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Where Did We Stop ...
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Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning
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What Needs to Be Learned 
in Learning Control?

Coordinate
Transformations

Unsupervised
Learning &

Classification

Control
Policies

Value
Functions

Internal 
Models

The Majority of the Learning
Problems Involve Function Approximation
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Characteristics of Function 
Approximation in Robotics

• Incremental Learning
– large amounts of data
– continual learning
– to be approximated 

functions of growing and 
unknown complexity

• Fast Learning
– data efficient
– computationally efficient
– real-time

• Robust Learning
– minimal interference
– hundreds of inputs
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Linear Regression: One of the Simplest  
Function Approximation Methods

- find the line through all 
data points

- imagine a spring 
attached between the 
line and each data point

- all springs have the 
same spring constant

- points far away generate 
more “force” (danger of 
outliers)

- springs are vertical
- solution is the minimum 

energy solution achieved 
by the springs

x

y

f x( ) = θxRecall the simple adaptive control model with:

6



Linear Regression: One of the Simplest  
Function Approximation Methods

• The data generating model:

• The Least Squares cost function

• Minimizing the cost gives 
the least-square solution

 

y = wT x +w0 + ε = w
Tx + ε   

where  x = xT ,1⎡⎣ ⎤⎦
T
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w
w0

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
, E ε{ } = 0

J = 1
2
t − y( )T t − y( ) = 1
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t −Xw( )T t −Xw( )
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x1
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x2
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xn
T

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

∂ J
∂w

= 0 = ∂ J
∂w

1
2
t −Xw( )T t −Xw( )⎛

⎝⎜
⎞
⎠⎟ = − t −Xw( )T X

= −tTX + Xw( )T X = −tTX +wTXTX
thus : tTX = wTXTX or XT t = XTXw

result : w = XTX( )−1XT t
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Recursive Least Squares:
An Incremental Version of Linear Regression

• Based on the matrix inversion theorem:

• Incremental updating of a linear regression model

- NOTE: RLS gives exactly the same solution as linear regression if no forgetting

Initialize: Pn = I 1
γ

where γ <<1 (note P ≡ XTX( )−1

For every new data point x,t( )  
(note that x includes the bias):

Pn+1 = 1
λ
Pn − P

nxxTPn

λ + xTPnx
⎛
⎝⎜

⎞
⎠⎟

 where λ =
1 if no forgetting
<1 if forgetting

⎧
⎨
⎪

⎩⎪

Wn+1 =Wn + Pn+1x t −WnTx( )T

A −BC( )−1 = A−1 +A−1B I+CA−1B( )−1CA−1
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Traversing Zoubin’s Diagram

Linear
Regression

Logistic
Regression

Bayesian 
Linear

Regression

GP
Classification

Bayesian 
Logistic

Regression

GP
Regression

Bayesian
Kernel

Regression

?

Kernel
Regression

Kernel
Classification
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Making Linear Regression Nonlinear: 
Locally Weighted Regression

Region of Validity

Linear 
ModelReceptive Field

Activation w

0

1

2θ  k

J = wi yi − xi
Tβ( )2

i=1

N

∑
Note: Using GPs, SVR, Mixture Models, etc., are other ways to nonlinear regression

10



Locally Weighted Regression 

• Piecewise linear function approximation,
• Each local model is learned from only local data
• No over-fitting due to too many local models (unlike RBFs, ME)
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Locally Weighted Regression

y = βx
Tx + β0 = β T ˜ x where ˜ x = x T 1[ ]T

Linear Model:

w = exp −
1
2
x − c( )T D x − c( )⎛ 

⎝ 
⎞ 
⎠ where D =MTM

Weighting Kernel:

y =
wiyk

i=1

K

∑

wi
i=1

K

∑
Combined 
Prediction:

learned with

 

Recursive weighted least squares:

βk
n+1 = βk

n + wPk
n+1x y − xTβk

n( )T

Pk
n+1 =

1
λ
Pk
n −

Pk
n xxTPk

n

λ
w
+ xTPk

n x

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

learned with
Gradient descent in penalized leave-one-out 
local cross-validation (PRESS) cost function:

Mk
n+1 =Mk

n −α ∂J
∂M

J = 1

wk ,i
i=1

N

∑
wk ,i yi − ŷk ,i,− i

2

i=1

N

∑ + γ Dk ,ij
2

i=1, j=1

n

∑

add model when if  min
k

wk( ) < wgen

        createnewRFat cK +1 = x
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Locally Weighted Regression

z = max exp −10x 2( ),exp −50y2( ),1.25exp −5 x2 + y2( )( )( )
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Locally Weighted Regression
Inserted into Adaptive Control
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Locally Weighted Regression

Learn forward model of task dynamics, 
then computer controller
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Locally Weighted Regression

Learn forward model of task dynamics, 
then computer controller
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• Breaks down in high-dimensional spaces
• Computationally expensive and numerically brittle due 

to (incremental) dxd matrix inversion
• Not compatible with modern probabilistic statistical 

learning algorithms
• Too many “manual tuning parameters”

Criticism of Locally Weighted Learning
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The Curse of Dimensionality

• The power of local learning comes from exploiting the 
discriminative power of local neighborhood relations.

• But the notion of a “local” breaks down in high dim. 
spaces!
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The Curse of Dimensionality
Movement Data is Locally Low Dimensional
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Derived with Bayesian Factor Analysis

Thus, locally weighted learning can work 
if used with local dimensionality reduction!
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A Bayesian Approach to 
Locally Weighted Learning

• Linear Regression as a Graphical Model

 

yi = xi
Tβ + ε

ε  N 0,ψ y( )
β = XTX( )−1Xy

20



A Bayesian Approach to 
Locally Weighted Learning

• Inserting a Partial-Least-Squares-like projection as a 
set of hidden variables

 

zi,m = xi,mβ j +ηm

yi = zi,m
m=1

d

∑ + ε

ε  N 0,ψ y( )
ηm  N 0,ψ z,m( )
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A Bayesian Approach to Locally Weighted 
Learning

• Robust linear regression with automatic relevance 
detection (ARD, sparsification)

 

zi,m = xi,mβ j +ηm

yi = zi,m
m=1

d

∑ + ε

ε  N 0,ψ y( )
ηm  N 0,ψ z,m( )
βm  N 0, 1

αm

⎛
⎝⎜

⎞
⎠⎟

αm Gamma aα ,bα ,( )
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A Full Bayesian Treatment of Locally 
Weighted Learning

• The final model for full Bayesian parameter adaptation 
for regression and locality

yi

… 

i = 1,..,Nψ y

xi1 xi2 xid

zi1 zi2 zid bdb1

ψ z1
ψ z2

b2

ψ zd

wi1 wi2 wid

h1 h2 hd

23



Locally Weighted Learning In High 
Dimensional Spaces
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• Learning the “cross” function in 20-dimensional space
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Locally Weighted Learning In High 
Dimensional Spaces

• Learning the “cross” function in 20-dimensional space

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

10

20

30

40

50

60

70

1000 10000 100000

n
M

S
E

 o
n

 T
e

s
t 

S
e

t

#
R

e
c
e

p
ti
v
e

 F
ie

ld
s
 /

 A
v
e

ra
g

e
 #

P
ro

je
c
ti
o

n
s

#Training Data Points

2D-cross

10D-cross

20D-cross

25



Locally Weighted Learning In High 
Dimensional Spaces

• Learning internal models in 90 dimensional space
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Locally Weighted Learning In High 
Dimensional Spaces

• Learning inverse kinematics in 60 dimensional space
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Locally Weighted Learning In High 
Dimensional Spaces

• Skill learning
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Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning
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Given: A Parameterized Policy 
and a Controller

Note: we are now starting to address planning, 
i.e,. where do desired trajectories come from?
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Trial & Error Learning 
Reinforcement Learning from Trajectories

• Problem:
– How can a motor system learn a 

novel motor skill?
– Reinforcement learning is a 

general approach to this 
problem, but little work has been 
done to scale to the high-
dimensional continuous state-
action domains of humans

• Approach:
– Teach with imitation learning the 

initial skill using a parameterized 
control policy

– Provide an objective function for 
the skill 

– Perform trial-and-error learning 
from exploratory trajectories
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Reinforcement Learning Terminology

• Policies
– perceived state to action 

mapping (can be 
probabilistic)

• Reward functions
– maps the perceived state-

action pair into a a single 
number, an immediate reward 
(stochastic)

• Value functions
– maps the state into the 

accumulated expected 
reward that would be 
received if starting in the state

• Models
– predicts the next state given 

the current state and action 
(can be probabilistic)

Objective: Optimize Reward!

l Policy: what to do
l Reward: what is good
l Value: what is good because it 
predicts reward

l Model: what follows what

32



Value Functions

• The value of a state is the expected return starting from 
that state; depends on the agent’s policy:

• The value of taking an action in a state under policy π  
is the expected return starting from that state, taking 
that action, and thereafter following π :

State - value function for policy π :

V π (x) = Eπ Rt xt = x{ } = Eπ γ krt+ k+1 xt = x
k=0

∞

∑⎧⎨
⎩

⎫
⎬
⎭

Action - value function for policy π :

Qπ (x,u) = Eπ Rt xt = x,ut = u{ } = Eπ γ krt+ k+1 xt = x,ut = u
k=0

∞

∑⎧⎨
⎩

⎫
⎬
⎭
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Bellman Equation for a Policy π

The basic idea: 

So: V π (x) = Eπ Rt xt = x{ }
= Eπ rt+1 + γV xt+1( ) xt = x{ }
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Bellman Optimality Equation for V*

• The value of a state under an optimal policy must 
equal the expected return for the best action from that 
state:

     is the unique solution of this system of equations.V∗

V * x( ) = max
u∈A(x)

Qπ x,u( )
= max
u∈A(x)

E rt+1 + γV * xt+1 | xt = x,ut = u( ){ }

35



Bellman Optimality Equation for Q*

• The value of a state/action under an optimal policy 
must equal the expected return for this action from that 
state, and then following the optimal policy:

Q∗(x,u) = E rt+1 + γ maxu ' Q
∗(xt+1,u ') xt = x,ut = u{ }

     is the unique solution of this system of equations.Q∗
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Example: Learning a Pendulum Swing-Up

Value FunctionPolicy

Note: Both policy and value function are
rather complex landscapes with 
discontinuities!
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Some More Exciting Examples

38



State-Based vs. Trajectory-based 
Reinforcement Learning

• From about 1980-2000, value function-based (i.e., state-based) 
reinforcement learning has been dominant (textbook Sutton&Barto)
– Pros:

- well-understood theory
- convergence proofs for discrete state-action systems
- a useful set of algorithms to work with (model-based and model-free)
- ideally a globally optimal solution

– Cons:
- problematic in continuous state-action spaces (max-operator in continuous spaces)
- curse of dimensionality in high-dimensional systems
- hard to combine with function approximation
- greed (= agressive) updating

• Trajectory-based reinforcement learning
– Pros:

- can work in high dimensional continuous state-action spaces
- does not suffer from the curse of dimensionality

– Cons:
- Locally optimal solutions
- classical methods learn very slowly
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Trajectory-based Reinforement Learning 
with Parameterized Policies

 

u t( ) = π x t( ),t,α( )
or

xd t( ) = π xd t( ),t,α( )

 

Example: Dynamic Systems Policies,
initalized by imitation

τ y =α z βz g − y( )− y( ) +
wibix

i=1

k

∑

wi
i=1

k

∑
τ x = −α xx

40



Trajectory-based Reinforcement Learning

• Define a cost function along the trajectory:

• And a parameterized control policy (e.g., a movement 
primitive)

• Optimize J with respect to parameters b, e.g., by 
gradient descent

 τ y = f y,goal,b( )

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

bn+1 = bn +α ∂J
∂b
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Example: Learning with Natural Gradients

Goal: Hit ball to fly far      Note: about 150-200 trials are needed.
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Reinforcement Learning from Trajectories

• State-of-the-art of Reinforcement Learning from 
Trajectories:
- Given the cost per trajectory    :  

- The motor primitives with parameters b:

– RL with Natural Gradients

– Probabilistic RL with Reward-Weighted Regression

– Trajectory-based Q-learning (fitted Q-iteration)
- an actor-critic based method based on an action-value function over trajectories

– RL with path-integrals (a probabilistic, model-based/model-free 
approach derived from stochastic optimal control)

bnew = bold +α ∂JNAC
∂b

 τ y = f y,goal,b( )

J = Eτ ri
i=0

T

∑⎧⎨
⎩

⎫
⎬
⎭

τ

bnew ∝ Rτbτ
T
∑ / Rτ

T
∑
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Reinforcement Learning 
Based on Path Integrals

• Pre-requisites

Cost Function:  

rt = q(xt ) +
1
2
ut
TRut

Jxt = Ext qT + rt ' dt '
t '= t

T

∫
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪
  

→  Goal: find commands u that minimize this cost

System Dynamics (Control-Affine): 
x = f x,t( ) +G x( ) u t( ) + ε t( )( ) = F x,u,t( )

Note: this is a more
structured approach

to RL
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Reinforcement Learning 
Based on Path Integrals

• Sketch of the Path-Integral Derivation
Stochastic HJB Equations: 

−∂tV xt ,t( ) = min
ut:tm

rt + ∂xV xt ,t( )T F x,u,t( ) + 1
2
Tr Ω x,u,t( )∂x2V xt ,t( ){ }⎡

⎣⎢
⎤
⎦⎥

min
ut:tm

1
2
ut
TRut + qt + ∂xV xt ,t( )T f x,t( ) + ∂xV xt ,t( )T G x( )u t( ) + 1

2
Tr G x( )Σ G x( )T ∂x2V xt ,t( ){ }⎡

⎣⎢
⎤
⎦⎥
= 0

ut
TR + ∂xV xt ,t( )T G xt( ) = 0

ut = −R−1G xt( )T ∂xV xt ,t( )
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Reinforcement Learning 
Based on Path Integrals

• Sketch of the Path-Integral Derivation

−∂tV xt ,t( ) = min
ut:tm

rt + ∂xV xt ,t( )T F x,u,t( ) + 1
2
Tr Ω x,u,t( )∂x2V xt ,t( ){ }⎡

⎣⎢
⎤
⎦⎥

ut = −R−1G xt( )T ∂xV xt ,t( )
x = f x,t( ) +G x( ) u t( ) + ε t( )( )

−∂tV xt ,t( ) = −
1
2
∂xV xt ,t( )T G x( )R−1G x( )T ∂xV xt ,t( ) + qt + ∂xV xt ,t( )T f x,t( ) + 1

2
Tr G x( )Σ G x( )T ∂x2V xt ,t( ){ }
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Reinforcement Learning 
Based on Path Integrals

• Sketch of the Path-Integral Derivation
−∂tV xt ,t( ) = −

1
2
∂xV xt ,t( )T G x( )R−1G x( )T ∂xV xt ,t( ) + qt + ∂xV xt ,t( )T f x,t( ) + 1

2
Tr G x( )Σ G x( )T ∂x2V xt ,t( ){ }

∂tψ xt ,t( ) = 1
λ
ψ xt ,t( )qt − ∂xψ xt ,t( )T f x,t( ) − 1

2
Tr G x( )Σ G x( )T ∂2xψ xt ,t( ){ }

Log-Transformation Trick: 
V xt ,t( ) = −λ logψ xt ,t( )

Simplification: 
λR−1 = Σ

Chapman Kolmogorov PDE: 2nd Order and Linear
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Reinforcement Learning 
Based on Path Integrals

• Sketch of the Path-Integral Derivation

∂tψ xt ,t( ) = 1
λ
ψ xt ,t( )qt − ∂xψ xt ,t( )T f x,t( ) − 1

2
Tr G x( )Σ G x( )T ∂2xψ xt ,t( ){ }

Application of Feynman-Kac Theorem: 
A numerical method to solve certain PDEs

ψ xt ,t( ) = Eτ ψ xT ,T( )exp −
1
λ
qt ' dt

t '= t

t '=T

∫ '
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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Reinforcement Learning 
Based on Path Integrals

• Sketch of the Path-Integral Derivation
ψ xt ,t( ) = Eτ ψ xT ,T( )exp −

1
λ
qt ' dt

t '= t

t '=T

∫ '
⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

ut = −R−1G xt( )T ∂xV xt ,t( )

A bit of algebra ...

ut = Eτ wτR
−1G xt( )T G xt( )R−1G xt( )T( )−1

G xt( )ε t{ }
Optimal Control Law 
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Path Integral RL  Applied to 
Parameterized Policies (Motor Primitives)

• Note that a version of motor primitives can be written as 
control affine stochastic differential equations

- ε is interpreted as intentionally injected exploration noise
- the parameters θ are the control vector
- f(x) is the spring-damper of the primitives
- g(x) are the basis functions of the function approximator

• It is also necessary to create a iterative version of path 
integral optimal control
- the original path integral optimal control framework explores only based on the 

passive dynamics, i.e., u=0

x = f x( ) + gT θ + ε( )
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PI2 Reinforcement Learning 

• For parameterized policies like dynamic motor 
primitives, a beautifully simple algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.
2) We can write the cost to go from every time step t of the trajectory as:

Rt = qT + ri
i= t

T

∑
3) The probability of a trajectory becomes

P ξt
k( ) =

exp − 1
λ
Rt
k⎛

⎝⎜
⎞
⎠⎟

exp − 1
λ
Rt

j⎛
⎝⎜

⎞
⎠⎟j=1

K

∑
4) Update the parameter θ  of the motor primitive as

Δθt = P ξt
k( )R

−1gk (xt )g
k (xt )

T

gk (xt )
TR−1gk (xt )k=1

K

∑ ε kt

5) Final parameter update

θ new = θ old + Δθt

Note that there a NO open
tuning parameters except for

the exploration noise
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PI2 Reinforcement Learning

• The Intuition of Path Integral Reinforcement Learning
- Generate multiple trials i

with some variation, e.g.,
due to noise or exploration

- For every time t, compute
the cost Rt

i for every trial:

- Convert the cost into a positive
weight

- Update the motor command at every time step to 
be the reward weighted average of all experienced 
commands in the trial

Rt
i = qT + q(xt ) +

1
2
ut
TRut

t

T

∫ dτ t

wt
i = exp −λRt

i( )

ut
new =

wt
iut

i

i
∑

wt
i

i
∑

Surprisingly, this 
intuition turns out
to be the optimal 
solution
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PI2 Reinforcement Learning:
Some Remarks

• PI2 can be model-based to model-free

• PI2 can optimize trajectory plans, controllers, or both
• PI2 has only one open parameter, i.e., the level of 

exploration noise
• PI2 allows a rather simple derivation of inverse 

reinforcement learning

Rigid Body Dynamics: q =M q( )−1 u −C q, q( ) q +G q( )( )
Control Law: u = u ff +K p qd − q( ) +KD qd − q( )

Motor Primitives: qid = α z βz g
i − qid( ) − qid( ) + ψTθ
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Example: Results on 2D Reaching 
Through a Via Point
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Example: Results on 20D Reaching 
Through a Via Point
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Example: Results on 50D Reaching 
Through a Via Point
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Example: Dog Jump
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This is a 12 DOF motor system,
using 50 basis functions per
primitive. Learning converges after
about 20-30 trial! Performance 
improved by 15cm (0.5 body lengths)
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Reinforcement Learning 
in Manipulation

Peter Pastor   Mrinal Kalakrishnan   Sachin Chitta  
Research conducted at Willow Garage
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Learning Locomotion over Rough Terrain
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Outline

• A Bit of Robotics History
• Foundations of Control
• Adaptive Control
• Learning Control

- Model-based Robot Learning

- Reinforcement Learning

What Comes Next?
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Towards Truly Autonomous Robots

Very Big Robots

Very Little Robots
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