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How to learn who influences whom?




- Summarizing Documents

How to select representative sentences?



MAP inference

Building

Grass

max p(x | z)

How find the MAP labeling in discrete graphical models
efficiently?




What’s common?

¢ Formalization:

Optimize a set function F(S) under constraints

¢ solve optimization problems with strong guarantees
¢ solve complex structured learning problems



Outline

o What is submodularity?

¢ Optimization

¢ Minimization

¢ Maximization
» Applications

¢ Outlook and pointers



submodularity.org
slides, code, references, workshops, ...



- Example: placing sensors
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Place sensors to monitor temperature



Set functions

o finite groundset V ={1,2,...,n}

o b :
¢ set function F:2V 5o R - e w?@
4 T\W P
ST Y
= o ey RN soso oo

o willassume F(0)=0 (wlog)

» assume black box that can evaluate F'(A)
forany ACV



Example: placing sensors

Utility F'(A) of having sensors at subset A of all locations
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A={1,2,3}: Very informative A={1,4,5}: Redundant info

High value F(A) Low value F(A)
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Marginal gain
» Given set function F:2"¥ — R

» Marginal gain: Ap(s|A)=F({stUA)— F(A)

New sensor S
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Decreasing gains:

pIacement A={1,2}
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Equivalent characterizations

o Diminishing returns: forall AC B and s ¢ B

®

F(AUs)— F(A) > F(BUs)— F(B)

o Union-Intersection: forall A, B CV

F(A) + F(B) “ B) + F(AN B)
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Submodular, modular & supermodular

A set function F is called
e supermodular if -F is submodular

e modular if F is both submodular and supermodular.
Such functions can be written as

F(A) =) w

1€A
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Questions

How do | prove my problem is
submodular?

Why is submodularity useful?
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place sensors
in building

@

Node predicts

S

values of positions
with some radius

/

Example: Set cover

goal: cover floorplan W|th discs
Possible ; | L

locations, 22

ACV: F(A) =
“area covered by sensors placed at A”

Formally:
Finite set W, collection of n subsets S; C W
For ACV define — -
F(4) ’ UiGA Sz‘
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Set cover is submodular
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B = {S,5,,53,54)
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More complex model for sensing

[
ﬂ - @ h Y.: temperature

at location s

X,: sensor value
at location s

X, =Y, + noise

Joint probability distribution

P(Xy, oo X Yoy Y) = P(YpY,) P(Xpyo X | Vg Y,)

n
H_j\ d
Y

Prior Likelihood
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Example: Sensor placement

Utility of having sensors at subset A of all locations

F(A) = H(Y) — H(Y | X,)

el w
Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing
a%@ie?g, ° | 1] anid | @3& K |1
T\ B @

@ Cg@ 383 ) oMo @ @ 383 )
A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)

.
¢
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Submodularity of Information Gain

Y Y Xyq, oo, X, discrete RVs
F(A) = I(Y; XA) = H(Y)-H(Y | XA)

e F(A)is NOT always submodular

If X. are all conditionally independent given'Y,
then F(A) is submodular! [Krause & Guestrin "05]

Proof:
“information never hurts”
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Another example: Cut functions

/\

" J

3 v={a,b,c,d,e,f,g,h}

200
Boas

3

Cut function is submodular!
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Why are cut functions submodular?

S Fab(S)
ANB |{ 0

{a} W

{b} W

{a,b} 0

Submodularif w20l

Cut function in subgraph {i,j}

=» Submodular!
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Closedness properties

F,,...,F, submodular functionson Vand A,...A, 20
Then: F(A) = > A F.(A) is submodular

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact:

e F4(A) submodular = Y, P(8) Fy(A) submodular!
e Multicriterion optimization
¢ A basic proof technique! ©

23



Other closedness properties

o Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

24



Other closedness properties

e Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

25



Other closedness properties

o Restriction: F(S) submodular on V, W subset of V
Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

o Reflection: F(S) submodular on V

Then F'(S)=F(V\S) is submodular

26



Submodularity ...

discrete convexity ....

V'

[\ ... Or concavity?
2

27



o
a

o o
(-3 @ .
e
]

o

-0 N
¥

0'53"-.\‘-'-* _.-'V‘A‘_,.»"’A

05

But this is only

half of the story...

Convex aspects

@ convex extension
¢ duality

¢ efficient minimization

28



Concave aspects

e submodularity:

ACB, s¢ B:
F(AUs) — F(A)
‘ + s
@ concavity:
a<b s>0:

|V

fla+s) = fla)

F(A) “intuitively”
>

| A

1\
i
Ny
-
N
|
i
=
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Submodularity and concavity

ssuppose ¢g:N—R and F(A)=g(4))

F(A) submodular ifandonlyif ... g isconcave

g(|Al)
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Maximum of submodular functions

o Fy(A), F5(A) submodular.  What about

F(A) =max{ Fi(A), Fx(A)} ?

F(A) = max(Fy(A),F(A))

>
. Al
max(F,F,) not submodular in general!
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Minimum of submodular functions

Well, maybe F(A) = min(F,(A),F,(A)) instead?

Fi(A) | Fy(A)
{} 0 0
{a} 1 0
{b} 0 1
{a,b} |1 1

F({b}) - F({})=0

<

F({a,b}) - F{a})=1

min(F,F,) not submodular in general!
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Two faces of submodular functions

Convex aspects
=2 minimization!

Concave aspects
=>» maximization!
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What to do with submodular functions

N

Learning

/
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Here we focus on optimization & applications

y N

Minimization and maximization not the same??
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‘Submodular minimization

-

clustering structured sparsity

HllIl F(S) regularization
S CYa

MAP inference minimum cut
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Submodular minimization

min F'(.5)
SCV

=» submodularity and convexity
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Set functions and energy functions

any set function
with|V | =n

F:2V 3R

@EE®|>

... i1s a function on
binary vectors!

F:{0,1}" 5> R

I — €A

a
b
C
d

olo|r |~

pseudo-boolean function
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Submodularity and convexity

extension
> f:[0,1]"

F {O\}”%Rﬁ

f(r) = max x-y
yePr

YA

Lovasz extension

\_ convex Lovasz, 1982/

¢ minimum of fis a minimum of F

¢ submodular minimization as convex minimization:
polynomial time! Grotschel, Lovasz, Schrijver 1981
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Submodularity and convexity

F:{0,1}" - R

extension

> f:10,1]" - R

-

\_

Lovasz extension

convex

Lovasz, 1989

~

@ minimum of fis a minimum of F

e submodular minimization as convex minimization:
polynomial time!
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The submodular polyhedron P

Pr={reR":2(A) < F(A) forall AC V} Example: V = {a,b}
\ A |FA)

(A) =) = 0 o

icA {a} -1

{b} 2

£ Xep) {a,b} |0

2T x({b}) < F{b})
Pe 1
+~——Xx({a,b}) = F({a,b})
2 1] 0] 1 Xa
" ((ad) < Fiiad)




Evaluating the Lovasz extension

Ppr={xeR":2(A) < F(A) forall ACV}

Linear maximization over P, y* 4
X{b}
r) = max - 2
flz) = max -y L/
Exponentially many constraints!!! ®
Computable in O(n log n) time © 2 0 f
[Edmonds ‘70] X{a}

greedy algorithm:

* sort X

* order defines sets S; = {1,...,i}
* y; = F(S;) — F(Si-1)

 Subgradient
 Separation oracle
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Lovasz extension: example

f(x)

- )

VF(b.)--'- e A F(A)

0.8
T F(a,b) 1 {}
0.6- @ | {a}

0.4- {b}

/ {a’b}
0.2 |
ol |

1




Submodular minimization

min F(A)
/ ACV \
minimize convex combinatorial
extension algorithms
o ellipsoid algorithm o Fulkerson prize
[Grétschel et al. "81] lwata, Fujishige, Fleischer ‘01 &
Schrijver 00

¢ subgradient method,

smoothing [stobbe & k 10
& [Stobbe & Krause "10] » state of the art:

¢ duality: minimum norm O(n*T + n’logM)  [iwata’03]

point algorithm O(n® + n°T) (Orlin 09]
[Fujishige & Isotani’11]

T = time for evaluating F a4



The minimum-norm-point algorithm

Example: V = {a,b}
tﬁgﬂ@)@hﬂem dual: minimum norm problem

4 . .|0 «
ariminf (z) 4 5z U = ayg i
%1?}[0715]”2
{ab} |0 Base polytope B-
u({alb})=F {alb}) A

> X A* = {i | u*(i) < 0)

2 L
u* minimizes F:
[-1,1] 1 A* = arg min F(A)
ACV
d Fujishige ‘91, Fujishige & Isotani ‘11

-2 -1 0 1
Xta)
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Empirical comparison

FW —— 7 |
HYBRID ---%-- . Cut functions
[ SFM3 k- i ‘

= 1000 | LBXe o ,,fi;;:VCfmb.";atO”a' from DIMACS

=< | = x S algorithms Challenge

8 = 100 | o

ao | &

(@) 8 I | o

? E 10 €

Q .

Bl . ]

Q| < 1F Minimum norm point-

c . |

o | < algorithm

| x 0.1

Q

=

@)

i 0.01 ' >

\ 4 64 128 256 512 1024

Problem size (log-scale!)

Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani '11]
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wideband
signal
samples

__Example |: Sparsity

Many natural signals sparse in suitable basis.
Can exploit for learning/regularization/compressive sensing...

k<d

large
wavelet
coefficients

k<<d
large
Gabor (TF)
coefficients

47



Sparse reconstruction
min |y — Mz|* +X\Q(x)

explain y with few columns
of M: few x;

discrete regularization on support S of x

Q) =llzllo =15

relax to convex envelope

Az) = [zl

in nature: sparsity pattern often not random...

48



| |
AR

Structured sparsity

Incorporate tree preference in regularizer?

Set function:

F(T) < F(S)
if Tis a tree and S not
|S] =|T]

F(S) = U ancestors(s)

seS

49



Structured sparsity

Incorporate tree preference in regularizer?

T

Set function:

F(T) < F(S)
If Tis a tree and S not,
1S =TI
F(S) = U ancestors(s)
sesS

F(T)=3

50



Structured sparsity

Incorporate tree preference in regularizer?

Set function:

F(T) < F(S)
If Tis a tree and S not,
NI

T/ MY\ ‘I I i /\‘

Function F is ...
submodular! ©

F(T)=3

51



Sparsity

min ||y — Mz||* +XQ(z)
x
e explain y with few e prior knowledge: patterns
columns of M: few x; . of nonzeros

discrete regularization on support S of x

e submodular function
Q(z) = [lzllo =S Q(z) = F(S)

relax to convex envelope
=>» Lovasz extension
Qz) = |lz[l i Q(z) = F(|z])

e Optimization: submodular minimization

[Bach 10]
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Further connections: Dictionary Selection

min ||y — Maz||* +2Q(x)
Xr
Where does the dictionary M come from?

Want to learn it from data:  {¥1,...,Yn} C R?

Selecting a dictionary with near-max. variance reduction
< Maximization of approximately submodular function
[Krause & Cevher ‘10; Das & Kempe '11]
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Example Il: MAP inference

P(x|z) xexp(—F(x;z))
/
labels  pixel
values N min E(X; Z)

xe{0,1}"

54



Example II: MAP inference

Recall: equivalence

n&aelgn fuﬁf{lqu %r} b&aé¥(\ﬁe(cloﬁ(X, Z)j@’[ function A

1

N E(ea;2z) = F(A)

1| b @

o| ¢ [|if F'is submodular, theh min  F(xiz) o

ol d | MAP inference = submodula?‘ﬁ'ﬁgirlrjﬁrzbation! @
polynomial-time

55



Special cases

Minimizing general submodular functions:
poly-time, but not very scalable

Special structure =» faster algorithms

¢ Symmetric functions
¢ Graph cuts
o Concave functions

¢ Sums of functions with bounded support

o ...

56



MAP inference

if each F;; is submodular (“attractive”):
Ez-j(l, 0) + Eij((), 1) > Eij(O, 0) + Eij(l, 1)
@ b @b

then F' is a graph cut function.

MAP inference = Minimum cut: fast ©

57



Pairwise is not enough...

Building

color + pairwise color + pairwise +

E(xr) =
ZEZ(%) + ZEij(xiaxj)

Pixels in one tile should
have the same label

[Kohli et al."09] 58



Enforcing label consistency

Pixels in a superpixel should have the same label

E(x) A
"}/ma‘x --/ \

] >
o000 000 000
o000 @00 Q00
o000 @00 Q00

concave function of cardinality = submodular ©

Can still be transformed into a graph cut instance!

59



Other special cases

¢ Symmetric: F(S)=F(V\S)
¢ Queyranne’s algorithm: O(n3) [Queyranne, 1998]
» Concave of modular: E(S) = Zgi( Zw(S))
7 SES

[Stobbe & Krause 10, Kohli et al, "'09]

¢ Sum of submodular functions, each bounded support

[Kolmogorov "12]
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Submodular minimization

Learni@

Online/
adaptive
optim.
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Submodular minimization

» unconstrained: min F(A) st. ACV
¢ nontrivial algorithms, special case:
: , balanced
polynomial time ot

» constraints: e.g. min F(A) s.t. |A| >k

o limited cases doable: o
odd/even cardinality, inclusion/exclusion of a set

General case: NP hard
* hard to approximate within polynomial factors!
e But: special cases often still work well

[Lower bounds: Goel et al.’09, Iwata & Nagano 09, Jegelka & Bilmes "11]
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Constraints

minimum...
matching path spanning tree

F = ¢

ground set: edges in a graph

' in F'(S
min eesw(e) T— i (S)

63



Graph cut

Submodular (“cooperative”) cut
[Jegelka & Bilmes ‘11]

Cooperative cut

64



Efficient constrained optimization

minimize a series of surrogate functions

1. compute linear upper bound ﬁZ(SZ) = F(SY)
=D _w'(S)
ecS
2. Solve easy sum-of-weights problem:

S = UE %EEF (S) and repeat.

spanning
tree

cut  efficient
@ * only need to solve sum-of-weights problems '@
* Provides certain approximation guarantees path

matching E t

[Jegelka & Bilmes "11, lyer et al. ICML "13]
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Outline

¢ What is submodularity?
¢ Optimization fﬂ fﬂ
o Minimize costs &8 > d
o Maximize utility i%"\‘ﬁ 3 ﬂi@g
¢ Applications

¢ Outlook and pointers
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Submodular maximization

OLH Dx&;\ggﬁ% E.M
¥ M ®
> hk

DD@@@@ o

-,

<

covering sensing

max F'(5)
S' e

summarization network inference



Two faces of submodular functions

Convex aspects
=2 minimization!

Concave aspects
=>» maximization!

68



Submodular maximization

max F'(.5)
SCV

=» submodularity and concavity

69



Concave aspects

e submodularity:
ACB, s¢ B:
F(AUs)— F(A)

@ concavity:
a<b s>0:

fla+s) = fla)

F(A) “intuitively”
>

| A

[V

|V

F(BUs)— F(B)

f(b+s) = f(b)

70



Optimization

Learnir@

/

71



Optimization

Online/

adaptive
optim.

Learni@
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Maximizing submodular functions

— . Mmaximum
o Suppose we want for submodular F

A* = arg max F(A)st. ACV
o Example: | |A|
e F(A) = U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

¢ In general: NP hard. Moreover:

o If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)
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Exact maximization of SFs

¢ Mixed integer programming
¢ Series of mixed integer programs [Nemhauser et al ‘81]

¢ Constraint generation [Kawahara et al ‘09]

¢ Branch-and-bound
¢ ,Data-Correcting Algorithm® [Goldengorin et al "99]

Useful for small/moderate problems

All algorithms worst-case exponential!
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz '12]

Theorem
Given a nonnegative submodular function F,

RandomizedUSM returns set A; such that
F(AR) 2 1/2 max, F(A)

e Cannot do better in general than % unless P = NP
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Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:
max F(A) — C(A) max F(A)
s.t. ACV s.t. C(A) < B
“Scalarization” “Constrained maximization”

Can get 1/2 approx...  What is possible?
if F(A)-C(A) = 0
for all sets A

Positiveness is a
strong requirement ®
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Optimization

Online/
adaptive
optim.

Learnir@
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Monotonicity
PIacement A=1{1, 2} Placement B={1,..,5}

2 ﬂi BR
g ﬁ%ﬁ ﬁ% @ : ?ﬁé @3@8
—} 1. B o ¢

ED@J@@ e

P P

O

£ @ 88 =

Fis monotonic: VA,s: F(AU{s})— F(A) >0
A(s|A) >0

Adding sensors can only help



Cardinality constrained maximization

o Given: finite set V, monotone submodular F

¢ Want:

A* C V such that

A* = argmax F(A)
A<k

NP-hard!

I:II:I@J

S 08

i
i

15

O

4

[
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Greedy algorithm

¢ Given: finite set V, monotone submodular F

o Want: | A* CV such that || 1]
* = argmax ¢ O%& »
> TR 5%
NP-hard! > TRl b
27 o

Greedy algorithm:
Start with 4 = ()

Fori=1tok
s* «— argmax F'(AU{s})

A AU (s

CID@)@@@ BP0

How well can this simple heuristic do?

80



Information gain

Performance of greedy

Ll

N
1] g I
R = ==E
| l ‘
oo “”“ ©
@

g e LT

e Mm %@sﬁpﬁ

Temperature data
from sensor network

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

readqv) 2 (1-1/€) F(A, ;)

~63%

o Greedy algorithm gives near-optimal solution!

¢ In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey '78]

¢ Also many special cases are hard (set cover, mutual information, ...)

82



Even greedy can be slow...

1 |
ol €300 . *
+ = | Exhaustive search u
ol < i, (Al subsets)
ol £ B g i
wl o 200 | Naive .
| € i greedy *
| : ol
=| £100 | e .
3 .E i ./",
5 L ‘ Sensor placement
vV L
o-®=""| l l l l l l l |

1 2 3 4 5 6 7 8 9 10
Number of sensors selected

Placing 10 sensors takes 5 hours on highly optimized implementation
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Scaling up the greedy algorithm [Minoux " 78]

In round i+1,
o have picked A = {s,,...,s.}
o pick s, = argmax F(A, U {s})-F(A)

l.e., maximize “marginal benefit” A(s | A))
A(S | Ai) = F(Ai U {S})'F(Ai)

Key observation: Submodularity implies

A(s [A) 2 A(s | Aivq)

[l |

isj => Als|A) 2 Als|A)

Marginal benefits can never increase!
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“Lazy” greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm:

- First iteration as usual Benefit A(s | A)
- Keep an ordered list of marginal 4 -
benefits A, from previous iteration B .
- Re-evaluate A, only for top o
element
- If A, stays on top, use it, d
otherwise re-sort g

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. * 07]



Empirical improvements [Leskovec, Krause et al’06]

|l = | 1 400 — |
ol 9300 .
:bJ 5 | Exhaustive search ‘/ o] Exhaustive search
Q < i / (All subsets) o S 300 (All subsets)
Q| E i w o
wn — 200 o Naive o N ~ Nai
. — GJ i — 1% R aive
A E : greedy /‘/, S -E 200 ] greedy |
| * i rs -
ey o 1 3
CED g 100 ] e Fast greedy 2 € 100 | —
— c ; — > Fast greedy
> :
v & | \
ot ¢+
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 I

Number of sensors selected Number of blogs selected

Blog selection = <

30x speedup 700x speedup
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Network inference

lipstick on a pig our entire economy
is in danger
e to help me N .
effort to protect the american decent person and a person @ ® .. &
, economy must not fajl that you do not have to be g ey Ry Dea tep
nunity scared of as president of AL TN € ? ‘et *
. . . -
ilities the most serious the united states :.' :.. [ . .‘;; A28 .... .
financial crisis since\ | s i something that all of us wil o e 30\ Q- M e
the great depression \ \ gyaliow hard and go forward with be’® " ovhiie - "
s . dg ¥

fundamentals of i think when you sj
our economy are who is the real the wealth around

°
strong barack obama good for everybod . ‘ , -’ @

president's ) . . > s
i he's palling a d i am not ®
ey R —/ e
~* than one - ¢ /o
. thing at hey can she is a diva ¢ e ® N
. once i call you takes no ad - ® 7\
joe from anyone . . y .
u" ..on. - .u‘... ..’. frg
! @
@ ._ '.:-'.. ‘-.-0:“.!!,
‘. L ] «* e J
. . . .. * o L
- o Y J
29 95 912 919 926  10/3 10110 1017  10/24 ’

How can we learn who influences whom?
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Time

Cascades in the Blogosphere

Machine Learning
[ e (Theory)

138 |sisu | engadgeﬁ“

B WD Jhn, bt ot e ww e (o

4 = e @

Information
cascade
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Inferring diffusion networks
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

Given: Want:
A | —> engarigel
Tashdol :i :-1: 2C ’.*i

'sisu |

¢ - -

& o

[sls“‘/ _ ;_ boinakboinad
'

Given traces of influence, wish to infer sparse
directed network G=(V,E)

=» Formulate as optimization problem

E* = F(E
arg mhax F(5)

] i
2

| i i

der i
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Estimation problem

' engadget s bearaing engadget
i‘r-_'"\'*,’ﬁ'i INSTAPUNDIT.COM z lashdof INSTAPUNDIT.COM

'sisu o) bOinabuina 'sisul @ boinaboinag
- ':’ -}}. - (:’ ~i. -

¢ Many influence trees T consistent with data
» For cascade C, model P(C.| T)

» Find sparse graph that maximizes likelihood for all
observed cascades

=>» Log likelihood monotonic submodular in selected edges

F(E):Zlog max P(C; | T)

tree T'CE 90



~ Evaluation: Synthetic networks

Precision

1 1 l l T I
0.8 .
0.6 .
04 .
021 Netinf ]
0 Baseline | | |

0 02 04 06
Recall

0.8

1

1024 node hierarchical Kronecker
exponential transmission model

Precision

1 Netinf I I |
Baseline T
0.8

06
04 §

0.2

0

0 02 04 06 0.8 1
Recall

1000 node Forest Fire (= 1.1)
power law transmission model

¢ Performance does not depend on the network

structure:

¢ Synthetic Networks: Forest Fire, Kronecker, etc.

¢ Transmission time distribution: Exponential, Power Law

¢ Break-even point of > 90%
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Diffusion Network
[Gomez Rodriguez, Leskovec, Krause ACM TKDE 2012]

“ e ° Py S N @®Blogs

@ Mainstream media

Actual network inferred from 172 million
articles from 1 million news sources
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Document summarization [Lin & Bilmes ‘11]

¢ Which sentences should we select that best
summarize a document?
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Marginal gain of a sentence

—_— C —

¢ Many natural notions of ,,document coverage” are
submodular [Lin & Bilmes ‘11]
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Document summarization

F(S) = R(S) + AD(S)

| \

Relevance Diversity
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- Relevance of a summary
A

How well is sentence i ,covered” by S
Ci(S) = Y wi;
jES X

Similarity between i and j
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Diversity of a summary

PO ©
> [ Tess
. @,
1=1 1€pl;
/ @ ¢ O ®
| o ® O
Relevance of sentence j to doc. P, O O
Tj — N Zwi’j Clustering of sentences

X in document

Similarity between i and j
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Empirical results [Lin & Bilmes “11]

R F
L1(S) + ARg(95) 12.18 | 12.13
L1(S)+20_  MRa.x(5) 12.38 |[12.33])
Toutanova et al. (2007) 11.89 | 11.89
Haghighi and Vanderwende (2009) 11.80 -
Celikyilmaz and Hakkani-tiir (2010) 11.40 -
Best system in DUC-07 (peer 15), using web search || 12.45 | 12.29

Best F1 score on benchmark corpus DUC-07!

Can do even better using submodular structured
prediction! [Lin & Bilmes ‘12]
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Submodular Sensing Problems

[with Guestrin, Leskovec, Singh, ukhatme, ]

Environmental monitoring
[UAI'O5, JAIR '08, ICRA “10]

Experiment design
[NIPS ‘10, ’11, PNAS’13]

Water distribution networks
[J WRPM ’08]

Machine Learning| lashdot
(Theory)
boinakoinaé [sisu
-\\
engadget

Recommending blogs & news
[KDD ‘07, ’10]

Can all be reduced to monotonic submodular maximization
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Maximization: More complex constraints

¢ Approximate submodular maximization possible

under a variety of constraints:
 (Multiple) matroid constraints Greedy
¢ Knapsack (non-constant cost functions) works well

o Multiple matroid and knapsack constraints

¢ Path constraints (Submodular orienteering) Need
. L non-greedy
o Connectedness (Submodular Steiner) algorithms

e Robustness (minimax)

‘ LN ]

¢ Survey on ,, Submodular Function Maximization“
[Krause & Golovin ‘12] on submodularity.org
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Key intuition for approx. maximization

For submod. functions,
local maxima
can‘t be too bad

N
rd

¢ E.g., all local maxima under cardinality constraints
are within factor 2 of global maximum

¢ Key insight for more complex maximization
=>» Greedy, local search, simulated annealing
for (non-monotone, constrained, ...)
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- Two-faces of submodular functions

|
Cuts, . Coverage,
clustering, diversity
similarity
Convex aspects
=>» minimization! —
MAP inference summarization

Concave aspects

. . . I
=>» maximization!
v 5
2
N Lk, L2
o g =
i ¥y M el N AT
e 1 e T F L
AT FE = ’
= gl S X
=<y 4 - B
ity e 59
:Ti[d'!_i‘.;{;v”' Y] g
31; - ‘ji
P I
A
4,
9 G
7

structured sparsity
regularization
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Maximization Minimization

== Unconstrained NP-hard, but Polynomial time!
well-approximable Generally inefficent
(if nonnegative) (n"6), but can exploit

special cases
(cuts; symmetry;
decomposable; ...)

Constrained NP-hard but well- NP-hard; hard to
approximable approximate in general,
,Greedy-(like)” for still useful algorithms

cardinality, matroid
constraints;

Non-greedy for more
complex (e.g.,
connectivity) constraints
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Further topics in submodularity & ML

e Learning submodular functions
¢ Goal: learn a submodular function from few samples
¢ Applications: Preference elicitation, graph sketching, ...
¢ Generally very hard
¢ Possible under special structure (e.g., sparsity)

e Online submodular optimization

¢ Goal: Repeatedly solve submodular optimization problems
¢ Applications: Recommender systems
¢ No regret algorithms for online submodular min & max

e Active learning with submodular functions

¢ Goal: Adaptive select elements given feedback
¢ Applications: Active learning, experimental design
e Adaptive submodularity generalizes SFs to policies 104



Other directions

¢ Game theory
¢ Equilibria in cooperative (supermodular) games / fair allocations
¢ Price of anarchy in non-cooperative games
¢ Incentive compatible submodular optimization

o Generalizations of submodular functions
o L#-convex / discrete convex analysis

e XOS/Subadditive functions
e More optimization algorithms

¢ Robust submodular maximization
¢ Maximization and minimization under complex constraints
e Submodular-supermodular procedure / semigradient methods
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Further resources

e submodularity.org
e Tutorial Slides
¢ Annotated bibliography
¢ Matlab Toolbox for Submodular Optimization
¢ Links to workshops and related meetings

e discml.cc

e NIPS Workshops on Discrete Optimization in Machine Learning
¢ Videos of invited talks on videolectures.net

Invited Talk RS Invited Talk ‘, Keynote Talk
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Conclusions

¢ Discrete optimization abundant in applications

¢ Fortunately, some of those have structure:
submodularity

¢ Submodularity can be exploited to develop efficient,
scalable algorithms with strong guarantees

o Many exciting research directions! ©
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