Kernel Quiz
$k\left(x, x^{\prime}\right)=1$
(by default, $x, x^{\prime} \in \mathcal{X}$, with \mathcal{X} a nonempty set)

$$
k\left(x, x^{\prime}\right)=-1 \quad k\left(x, x^{\prime}\right)=0
$$

$$
k_{f}\left(x, x^{\prime}\right)=f(x) k\left(x, x^{\prime}\right) f\left(x^{\prime}\right), \text { with } k \text { p.d. and } f \text { a real-valued function }
$$

$$
k_{f}\left(x, x^{\prime}\right)=(-f(x)) k\left(x, x^{\prime}\right)\left(-f\left(x^{\prime}\right)\right), \text { with } k \text { p.d. and } f \text { a real-valued function }
$$

$$
k\left(x, x^{\prime}\right)=\cos \left(\angle\left(x, x^{\prime}\right)\right), \text { with } \mathcal{X} \text { a dot product space }
$$

$$
k\left(x, x^{\prime}\right)=\max \left\{x, x^{\prime}\right\}, \text { for } x, x^{\prime} \in \mathbb{R}
$$

$$
k\left(x, x^{\prime}\right)=\min \left\{x, x^{\prime}\right\}, \text { for } x, x^{\prime} \in \mathbb{R}_{+}
$$

$$
k\left(x, x^{\prime}\right)=k^{\prime}\left(f(x), f\left(x^{\prime}\right)\right) \text { for } f: \mathcal{X} \rightarrow \mathcal{Y} \text { and } k^{\prime} \text { p.d. on } \mathcal{Y} \times \mathcal{Y}
$$

$$
k\left(x, x^{\prime}\right)=\delta_{x, x^{\prime}}
$$

$$
k\left(x, x^{\prime}\right)=I_{\left\{\left(x, x^{\prime}\right) \mid f(x)=f\left(x^{\prime}\right)\right\}}, \text { for } f: \mathcal{X} \rightarrow \mathcal{Y}\left(" \text { equivalence kernel of } f^{\prime \prime}\right)
$$

$$
k\left(x, x^{\prime}\right)=\exp \left(k^{\prime}\left(x, x^{\prime}\right)\right) \text { for } k^{\prime} \text { p.d. }
$$

$$
\left.k\left(x, x^{\prime}\right)=\log \left(k^{\prime}\left(x, x^{\prime}\right)\right) \text { for } k^{\prime} \text { p.d. } \quad \text { (can be p.d. though }\right)
$$

Kernel Quiz, II (by default, $x, x^{\prime} \in \mathcal{X}$, with \mathcal{X} a nonempty set)
$k(A, B)=P(A \cap B)$ where P is a probability measure
$k(A, B)=P(A \cap B)-P(A) P(B)$ where P is a probability measure
$k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$ for all σ
$k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{3}}{2 \sigma^{2}}\right)$ for all σ
$k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|x-x^{\prime}\right\|^{1}}{2 \sigma^{2}}\right)$ for all σ
$k\left(X, X^{\prime}\right)=H(X)+H\left(X^{\prime}\right)-H\left(X, X^{\prime}\right)$ where X, X^{\prime} discrete RVs (mutual information) same, with $|\mathcal{X}| \leq 3$ (Jakobsen, 2013)

Let $\mathcal{X}=\{1,2, \ldots\}$. Which of the two following kernels is positive definite?
(a) $k\left(x, x^{\prime}\right)=\operatorname{lcm}\left(x, x^{\prime}\right)$ (least common multiple)
(b) $k\left(x, x^{\prime}\right)=\operatorname{gcd}\left(x, x^{\prime}\right)$ (greatest common divisor)

Let $n, m \in \mathbb{N}$.
Let $\left(p_{i}\right)_{i \in \mathbb{N}}=(2,3,5,7,11, \ldots)$ be the sequence of primes.
Let $\phi_{i}(n)$ be the frequency with which p_{i} occurs as a prime factor in n.

We have

$$
\operatorname{gcd}(n, m)=\prod_{i}\left[p_{i}^{\min \left(\phi_{i}(n), \phi_{i}(m)\right)}\right],
$$

which is p.d. by all the properties we discussed yesterday ($\min (x, y), k\left(f(x), f\left(x^{\prime}\right)\right.$, $\left.\exp (k), k \cdot k^{\prime}, \lim _{n \rightarrow \infty} k_{n}\left(x, x^{\prime}\right), \ldots\right)$.

Thomas Provoost found a more fancy proof using the Euler totient function. This function is also used in (Bhatia, 2006). Bhatia additionally shows that the gcd kernel is infinitely divisible.
http://repository.ias.ac.in/2600/1/375.pdf

