zg,x;) — Bok(ry, 2) — Ek(x, x;) + E, vk(z,2") is the centred RKHS
kernel.
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Application 2: Dependence Measures

Assume that (z,y) are drawn from pzy, with marginals py, py.

Want to know whether pyy, factorizes.
2, 16]: kernel generalized variance

20, 21|: kernel constrained covariance, HSIC

Main idea |25, 35]:
r and y independent <= V bounded continuous functions f, g,
we have Cov(f(z),g(y)) = 0.
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k kernel on X x Y.

(pay) = Big yyopy, F((2,9), )]
1(pz X py) == Egep,y~py k((z,y), )] -

Use A := H,u(pxy) — 1(pr X py)H as a measure of dependence.

For k((z, y), (¢", ) = ka(z, 2")ky(y, y"):
A? equals the Hilbert-Schmidt norm of the covariance opera-
tor between the two RKHSs (HSIC), with empirical estimate

m™tr HK,HK,, where H = I — 1/m [20, 48].
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Witness function of the equivalent optimisation problem:

15

0.5¢

Dependence witness and sample

Xor

0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

Application: learning causal structures (Sun et al., ICML 2007; Fuku-

mizu et al., NIPS 2007))
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Application 3: Covariate Shift Correction and Local
Learning

training set X = {(x1,41),- .., (Tm,ym)} drawn from p,
test set X' = { (2], y1),....(z},,y},) } from p’ # p.

L
Assume Pylz = Py

44]: reweight training set
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Minimize
2

m
N k(i) — p(X)| +ABI3 subject to B >0, Y B =1.
1=1 p

Equivalent QP:

miniﬁmize %@T (K+X1)8-38"1

subject to 8; > 0 and Zﬁi =1,
1

where Kjj = k(xg, x5), I = (k(xg, ), p(X')).

Experiments show that in underspecified situations (e.g., large ker-
nel widths), this helps [24].

X' = {x/ } leads to a local sample weighting scheme.
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The Representer Theorem

Theorem 6 Given: a p.d. kernel & on X X X, a training set

(X1,Y1)s - -, (Tm,ym) € XX R, a strictly monotonic increasing

real-valued function €2 on |0, 00|, and an arbitrary cost function
¢ (X xR = RU {0}

Any f € Hp minimizing the regqularized risk functional

c((@1,y1, f(@1))s - s (@ yms flam) + QA (3)

admits a representation of the form
m

fO)=) . aiklz,.).
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Remarks

e significance: many learning algorithms have solutions that can
be expressed as expansions in terms of the training examples

e original form, with mean squared loss

A1y @) @y f o)) = — (1 = ()

and Q([| f])) = Al (A > 0): [27
e generalization to non-quadratic cost functions: [10]
e present form: |39

e recent generalizations: 31, 12)]
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Proof

Decompose f € H into a part in the span of the k(x;,.) and an
orthogonal one:

f= Z k(i) + f1,

[
<fJ_7 k(ﬂ?], )> = 0.
Application of f to an arbitrary training point z; yields

fla) = (f k(z;,.)
— <Z a;k(x;,.)+ [, k(llfj, )>
— Z&Z<k($@,),k(x37)>a

where for all 7

independent of f.
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Proof: second part of (3)

Since f| is orthogonal to ) . ak(z;,.), and €2 is strictly mono-
tonic, we get

A1) = 2 (11D, ak(zi, )+ f1]])

0 W 13 k(s )2+ fﬁ)

(I, k(s ) @

with equality occuring it and only if f| = 0.
Hence, any minimizer must have f; = 0. Consequently, any
solution takes the form

f=) aiklz,.)

[V
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Application: Support Vector Classification

Here, y; € {£1}. Use
1
c((zi, i [ (@i));) = szax (0,1 —wif (z)),

and the regularizer Q (|| f]]) = ||f]*
A — 0 leads to the hard margin SVM
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Further Applications

Bayesian MAP FEstimates. lIdentify (3) with the negative log
posterior (cf. Kimeldorf & Wahba, 1970, Poggio & Girosi, 1990),
1.e.

o exp(—c((x;,y;, f(x;));)) — likelihood of the data

o exp(—S2(|| f||)) — prior over the set of functions; e.g., Q(|| f|) =
M| f|I? — Gaussian process prior [59] with covariance function

k

e minimizer of (3) = MAP estimate

Kernel PCA (see below) can be shown to correspond to the case

of

y

2
(@i, Yis F(24))i=1....m) = 0 if 5 (f(f’fi) — > f(ivj)) =1

oo otherwise

\
with ) an arbitrary strictly monotonically increasing function.
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Kernel PCA [40]

linear PCA | k(x,y) = (x-y)
A Re

kernel PC/ k(x,y) = (x-y)d

X .-
,"’X‘
ToX
X

S ’, \\ (,rr’ ) . »
XXy
T F o S

k .................. > X " H
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Kernel PCA, 11

] — T
X, . X—->H, (C=— O(x:)D(x;
L1, y Lmy S ) — ) mjzl ([If]) (SC])

Eigenvalue problem
1 m
AV =C0CV = — O(x;), V) D(x,;).
m]z:l< (x])v > (5’3])

For A 20, V € span{®(x1),...,P(xy,)}, thus

m
V=) ;)
i—1

and the eigenvalue problem can be written as
MNMP(xp), V) = (P(xy),CV) foralln=1,...,m
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Kernel PCA in Dual Variables

In term of the m x m Gram matrix

Kij = (P(x;), P(x)) = k(z;,25),
this leads to

mAKa = K
where o = (aq, ..., am) .
Solve
mia = Ko
— (Ap, ™)

(VEV =1 <= N\ (a",a") =1
thus divide o’ by /A,

B. Scholkopf, MLSS Tiibingen 2013



Feature extraction

Compute projections on the Eigenvectors
m
V" = Z oy ®(x;)
1=1
in H:

for a test point x with image ®(x) in H we get the features
m

(V% ®(x)) = Z ai ((z;), (x))

m
— Z &?k(aji) SI?)
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The Kernel PCA Map

Recall
o) X — le
r— K 3(k(zy,2),..., kam,x) "
If K = UDU' is K’s diagonalization, then K12 =

UD~Y/2UT. Thus we have
O (2) = UD VU T (k(2y, 2), ... k(zm, ) |

We can drop the leading U (since it leaves the dot product invari-
ant) to get a map

%PCA(CE) — D_1/2UT(I€(ZE’1, CC), s ,]{(Cl?m, x))—r

The rows of U " are the eigenvectors @’ of K, and the entries of

~1/2 1/2

the diagonal matrix D equal A,
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Toy Example with Gaussian Kernel

KPCA includes various spectral dimensionality reduction algo-
rithms as special cases with data-dependent kernels [22].
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Spectral clustering

K similarity matrix; Dj; = ) Y
Normalized cuts (Shi & Malik, 2000):

e map inputs to corresponding entries of the second smallest eigenvector of
the normalized Laplacian

L=I1—-D'?KD/2
e Partition them based on these values.

Meila € Shi (2001):

e map inputs to entries of leading eigenvectors of
D'K
e continue with k-means

Kernel PCA (1998):
e map test point x to RKHS, project on leading eigenvectors of K :

V", k(z,.)) = Z oM k() k() = Z o 'k(xy, )



Link Kernel PCA — Spectral Clustering

Projection of a training point x; onto the nth eigenvector equals
(Ka")y = Apad.

where (", ") = X\ 1.

The eigenvector o'* thus contains the projections of the training

set.

e for a connected graph, the normalized Laplacian has a single 0 eigenvalue.
[ts (pseudo-)inverse is the discrete Green’s function of the diffusion process
governed by L. It can be viewed as a kernel matrix, encoding the dot product
implying the commute time metric (Ham, Lee, Mika, Schélkopf, 2004)

e the kPCA matrix is centered, and thus has a single eigenvalue 0 (for strictly
p.d. kernel) that corresponds to the 0 eigenvalue of the normalized Laplacian.

e inversion inverts the order of the remaining eigenvalues.
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Conclusion

e the kernel corresponds to

— a similarity measure for the data, or
—a (linear) representation of the data, or

—a hypothesis space for learning,

e kernels allow the formulation of a multitude of geometrical algo-
rithms (Parzen windows, 2-sample tests, SVMs, kernel PCA,...)

For further information, cf.
http://www.kernel-machines.org.
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Support Vector Classifiers
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Separating Hyperplane

{X|<w,x>+b =0}

\
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Optimal Separating Hyperplane [54]

fro L [ix[<we+b=0

\
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Eliminating the Scaling Freedom [51]

Note: if ¢ # 0, then
{x|{w,x)+b=0} ={x]| (cw,x) + cb = 0}.
Hence (cw, ¢b) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.rt. X* =
{x1,..,xp} if ming e x [ (W, x;) + 0] = 1.
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Canonical Optimal Hyperplane
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Canonical Hyperplanes [51]

Note: if ¢ # 0, then
{x|{w,x)+b=0} ={x]| (cw,x) + cb = 0}.
Hence (cw, ¢b) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.r.t. X* =
{x1,..,xp} if ming e x [ (W, x;) + 0] = 1.

Note that for canonical hyperplanes, the distance of the closest
point to the hyperplane (“margin™) is 1/||w||:

' W . b 1
minxiex [ (i) + Tl | = T
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Theorem 7 (Vapnik [50]) Consider hyperplanes (w,x) =0
where w 18 normalized such that they are in canonical form

w.r.t. a set of points X* = {xq1,...,X,}, i.e.,
min | (w,x;) | = 1.
1=1,...,r

The set of decision functions fw(x) = sgn (x,w) defined on
X™ and satisfying the constraint ||[w|| < A has a VC dimension
satisfying

h < R?\%
Here, R 1is the radius of the smallest sphere around the origin
containing X*.
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Proof Strategy (Gurvits, 1997)

Assume that x1,...,X, are shattered by canonical hyperplanes
with ||wl| < A, ie., forall yq,...,y, € {£1},

y; (w,x;) > 1 foralli=1,...,r. (5)
Two steps:

e prove that the more points we want to shatter (5), the larger
I 3251 yixil| must be
e upper bound the size of || Y1 y;x;|| in terms of R

Combining the two tells us how many points we can at most shat-
ter.
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Part 1

Summing (5) over ¢ = 1,...,r yields

.
<W7 Zyixi >ZT.

By the Cauchy-Schwarz inequality, on the other hand, we have

r Tr T
<W, >y >§ Wl Dyl <A wixg
i—1 i=1 i=1

Combine both:

.

,

KS Zlyzxz : (6)
1=
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Part 11

Consider independent random labels y; € {1}, uniformly dis-
tributed (Rademacher variables).

E

T
> i
1=1

2

r

— ZE
i=1
r

=> E
i=1

r

=2

1=1

[

\ i

)
<y¢X¢, > ijj>
1=1

<y7;X7;,
J71

E [(yix;, yjX;)]

D UiXj | i >

+ E [(yixi, yixi)]

r T
2 2
=SB |y’ = Y il
1=1 1=1
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Part 11, ctd.

Since ||x;|| < R, we get

r
E Z Y; X4 < TR2.
1=1

e This holds for the expectation over the random choices of the
labels, hence there must be at least one set of labels for which
it also holds true. Use this set.

Hence

.
Z yixi| <rR*.
i=1
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Part I and II Combined

2 >
Part I: (§)” < 27— vixil]
Part 11 |37, yixill® < rR?

Hence
7"2 9
p S TR 9
1.€.,
r < R2A2,

completing the proot.
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Pattern Noise as Maximum Margin Regularization
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Maximum Margin vs. MDL — 2D Case

-~ -

Can perturb v by A~ with |[Avy| < arcsin% and still correctly
separate the data.
Hence only need to store v with accuracy A~y [39, 55].
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Formulation as an Optimization Problem

Hyperplane with maximum margin: minimize
2
gl
(recall: margin ~ 1/||wl|) subject to
yi - [(w,x;) +0] >1 fore=1...m

(i.e. the training data are separated correctly).
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Lagrange Function (e.g., [5])

Introduce Lagrange multipliers ozz- > 0 and a Lagrangian
L(w,b, ) :—HWH2 Zozz (w,x;)+b]—1).

L has to minimized w.r.t. the primal variables w and b and
maximized with respect to the dual variables o

e if a constraint is violated, then y; - ((w,x;) +b) — 1 < 0 —

- ; will grow to increase L — how far?

-w, b want to decrease L; i.e. they have to change such that
the constraint is satisfied. If the problem is separable, this
ensures that a; < oo.

o similarly: if y; - ((w,x;) +b) —1 > 0, then a; = 0: otherwise,
L could be increased by decreasing «; (KK'T conditions)
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Derivation of the Dual Problem

At the extremum, we have

0 0
C%L(W’b’a) 0, awL(W,b,a) 0,
1.e.
m
Z%‘yizo
1=1
and

m
W = Z QY%K
1=1
Substitute both into L to get the dual problem
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The Support Vector Expansion

m
W = Z QY
i=1

where for all 2 = 1,...,m either
yi - [(w,x;) +b] > 1 — «; = 0 — Xx; irrelevant
or

y; - [(w,x;) + b =1 (on the margin) — x; “Support Vector”
The solution is determined by the examples on the margin.

Thus
f(x) = sgn ((x, ‘;‘Q + )
= sgn (Z (X, %) + b) -

1=
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Why it is Good to Have Few SVs

Leave out an example that does not become SV — same solution.

Theorem [53]|: Denote #SV(m) the number of SVs obtained
by training on m examples randomly drawn from P(x,y), and E
the expectation. Then

E[#SV(m)]
m
Here, Prob(test error) refers to the expected value of the risk,

where the expectation is taken over training the SVM on samples
of size m — 1.

E [Prob(test error)| <
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A Mechanical Interpretation /8]

Assume that each SV x; exerts a perpendicular force of size a;
and sign y,; on a solid plane sheet lying along the hyperplane.

Then the solution is mechanically stable:

m

Z a;y; = 0 implies that the forces sum to zero

1=1
m

W = Z o,;y;X; 1mplies that the torques sum to zero,
1=1
via

> xixyia;-w/|wll =wx w/|w| = 0.

[
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Dual Problem

Dual: maximize

Z&Z — 3 Z O%O‘]yzyj<xu >

2,)=1
subject to

m
a; >0, 1=1,...,m, and chiyi:().

Both the final decision function and the function to be maximized
are expressed in dot products — can use a kernel to compute

(x4, %) = (D(x;), P(x5)) = k(zj, z).
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The SVM Architecture

f(x)=sgn(| X | +b) classificatior f(x)=sgn( Z A k(x,x;) +b)
A A, Ag A,y weights
K K k k | comparisonk(x,x;), €.9. Kk(x,x;)=(x-x;)®
I } ! ! K(xx)=exp(-tk-xi|P /
7 ) 4 4 support vector
X1 ... Xg k(x,x;)=tanhk(x-x;)+0)
/ input vectorx
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Toy Example with Gaussian Kernel

bz, 2/) = exp ([l = 2/|]?)
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Nonseparable Problems /3, 9]

If y; - ((w,x;) + b) > 1 cannot be satisfied, then a; — o0.

Modity the constraint to

yi - ((w,x;) +0) > 1 —¢
with
& >0

(“soft margin”) and add

m
C-2_&
1=1
in the objective function.
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Soft Margin SVMs

C-SVM [9]: for C' > 0, minimize
1 m
r(w.8) =S|wlI+C )&
1=1

subject to y; - ((W,x;) +b) > 1—¢&;, & >0 (margin 1/||w||)

v-SVM [41]: for 0 < v < 1, minimize
| |
riw,&p) = 5wl o+ - 306
(4

subject to y; - ((w,x;) +b) > p— &, & > 0 (margin p/||w]|)
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The v-Property

SVs: a; > 0
“margin errors:” &; > 0

KKT-Conditions =
e All margin errors are SVs.

e Not all SVs need to be margin errors.
Those which are not lie exactly on the edge of the margin.

Proposition:
1. fraction of Margin Errors < v < fraction of SVs.
2. asymptotically: ... = v = ...
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Duals, Using Kernels

C-SVM dual: maximize
1
Wie)=) a;- 52@.7]. ;oY ik (X, X )
subject to 0 < ay; < C, > .y = 0.
v-5VM dual: maximize
1
Wie) = —5 Zij oYy k(Xi, X )

subject to 0 < a; < - Yoy =0 > ca; > v

M’
In both cases: decision function:

f(x) = sgn (Z:’il a;yik(x, %) + b)
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Connection between -SVC and (-SVC

Proposition. If v-SV classification leads to p > 0, then C-SV
classification, with C' set a priori to 1/p, leads to the same decision
function.

Proof. Minimize the primal target, then fix p, and minimize only over the
remaining variables: nothing will change. Hence the obtained solution wy, by, &,
minimizes the primal problem of C-SVC, for C' = 1, subject to

yi - ((xi, W) +b) > p—&.
To recover the constraint

yi - ((xi, W) +b) > 1 =&,

rescale to the set of variables w' = w/p, b’ = b/p, & = &/p. This leaves us, up
to a constant scaling factor p*, with the C-SV target with C' = 1/p.
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SVM Training

e naive approach: the complexity of maximizing
m 1 m
Wia) = Zizl Q; — 5 Zi,jzl Oéq;Oéjyiyjk(Xia Xj)
scales with the third power of the training set size m

e only SVs are relevant — only compute (k(x;,x;));; for SVs.

Extract them iteratively by cycling through the training set in
chunks [50].

e in fact, one can use chunks which do not even contain all SVs
32]. Maximize over these sub-problems, using your favorite
optimizer.

e the extreme case: by making the sub-problems very small (just
two points), one can solve them analytically [33].

e http://www.kernel-machines.org /software.html
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MNIST Benchmark

handwritten character benchmark (60000 training & 10000 test

examples, 28 x 28)
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MNIST Error Rates

Classifier test error | reference
linear classifier 8.4% u
3-nearest-neighbour 2.4% u

SVM 1.4% S|
Tangent distance 1.1% 45)
LeNetd 1.1% 28]
Boosted LeNet4 0.7% 28]
Translation invariant SVM | 0.56% | [11

Note: the SVM used a polynomial kernel of degree 9, corresponding to a feature

space of dimension ~ 3.2 - 10%.
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Regularization Interpretation of Kernel Machines

The norm in H can be interpreted as a regularization term (Girosi
1998, Smola et al., 1998, Evgeniou et al., 2000): if P is a regular-
ization operator (mapping into a dot product space D) such that
k is Green’s function of P*P. then

Iwll = [IP£1,

W= Z:’il a; P(z;)
fla) =) aiklz;, ).

Example: for the Gaussian kernel, P is a linear combination of
differential operators.

where

and
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= ch@oz]< (x4, ), ()>
= Zoz@oz] (x;,.), (P*Pk)(z;,.))

— ZCV@@] P/f)(il?z, ')7 (P/f)(il?], )>@
2,]
— <(PZ Ozik)(l’i, .), (Pz@jk)(xy )>
i J
= [P,
using f(x) = > _; aik(z;, x).
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