
Robotics
Part II: From Learning Model-based Control

to Model-free Reinforcement Learning

Stefan Schaal
Max-Planck-Institute for Inte"igent Systems

Tübingen, Germany
&

Computer Science, Neuroscience, & Biomedical Engineering
University of Southern California, Los Angeles

sschaal@is.mpg.de
http://www-amd.is.tuebingen.mpg.de

1

Where Did We Stop ...

2

Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning

3

What Needs to Be Learned
in Learning Control?

Coordinate
Transformations

Unsupervised
Learning &

Classification

Control
Policies

Value
Functions

Internal
Models

The Majority of the Learning
Problems Involve Function Approximation

4

Characteristics of Function
Approximation in Robotics

• Incremental Learning
– large amounts of data
– continual learning
– to be approximated

functions of growing and
unknown complexity

• Fast Learning
– data efficient
– computationally efficient
– real-time

• Robust Learning
– minimal interference
– hundreds of inputs

5

Linear Regression: One of the Simplest
Function Approximation Methods

- find the line through all
data points

- imagine a spring
attached between the
line and each data point

- all springs have the
same spring constant

- points far away generate
more “force” (danger of
outliers)

- springs are vertical
- solution is the minimum

energy solution achieved
by the springs

x

y

f x() = θxRecall the simple adaptive control model with:

6

Linear Regression: One of the Simplest
Function Approximation Methods

• The data generating model:

• The Least Squares cost function

• Minimizing the cost gives
the least-square solution

y = wT x +w0 + ε = w
Tx + ε

where x = xT ,1⎡⎣ ⎤⎦
T

,w =
w
w0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, E ε{ } = 0

J = 1
2
t − y()T t − y() = 1

2
t −Xw()T t −Xw()

where : t =

t1
t2
…
tn

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

, X =

x1
T

x2
T

…
xn
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∂ J
∂w

= 0 = ∂ J
∂w

1
2
t −Xw()T t −Xw()⎛

⎝⎜
⎞
⎠⎟ = − t −Xw()T X

= −tTX + Xw()T X = −tTX +wTXTX
thus : tTX = wTXTX or XT t = XTXw

result : w = XTX()−1XT t

7

Recursive Least Squares:
An Incremental Version of Linear Regression

• Based on the matrix inversion theorem:

• Incremental updating of a linear regression model

- NOTE: RLS gives exactly the same solution as linear regression if no forgetting

Initialize: Pn = I 1
γ

where γ <<1 (note P ≡ XTX()−1

For every new data point x,t()
(note that x includes the bias):

Pn+1 = 1
λ
Pn − P

nxxTPn

λ + xTPnx
⎛
⎝⎜

⎞
⎠⎟

 where λ =
1 if no forgetting
<1 if forgetting

⎧
⎨
⎪

⎩⎪

Wn+1 =Wn + Pn+1x t −WnTx()T

A −BC()−1 = A−1 +A−1B I+CA−1B()−1CA−1

8

Traversing Zoubin’s Diagram

Linear
Regression

Logistic
Regression

Bayesian
Linear

Regression

GP
Classification

Bayesian
Logistic

Regression

GP
Regression

Bayesian
Kernel

Regression

?

Kernel
Regression

Kernel
Classification

9

Making Linear Regression Nonlinear:
Locally Weighted Regression

Region of Validity

Linear
ModelReceptive Field

Activation w

0

1

2θ k

J = wi yi − xi
Tβ()2

i=1

N

∑
Note: Using GPs, SVR, Mixture Models, etc., are other ways to nonlinear regression

10

Locally Weighted Regression

• Piecewise linear function approximation,
• Each local model is learned from only local data
• No over-fitting due to too many local models (unlike RBFs, ME)

11

Locally Weighted Regression

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[]T

Linear Model:

w = exp −
1
2
x − c()T D x − c()⎛

⎝
⎞
⎠ where D =MTM

Weighting Kernel:

y =
wiyk

i=1

K

∑

wi
i=1

K

∑
Combined
Prediction:

learned with

Recursive weighted least squares:

βk
n+1 = βk

n + wPk
n+1x y − xTβk

n()T

Pk
n+1 =

1
λ
Pk
n −

Pk
n xxTPk

n

λ
w
+ xTPk

n x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

learned with
Gradient descent in penalized leave-one-out
local cross-validation (PRESS) cost function:

Mk
n+1 =Mk

n −α ∂J
∂M

J = 1

wk ,i
i=1

N

∑
wk ,i yi − ŷk ,i,− i

2

i=1

N

∑ + γ Dk ,ij
2

i=1, j=1

n

∑

add model when if min
k

wk() < wgen

 createnewRFat cK +1 = x

12

Locally Weighted Regression

z = max exp −10x 2(),exp −50y2(),1.25exp −5 x2 + y2()()()

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕
⊕

⊕

⊕

⊕

⊕

⊕

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
x

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕ ⊕
⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕

⊕
⊕

⊕

⊕
⊕

⊕

-1.5

-1

-0.5

0

0.5

1

1.5

-1.5 -1 -0.5 0 0.5 1 1.5
x

13

Locally Weighted Regression
Inserted into Adaptive Control

14

Locally Weighted Regression

Learn forward model of task dynamics,
then computer controller

15

Locally Weighted Regression

Learn forward model of task dynamics,
then computer controller

16

• Breaks down in high-dimensional spaces
• Computationally expensive and numerically brittle due

to (incremental) dxd matrix inversion
• Not compatible with modern probabilistic statistical

learning algorithms
• Too many “manual tuning parameters”

Criticism of Locally Weighted Learning

17

The Curse of Dimensionality

• The power of local learning comes from exploiting the
discriminative power of local neighborhood relations.

• But the notion of a “local” breaks down in high dim.
spaces!

18

The Curse of Dimensionality
Movement Data is Locally Low Dimensional

1 11 21 31 41
0

0.05

0.1

0.15

0.2

0.25

P
ro
b
a
b
ili
ty

Dimensionality

/ /

105

/ /

105

Derived with Bayesian Factor Analysis

Thus, locally weighted learning can work
if used with local dimensionality reduction!

19

A Bayesian Approach to
Locally Weighted Learning

• Linear Regression as a Graphical Model

yi = xi
Tβ + ε

ε N 0,ψ y()
β = XTX()−1Xy

20

A Bayesian Approach to
Locally Weighted Learning

• Inserting a Partial-Least-Squares-like projection as a
set of hidden variables

zi,m = xi,mβ j +ηm

yi = zi,m
m=1

d

∑ + ε

ε N 0,ψ y()
ηm N 0,ψ z,m()

21

A Bayesian Approach to Locally Weighted
Learning

• Robust linear regression with automatic relevance
detection (ARD, sparsification)

zi,m = xi,mβ j +ηm

yi = zi,m
m=1

d

∑ + ε

ε N 0,ψ y()
ηm N 0,ψ z,m()
βm N 0, 1

αm

⎛
⎝⎜

⎞
⎠⎟

αm Gamma aα ,bα ,()

22

A Full Bayesian Treatment of Locally
Weighted Learning

• The final model for full Bayesian parameter adaptation
for regression and locality

yi

…

i = 1,..,Nψ y

xi1 xi2 xid

zi1 zi2 zid bdb1

ψ z1
ψ z2

b2

ψ zd

wi1 wi2 wid

h1 h2 hd

23

Locally Weighted Learning In High
Dimensional Spaces

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-0.5

0

0.5

1

1.5

xy

z TextEnd

• Learning the “cross” function in 20-dimensional space

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-0.5

0

0.5

1

1.5

xy

z TextEnd

24

Locally Weighted Learning In High
Dimensional Spaces

• Learning the “cross” function in 20-dimensional space

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

10

20

30

40

50

60

70

1000 10000 100000

n
M

S
E

 o
n

 T
e

s
t

S
e

t

#
R

e
c
e

p
ti
v
e

 F
ie

ld
s
 /

 A
v
e

ra
g

e
 #

P
ro

je
c
ti
o

n
s

#Training Data Points

2D-cross

10D-cross

20D-cross

25

Locally Weighted Learning In High
Dimensional Spaces

• Learning internal models in 90 dimensional space

26

Locally Weighted Learning In High
Dimensional Spaces

• Learning inverse kinematics in 60 dimensional space

27

Locally Weighted Learning In High
Dimensional Spaces

• Skill learning

28

Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning

29

Given: A Parameterized Policy
and a Controller

Note: we are now starting to address planning,
i.e,. where do desired trajectories come from?

30

Trial & Error Learning
Reinforcement Learning from Trajectories

• Problem:
– How can a motor system learn a

novel motor skill?
– Reinforcement learning is a

general approach to this
problem, but little work has been
done to scale to the high-
dimensional continuous state-
action domains of humans

• Approach:
– Teach with imitation learning the

initial skill using a parameterized
control policy

– Provide an objective function for
the skill

– Perform trial-and-error learning
from exploratory trajectories

31

Reinforcement Learning Terminology

• Policies
– perceived state to action

mapping (can be
probabilistic)

• Reward functions
– maps the perceived state-

action pair into a a single
number, an immediate reward
(stochastic)

• Value functions
– maps the state into the

accumulated expected
reward that would be
received if starting in the state

• Models
– predicts the next state given

the current state and action
(can be probabilistic)

Objective: Optimize Reward!

l Policy: what to do
l Reward: what is good
l Value: what is good because it
predicts reward

l Model: what follows what

32

Value Functions

• The value of a state is the expected return starting from
that state; depends on the agent’s policy:

• The value of taking an action in a state under policy π
is the expected return starting from that state, taking
that action, and thereafter following π :

State - value function for policy π :

V π (x) = Eπ Rt xt = x{ } = Eπ γ krt+ k+1 xt = x
k=0

∞

∑⎧⎨
⎩

⎫
⎬
⎭

Action - value function for policy π :

Qπ (x,u) = Eπ Rt xt = x,ut = u{ } = Eπ γ krt+ k+1 xt = x,ut = u
k=0

∞

∑⎧⎨
⎩

⎫
⎬
⎭

33

Bellman Equation for a Policy π

The basic idea:

So: V π (x) = Eπ Rt xt = x{ }
= Eπ rt+1 + γV xt+1() xt = x{ }

34

Bellman Optimality Equation for V*

• The value of a state under an optimal policy must
equal the expected return for the best action from that
state:

 is the unique solution of this system of equations.V∗

V * x() = max
u∈A(x)

Qπ x,u()
= max
u∈A(x)

E rt+1 + γV * xt+1 | xt = x,ut = u(){ }

35

Bellman Optimality Equation for Q*

• The value of a state/action under an optimal policy
must equal the expected return for this action from that
state, and then following the optimal policy:

Q∗(x,u) = E rt+1 + γ maxu ' Q
∗(xt+1,u ') xt = x,ut = u{ }

 is the unique solution of this system of equations.Q∗

36

Example: Learning a Pendulum Swing-Up

Value FunctionPolicy

Note: Both policy and value function are
rather complex landscapes with
discontinuities!

37

Some More Exciting Examples

38

State-Based vs. Trajectory-based
Reinforcement Learning

• From about 1980-2000, value function-based (i.e., state-based)
reinforcement learning has been dominant (textbook Sutton&Barto)
– Pros:

- well-understood theory
- convergence proofs for discrete state-action systems
- a useful set of algorithms to work with (model-based and model-free)
- ideally a globally optimal solution

– Cons:
- problematic in continuous state-action spaces (max-operator in continuous spaces)
- curse of dimensionality in high-dimensional systems
- hard to combine with function approximation
- greed (= agressive) updating

• Trajectory-based reinforcement learning
– Pros:

- can work in high dimensional continuous state-action spaces
- does not suffer from the curse of dimensionality

– Cons:
- Locally optimal solutions
- classical methods learn very slowly

39

Trajectory-based Reinforement Learning
with Parameterized Policies

u t() = π x t(),t,α()
or

xd t() = π xd t(),t,α()

Example: Dynamic Systems Policies,
initalized by imitation

τ y =α z βz g − y()− y() +
wibix

i=1

k

∑

wi
i=1

k

∑
τ x = −α xx

40

Trajectory-based Reinforcement Learning

• Define a cost function along the trajectory:

• And a parameterized control policy (e.g., a movement
primitive)

• Optimize J with respect to parameters b, e.g., by
gradient descent

 τ y = f y,goal,b()

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

bn+1 = bn +α ∂J
∂b

41

Example: Learning with Natural Gradients

Goal: Hit ball to fly far Note: about 150-200 trials are needed.

42

Reinforcement Learning from Trajectories

• State-of-the-art of Reinforcement Learning from
Trajectories:
- Given the cost per trajectory :

- The motor primitives with parameters b:

– RL with Natural Gradients

– Probabilistic RL with Reward-Weighted Regression

– Trajectory-based Q-learning (fitted Q-iteration)
- an actor-critic based method based on an action-value function over trajectories

– RL with path-integrals (a probabilistic, model-based/model-free
approach derived from stochastic optimal control)

bnew = bold +α ∂JNAC
∂b

 τ y = f y,goal,b()

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

τ

bnew ∝ Rτbτ
T
∑ / Rτ

T
∑

43

Reinforcement Learning
Based on Path Integrals

• Pre-requisites

Cost Function:

rt = q(xt) +
1
2
ut
TRut

Jxt = Ext qT + rt ' dt '
t '= t

T

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

→ Goal: find commands u that minimize this cost

System Dynamics (Control-Affine):
x = f x,t() +G x() u t() + ε t()() = F x,u,t()

Note: this is a more
structured approach

to RL

44

Reinforcement Learning
Based on Path Integrals

• Sketch of the Path-Integral Derivation
Stochastic HJB Equations:

−∂tV xt ,t() = min
ut:tm

rt + ∂xV xt ,t()T F x,u,t() + 1
2
Tr Ω x,u,t()∂x2V xt ,t(){ }⎡

⎣⎢
⎤
⎦⎥

min
ut:tm

1
2
ut
TRut + qt + ∂xV xt ,t()T f x,t() + ∂xV xt ,t()T G x()u t() + 1

2
Tr G x()Σ G x()T ∂x2V xt ,t(){ }⎡

⎣⎢
⎤
⎦⎥
= 0

ut
TR + ∂xV xt ,t()T G xt() = 0

ut = −R−1G xt()T ∂xV xt ,t()

45

Reinforcement Learning
Based on Path Integrals

• Sketch of the Path-Integral Derivation

−∂tV xt ,t() = min
ut:tm

rt + ∂xV xt ,t()T F x,u,t() + 1
2
Tr Ω x,u,t()∂x2V xt ,t(){ }⎡

⎣⎢
⎤
⎦⎥

ut = −R−1G xt()T ∂xV xt ,t()
x = f x,t() +G x() u t() + ε t()()

−∂tV xt ,t() = −
1
2
∂xV xt ,t()T G x()R−1G x()T ∂xV xt ,t() + qt + ∂xV xt ,t()T f x,t() + 1

2
Tr G x()Σ G x()T ∂x2V xt ,t(){ }

46

Reinforcement Learning
Based on Path Integrals

• Sketch of the Path-Integral Derivation
−∂tV xt ,t() = −

1
2
∂xV xt ,t()T G x()R−1G x()T ∂xV xt ,t() + qt + ∂xV xt ,t()T f x,t() + 1

2
Tr G x()Σ G x()T ∂x2V xt ,t(){ }

∂tψ xt ,t() = 1
λ
ψ xt ,t()qt − ∂xψ xt ,t()T f x,t() − 1

2
Tr G x()Σ G x()T ∂2xψ xt ,t(){ }

Log-Transformation Trick:
V xt ,t() = −λ logψ xt ,t()

Simplification:
λR−1 = Σ

Chapman Kolmogorov PDE: 2nd Order and Linear

47

Reinforcement Learning
Based on Path Integrals

• Sketch of the Path-Integral Derivation

∂tψ xt ,t() = 1
λ
ψ xt ,t()qt − ∂xψ xt ,t()T f x,t() − 1

2
Tr G x()Σ G x()T ∂2xψ xt ,t(){ }

Application of Feynman-Kac Theorem:
A numerical method to solve certain PDEs

ψ xt ,t() = Eτ ψ xT ,T()exp −
1
λ
qt ' dt

t '= t

t '=T

∫ '
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

48

Reinforcement Learning
Based on Path Integrals

• Sketch of the Path-Integral Derivation
ψ xt ,t() = Eτ ψ xT ,T()exp −

1
λ
qt ' dt

t '= t

t '=T

∫ '
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ut = −R−1G xt()T ∂xV xt ,t()

A bit of algebra ...

ut = Eτ wτR
−1G xt()T G xt()R−1G xt()T()−1

G xt()ε t{ }
Optimal Control Law

49

Path Integral RL Applied to
Parameterized Policies (Motor Primitives)

• Note that a version of motor primitives can be written as
control affine stochastic differential equations

- ε is interpreted as intentionally injected exploration noise
- the parameters θ are the control vector
- f(x) is the spring-damper of the primitives
- g(x) are the basis functions of the function approximator

• It is also necessary to create a iterative version of path
integral optimal control
- the original path integral optimal control framework explores only based on the

passive dynamics, i.e., u=0

x = f x() + gT θ + ε()

50

PI2 Reinforcement Learning

• For parameterized policies like dynamic motor
primitives, a beautifully simple algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.
2) We can write the cost to go from every time step t of the trajectory as:

Rt = qT + ri
i= t

T

∑
3) The probability of a trajectory becomes

P ξt
k() =

exp − 1
λ
Rt
k⎛

⎝⎜
⎞
⎠⎟

exp − 1
λ
Rt

j⎛
⎝⎜

⎞
⎠⎟j=1

K

∑
4) Update the parameter θ of the motor primitive as

Δθt = P ξt
k()R

−1gk (xt)g
k (xt)

T

gk (xt)
TR−1gk (xt)k=1

K

∑ ε kt

5) Final parameter update

θ new = θ old + Δθt

Note that there a NO open
tuning parameters except for

the exploration noise

51

PI2 Reinforcement Learning

• The Intuition of Path Integral Reinforcement Learning
- Generate multiple trials i

with some variation, e.g.,
due to noise or exploration

- For every time t, compute
the cost Rt

i for every trial:

- Convert the cost into a positive
weight

- Update the motor command at every time step to
be the reward weighted average of all experienced
commands in the trial

Rt
i = qT + q(xt) +

1
2
ut
TRut

t

T

∫ dτ t

wt
i = exp −λRt

i()

ut
new =

wt
iut

i

i
∑

wt
i

i
∑

Surprisingly, this
intuition turns out
to be the optimal
solution

52

PI2 Reinforcement Learning:
Some Remarks

• PI2 can be model-based to model-free

• PI2 can optimize trajectory plans, controllers, or both
• PI2 has only one open parameter, i.e., the level of

exploration noise
• PI2 allows a rather simple derivation of inverse

reinforcement learning

Rigid Body Dynamics: q =M q()−1 u −C q, q() q +G q()()
Control Law: u = u ff +K p qd − q() +KD qd − q()

Motor Primitives: qid = α z βz g
i − qid() − qid() + ψTθ

53

Example: Results on 2D Reaching
Through a Via Point

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 10 10
0

10
00

10
00

0
15

00
0

Co
st

Number of Roll-Outs

-0.4

0.1

0.6

0 0.5 1

y
[m

]
x [m]

Initial
PI2
REINFORCE
PG
NAC

Via-Point

54

Example: Results on 20D Reaching
Through a Via Point

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 10 10
0

10
00

10
00

0
15

00
0

Co
st

Number of Roll-Outs

-0.4

0.1

0.6

0 0.5 1
y

[m
]

x [m]

Via-Point

55

Example: Results on 50D Reaching
Through a Via Point

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

1 10 10
0

10
00

10
00

0
15

00
0

Co
st

Number of Roll-Outs

-0.4

0.1

0.6

0 0.5 1
y

[m
]

x [m]

Via-Point

56

Example: Dog Jump

0

100

200

300

400

500

600

1 10 100

Co
st

Number of Roll-Outs

This is a 12 DOF motor system,
using 50 basis functions per
primitive. Learning converges after
about 20-30 trial! Performance
improved by 15cm (0.5 body lengths)

57

Reinforcement Learning
in Manipulation

Peter Pastor Mrinal Kalakrishnan Sachin Chitta
Research conducted at Willow Garage

58

Learning Locomotion over Rough Terrain

59

Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning

What Comes Next?

60

Towards Truly Autonomous Robots

Very Big Robots

Very Little Robots

61

