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Section 1

Motivation & Overview



Structured Prediction

Generalize supervised machine learning methods to deal with
structured outputs and/or with multiple, interdependent outputs.

Structured objects such as se-
quences, strings, trees, labeled
graphs, lattices, etc.

Multiple response variables
that are interdependent = col-
lective classification



Jiggsaw Metaphor

Holistic prediction 6= independent prediction of pieces

It is not just about solving one instance of a puzzle, but learning
how to solve a whole class of puzzles.

inspired by Ben Taskar’s tutorial



Natural Language Processing

I PoS tagging, named entity detection, language modeling

I Syntactic sentence parsing, dependency parsing

I Semantic parsing
I B. Taskar, D. Klein, M. Collins, D. Koller, and C.

Manning, Max-Margin Parsing, EMNLP, 2004

I R. McDonald, K. Crammer, F. Pereira, Online
large-margin training of dependency parsers. ACL 2005

I H. C. Daume III, Practical Structured Learning
Techniques for Natural Language Processing, Ph.D.
Thesis, Univ. Southern California, 2006

I R. McDonald, K. Hannan, Kerry, T. Neylon, M. Wells, J.
Reynar, Structured models for fine-to-coarse sentiment
analysis, ACL 2007

I B. Roark, M. Saraclar, M. Collins: Discriminative n-gram
language modeling. Computer Speech & Language
21(2): 373-392, 2007

I Y. Zhang, S. Clark, Syntactic processing using the
generalized perceptron and beam search, Computational
Linguistics 2011.

I C. Cherry, G. Foster, Batch tuning strategies for
statistical machine translation, NAACL 2012.

I L. S. Zettlemoyer, M. Collins, Learning to Map Setences
to Logical Form: Structured classification with
probabilistic categorial grammars, arXiv, 2012



Information Retrieval

I Learning to rank, e.g. search engines

I Multidocument summarization

I Whole page clickthrough prediction

I Entity linking and reference resolution

I Y Yue, T. Finely, F. Radlinski, T. Joachims: A support
vector method for optimizing average precision. SIGIR
2007

I L. Li et al: Enhancing diversity, coverage and balance for
summarization through structure learning, WWW 2009.

I T. Berg-Kirkpatrick, Taylor, D. Gillick, D. Klein: Jointly
Learning to Extract and Compress, ACL. 2011

I R. Sipos, P. Shivaswamy, T. Joachims: Large-margin
learning of submodular summarization models, ACL 2012



Computer Vision

I Image segmentation

I Scene understanding

I Object localization & recognition

I T. Caetano & R. Hartley, ICCV 2009 Tutorial on
Structured Prediction in Computer Vision

I M. P. Kumar, P. Torr, A. Zisserman, Efficient
Discriminative Learning of Parts-based Models, ICCV
2009.

I C. H. Lampert, M. B. Blaschko, T. Hofmann: Efficient
Subwindow Search: A Branch and Bound Framework for
Object Localization, PAMI 2009

I A. G. Schwing, T. Hazan, M. Pollefeys, R. Urtasun:
Efficient structured prediction for 3D indoor scene
understanding, CVPR 2012

I A. Patron-Perez, M. Marszalek, I. Reid, A. Zisserman:
Structured learning of human interactions in TV shows,
PAMI 2012



Computational Biology

I Protein structure & function prediction

I Gene finding, structure prediction (splicing)

I Y. Liu, E. P. Xing, and J. Carbonell, Predicting protein
folds with structural repeats using a chain graph model,
ICML 2005

I G. Rätsch and S. Sonnenburg, Large Scale Hidden
Semi-Markov SVMs, NIPS 2006.

I A. Sokolov and A. Ben-Hur, A Structured-Outputs
Method for Prediction of Protein Function, In
Proceedings of the 3rd International Workshop on
Machine Learning in Systems Biology, 2008.

I K. Astikainen et al., Towards Structured Output
Prediction of Enzyme Function, BMC Proceedings 2008,
2 (Suppl. 4):S2

I G. Schweikert et al, mGene: Accurate SVM-based gene
finding with an application to nematode genomes,
Genome Res. 2009 19: 2133-2143

I N. Görnitz, C. Widmer, G. Zeller, A. Kahles, S.
Sonnenburg, G. Rätsch: Hierarchical Multitask
Structured Output Learning for Large-scale Sequence
Segmentation, NIPS 2011



Overview

1. ⇒ Overview

2. Model
I Structured prediction SVM
I Margins & loss functions for structured prediction

3. Oracle-based Algorithms
I Cutting plane methods
I Subgradient-based approaches
I Frank-Wolfe algorithm
I Dual extragradient method

4. Decomposition-based Algorithms
I Representer theorem and dual decomposition
I Conditional random fields
I Exponentiated gradient

5. Conclusion & Discussion



Section 2

Model



Structured Prediction

I Input space X , output space Y
I |Y| = m can be large due to combinatorics

I e.g. label combinations, recursive structures

I Given training data (xi , yi ) ∈ X × Y, i = 1, . . . , n
I drawn i.i.d. from unknown distribution D

I Goal: find a mapping F

F : X → Y

I with a small prediction error

err(F ) = ED [4(Y ,F (X ))]

I relative to some loss function 4 : Y × Y → R+
0 ,

with 4(y , y) = 0 and 4(y , y ′) > 0 for y 6= y ′.



Examples: Loss Functions

I Multilabel prediction
I Y = {−1, 1}k
I 4(y , y ′) = 1

2 (k − 〈y , y ′〉) (Hamming loss)

I Taxonomy classification
I Y = {1, . . . , k}, k classes arranged in a taxonomy
I 4(y , y ′) = tree distance between y and y ′

I cf. [CH04, BMK12]

I Syntactic parsing
I Y = {labeled parse trees}
I 4(y , y ′) = # labeled spans on which y and y ′ do not agree
I cf. [TKC+04]

I Learning to rank
I Y = {permutations of set of items}
I 4(y , y ′) = mean average precision of ranking y ′ vs. optimal y
I cf. [YFRJ07]



Multiclass Prediction

I Apply standard multiclass approach to Y with |Y| = m.

I Define Y-family of discriminant functions fy : X → R, y ∈ Y
I Prediction based on winner-takes-all rule

F (x) = arg max
y∈Y

fy (x)

I Typical: linear discriminants with weight vector wy ∈ Rd and

fy (x) := 〈φ(x),wy 〉

I shared input representation via feature map φ : X → Rd

I Trained via one-vs-all or as a single ’machine’

I References: [RK04, WW99, CS02, LLW04]



Multiclass Prediction ≺ Structured Prediction

I What happens as m > n ?
I Not enough training data to even have a single example for every

output.

I Taking outputs as atomic entities without any internal structure
does not enable generalization across outputs

I There is no learning, only memorization of outputs.

I Need to go beyond the standard multiclass setting and enable
learning across X × Y. Two lines of thought:

I Feature-based Prediction: extract features from inputs & outputs,
define discriminant functions with those features

I Factor-based Prediction: decompose output space into variables
and identify factors [coming back to this later ]



Feature-based Prediction

I Joint feature maps

ψ : X × Y → Rd , kψ((x , y), (x ′y ′)) := 〈ψ(x , y), ψ(x ′, y ′)〉

to extract features from input-output pairs.

I Canonical construction by crossing features extracted separately
from inputs and outputs

ψ = φX × φY : X × Y → Rdx ·dy , ψ(x , y) := φX (x)× φY(y) .

I Can be more selective about features crossed (subsets).
I Other constructions (beyond crossing) are possible.

I When using inner products one gets the compelling factorization

kψ((x , y), (x ′, y ′)) = kφX (x , x ′) · kφY (y , y ′) .



Example: Label Sequence (HMM) [ATH+03]

I Hidden Markov Models: X = (Rd)l , Y = {1, . . . , k}l , where
I l : length of sequence
I k : cardinality of hidden variable
I d : dimensionality of observations

I First feature template: local observations

ψ1
c (x , y) =

l∑
t=1

1[y t = c] · φ(x t)

I adding up all observations that are assigned to same class
c ∈ {1, . . . k}

I Second feature template: pairwise nearest neighbor interactions

ψ2
c,c̄(x , y) =

l−1∑
t=1

1[y t = c] · 1[y t+1 = c̄]

I counting number of times labels (c , c̄) are neighbors



Example: Optimizing Ranking [YFRJ07]

I Kandall’s tau:

τ =
# concord. pairs - # discord. pairs

# all pairs
= 1− 2 ·# discordant pairs

# all pairs

I Output ranking encoded via pairwise ordering

Y = {−1, 1}k×k , y≺ij =

{
1 if i ≺ j

−1 otherwise

I Combined feature function

ψ(x , y) =
∑
i<j

yij [φ(xi )− φ(xj)]

Bipartite case C+(x)∪C−(x) = {1, . . . , k}, relev./non-relev. items

ψ(x , y) =
∑

i∈C+(x)

∑
j∈C−(x)

yij [φ(xi )− φ(xj)]



Example: Learning Alignments [JHYY09]

I Input: two annotated (protein) sequences x = (sa, sb).

I Output: alignment y between two sequences x

I Joint features:

I Types of features: combinations of amino acid, secondary
structure, solvent accessibility; sliding window; PSI-BLAST profile
scores;



Multiclass + Output Features = Structured Predction

I Generalize multiclass prediction and define linear discriminants

multiclass→ fy (x ;w) := f (x , y ;w) = 〈ψ(x , y),w〉 ← structured

I Parameter sharing across outputs (with same features)

I Recover feature-less multiclass by defining (1 out of m encoding)

〈φY(y), φY(y ′)〉 = δyy ′

i.e. feature vectors involving different classes y , y ′ are orthogonal.

I Allows to incorporate prior knowledge into multiclass problems
I Hierarchical classification - encode class taxonomy []
I Entity reference resolution - encode prior entity names and types

I Requires single ’machine’ formulation as weight vectors are not
separated → How can we generalize SVMs?



Binary Support Vector Machine

Convex Quadratic Program (primal)

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

subject to yi 〈w , φ(xi )〉 ≥ 1− ξi (∀i)

I Examples (xi , yi ) ∈ X × {−1, 1}, i = 1, . . . , n

I Feature map φ : X → Rd

I Weight vector w ∈ Rd

I Slack variables ξi ≥ 0

I Regularization parameter λ ∈ R+



Margin-rescaled Constraints

For each instance (xi , yi ) define m := |Y| constraints via

f (xi , yi ;w)− f (xi , y ;w) ≥ 4(yi , y)− ξi (∀y ∈ Y)

I Require correct output yi to be scored higher than all incorrect
outputs y 6= yi by a margin

I Adjust target margin for incorrect outputs to be 4(yi , y)

I Provides an upper bound on the empirical loss via

ξ∗i = max
y
{4(yi , y)− [f (xi , yi ;w)− f (xi , y ;w)]

≥ 4(yi , ŷ)− [f (xi , yi ;w)− f (xi , ŷ ;w)]︸ ︷︷ ︸
≤0 for ŷ

≥ 4(yi , ŷ)

where ŷi := arg maxy f (xi , y ;w) is the predicted output



Slack-rescaled Constraints

For each instance (xi , yi ) define m := |Y| − 1 constraints via

f (xi , yi ;w)− f (xi , y ;w) ≥ 1− ξi
4(yi , y)

(∀y ∈ Y − {yi})

I Require correct output yi to be scored higher than all incorrect
outputs y 6= yi by a margin

I Penalize margin violations proportional to 4(yi , y)

I Provides an upper bound on the empirical loss via

ξ∗i = max
y
{4(yi , y)−4(yi , y)[f (xi , yi ;w)− f (xi , y ;w)]}

≥ 4(yi , ŷ)−4(yi , ŷ)︸ ︷︷ ︸
≥0

[f (xi , yi ;w)− f (xi , ŷ ;w)]︸ ︷︷ ︸
≤0

≥ 4(yi , ŷ)

where ŷi := arg maxy f (xi , y ;w) is the predicted output



Softmargin, Illustration

Geometric sketch



Structured Prediction SVM

Convex Quadratic Program (primal)

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

subject to 〈w , δψi (y)〉 ≥ 4(yi , y)− ξi (∀i ,∀y ∈ Y − {yi})
binary: [ subject to 〈w , yiφ(xi )〉 ≥ 1 − ξi (∀i) ]

where δψi (y) := ψ(xi , yi )− ψ(xi , y).

I Examples (xi , yi ) ∈ X × Y, i = 1, . . . , n

I Feature map ψ : X × Y → Rd

I Weight vector w ∈ Rd

I Slack variables ξi ≥ 0, regularization parameter λ ∈ R+

I Generalizes multiclass SVM [CS02]



RepresenterTheorem

I Denote by H and RKHS on X × Y with kernel k. A sample set
S = {(xi , yi ) : i = 1, . . . , n} is given. Furthermore let C(f ;S ′) be a
functional that depends on f only through its values on the
augmented sample S ′ := {(xi , y) : (xi , yi ) ∈ S}. Let Λ be a strictly
monotonically increasing function. Then the solution of the
optimization problem f̂ (S) := arg minf ∈H C(f ,S) + Λ(‖f ‖H) can
be written as

f̂ (·) =
∑
i ,y

βiyk(·, (xi , y))

I Linear case

ŵ =
∑
i ,y

βiyψ(xi , y)

I See: T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in
machine learning, The Annals of Statistics 2008.



Deriving the Wolfe Dual (1)

Lagrangian

L(. . . ) =
λ

2
‖w‖2 +

1

n
‖ξ‖1 −

∑
i ,y 6=yi

αiy [〈δψi (y),w〉 −4(yi , y) + ξi ]− 〈ξ, ξ̂〉

Gradient components

∇ξL =
1

n
− ξ̂ −

∑
y

α•y
!

= 0 ⇒ 0 ≤
∑
y

αiy ≤
1

n
(∀i)

∇wL = λw −
∑
i ,y 6=yi

αiyviyδψi (y)
!

= 0 ⇒ w∗(α) =
1

λ

∑
i ,y 6=yi

αiyδψi (y)

Re-writing in matrix notation as w(α)∗ = Qα with

Q := (Qr ,iy ) ∈ Rd×n(m−1), with Q•,iy :=
1

λ
δψi (y)



Deriving the Wolfe Dual (2)

Plugging-in solution and exploiting known inequalities

min
α≥0

h(α) :=
1

2
‖Qα‖2 − 〈α,4〉 s.t. n

∑
y

αiy ≤ 1 (∀i)

binary: [
1

2
‖Q̃α‖2 − 〈α, 1〉 s.t. nαi ≤ 1 (∀i) ]

I Quantity: n ·m dual variables instead of n

I Quality: structure of dual is very similar

I Constraints only couple variables in blocks {αiy : y ∈ Y − {yi}}

I Natural factorization of α ∈ Rn(m−1)
≥0 = R(m−1)

≥0 × · · · × R(m−1)
≥0︸ ︷︷ ︸

n times

I α/n is a probability mass function αiyi := 1− n
∑

y 6=yi
αiy

I What is a support vector? pair (i , y) with active constraint



Linear Case: Representer Theorem

Looking at the solution w∗ we see that

w∗ =
∑
i

∑
y 6=yi

αiyδψi (y) =
∑
i

∑
y 6=yi

αiy [ψ(xi , yi )− ψ(xi , y)]

=
∑
i

∑
y 6=yi

αiy


︸ ︷︷ ︸

:=βiyi

ψ(xi , yi ) +
∑
i

∑
y 6=yi

(−αiy )︸ ︷︷ ︸
:=βiy

ψ(xi , y)

=
∑
i ,y

βiyψ(xi , y)

as it should be according to the representer theorem.



Section 3

Oracle-Based Algorithms



The Challenge

SVMstruct QP

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

with (w , ξ) ∈
⋂
iy

Ωiy , i = 1, . . . , n, y ∈ Y − {yi}

where Ωiy := {(w , ξ) : 〈w , δψi (y)〉 ≥ 4(yi , y)− ξi}

I Structure of QP is not changed, but number of constraints can be
vastly increased relative to binary classification

I e.g. if Y is vector of binary labels so that Y = {−1, 1}l and m = 2l

I Scalable algorithms for this challenge? 10 years of research!



Structured Prediction Perceptron

I Michael Collins 2002, Discriminative training methods for hidden
markov models: Theory and experiments with perceptron
algorithms [Col02]

I Perceptron learning avoids the challenge by only focussing on the
worst output at a time

I instead of enforcing constraints over all possible incorrect outputs

I Standard perceptron algorithm with the following modifications
I Compute prediction

ŷi := F (xi ) = arg max
y
〈w , ψ(xi , y)〉

I Perform update according to

w ←

{
w + ψ(xi , yi )− ψ(xi , ŷ) = w + δψi (ŷ) if ŷ 6= yi

w otherwise

I Novikoff’s theorem and mistake bound can be generalized



Separation Oracles

I One idea of the perceptron algorithm turns out to be key: identify
the output with the most violating margin constraint

I We call such a sub-routine a separation oracle

Perceptron ŷi ∈ arg max
y

f (xi , y ;w)

Margin re-scaling ŷi ∈ arg max
y
{4(yi , y)− f (xi , yi ;w) + f (xi , y ;w)}

Slack re-scaling ŷi ∈ arg max
y
{4(yi , y)[1− f (xi , yi ;w) + f (xi , y ;w)]}

I Dependent on the method, the separation oracle is used to identify
I violated constraints (successive strengthening)

I update directions for the primal (subgradient)

I variables in the dual (SMO)

I update directions for the dual (Frank-Wolfe)



Large Margin Algorithms - Taxonomy & History



Successive QP Strengthening

I Create sequence of QPs that are relaxations of SVMstruct.

I Feasible domain Ω =
⋂

iy Ωiy ∩ (Rd × Rn
≥0)

I Relaxed QP: same objective, yet Ω̂ ⊃ Ω

I optimal solution (ŵ , ξ̂) for relaxed QP will have
H(ŵ , ξ̂) ≤ H(w∗, ξ∗), but possibly (ŵ , ξ̂) ∈ Ω̂− Ω.

I goal: fulfill remaining constraints with tolerance ε, (ŵ , ξ̂ + ε) ∈ Ω

I why? this would give H(ŵ , ξ̂ + ε) = H(ŵ , ξ̂) + ε ≥ H(w∗, ξ∗).

I Construct strict sequence of increasingly stronger relaxations via

Ω(0) = Rd × Rn
≥0, Ω(t + 1) := Ω(t) ∩ Ωi ŷ

where (i , ŷ) is a constraint selected at step t fulfilling

arg min
(w ,ξ)∈Ω(t)

H(w , ξ) 6∈ Ωε
i ŷ , Ωε

iy := {(w , ξ) : (w , ξ + ε) ∈ Ωiy}



Strengthening via Separation Oracle

→



Strengthening via Separation Oracle

I Loop through all training examples (in fixed order)

I Call separation oracle for (xi , yi )

I Concretely for margin re-scaling

ŷi ∈ arg max
y
{4(yi , y)− f (xi , yi ;w) + f (xi , y ;w)}

will identify (one of) the most violating constraint(s) for given i ,
provided there are such constraints

I We can easily check, whether violation is > ε.

I Termination at step T , if no such constraints exist for
i = 1, . . . , n.

I Significance: can ensure T ≤ O(n/ε2) or (with mild conditions)
even T ≤ O(n/ε). No dependency on |Y|!



Strengthening via Separation Oracle; Example (n = 1)

I Step 0: (ŵ , ξ̂) = arg minΩ(0)H(w , ξ) = (0, 0)

I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y),

Ω(1) = Ω(0) ∩ Ω1ŷ

I Step 2: (ŵ , ξ̂) = arg minΩ(2)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y)− 〈δψ1(y), ŵ〉

Ω(2) = Ω(1) ∩ Ω1ŷ

provided that Ωε
iy ∩ Ω(1) 6= ∅.

I Step 3: (ŵ , ξ̂) = arg minΩ(3)H(w , ξ), where
...
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I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where
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Improved Cutting Planes: Motivation
I Successive strengthening (as above) is expensive

I only one constraint (for one example) gets added in each step
I requires re-optimization (= solving a QP) after each such step
I can warm-start, but still...

I How about, we compute all oracles in parallel

ŷ = (ŷ1, . . . , ŷn) ∈ Yn

I Derive a strengthening from that Ω(t + 1) = Ω(t) ∩ Ωŷ

I Naively could set Ωŷ :=
⋂

i Ωi ŷi
I ... but how would that give us improved termination guarantees?
I ... how can we avoid blow-up in number of constraints?

I Instead summarize into a single linear constraint with a single
shared slack variable ζ ≥ 0. Fulfill margin on average

n∑
i=1

〈ψi (ŷi ),w〉 ≥
n∑

i=1

4(yi , ŷi )− ζ



Improved Cutting Planes: Algorithm

I [JFY09] show that the QP containing all such average constraints
for all combinations y ∈ Yn is solution equivalent to SVMstruct, if
one identifies ζ = ‖ξi‖1.

min
w ,ξ

λ

2
〈w ,w〉+ 1

n‖ξ‖1 s.t.

〈δψi (y),w〉 ≥ 4(yi , y)− ξi
(∀i , y ∈ Y) ∼ n ·m

min
w ,ζ

λ

2
〈w ,w〉+ ζ s.t.∑

i 〈δψi (y),w〉 ≥
∑

i4(yi , y)−ζ
(∀y ∈ Yn) ∼ mn

I [JFY09] also provide O(1/ε)-bounds on the number of epochs
I overall runtime O(n/ε) (in the linear case), not counting oracle

I Dual QP optimization
I one variable for each selected (average constraint), highly sparse
I complexity of O(n2); with reduced rank approx. O(nr + r3)



Improved Cutting Planes: Experiments

Experiments from [JFY09]

I # calls to separation oracle 2-3x reduced

I CPU time, 5x-1000x dependent on time spent on QP vs. oracle
⇒ much more efficient usage of optimization time

I 1000-10000x fewer support vectors, but not when multiplied by n

I Approximation result O(1/ε)

I Book-keeping overhead for storing #SVs ·n descriptors of size
O(logm)



Subgradient Method for SVMstruct

I Can we avoid solving many relaxed QPs?
How about a gradient descent flavor method?

I We can avoid linearizing (i.e. rolling out) the constraints.
Work directly with (unconstrained) piecewise linear objective

w∗ = arg min
w

λ

2
〈w ,w〉+

1

n

n∑
i=1

max
y
{4(yi , y)− 〈δψi (y),w〉}︸ ︷︷ ︸

oracle ŷi :=arg max()

I Compute subgradient, e.g. via

g = λw +
1

n

n∑
i=1

δψi (ŷi )

I Perform batch or stochastic updates on w (learning rate?)

I Proposed by [RBZ07]; see also PEGASOS [SSSSC11]



Background: Subgradient Methods

I Let f : RD → R be a convex, not necessarily differentiable
function. A vector v ∈ RD is called a subgradient of f at x0, if

f (x) ≥ f (x0) + 〈v , x − x0〉
for all x

I Differentiable point x0: unique subgradient = gradient ∇f (x0).



Frank-Wolfe Algorithm

I Frank & Wolfe, 1956: An algorithm for quadratic programming

I Minimize linearization at current iterate over corners of domain

’new iterate’ := (1− η) · ’old iterate’ + η · ’optimal corner’

I Features

I linearity: linear, not quadratic function minimization in every step

I sparseness: convex combination of selected corners

I projection-free: iterates stay in convex domain

I learning rate: O(1/t) schedule or via line search

I duality gap: implicitly computes duality gap

I Applied to SVMstruct by [LJJSP13]



Frank-Wolfe Algorithm: Quadratic vs. Linearized

I Quadratic objective
(contour line plot)

I Linearized objective



Frank-Wolfe Algorithm: Schematic 3D View

[taken from Lacoste-Julien et al., 2013]



Frank-Wolfe Algorithm: Dual SVM-struct Objective

I Dual objective

h(α) =
1

2
‖Qα‖2 − 〈4, α〉

I Gradient

∇αh(α∗) = (Q ′Q)α∗ −4

I Linearization

h̄(α;α∗) = h(α∗)︸ ︷︷ ︸
=const.

+〈∇αh(α∗), α− α∗〉≤ h(α)︸ ︷︷ ︸
convexity

I Minimization problem

e∗ := arg min
{er :r=1,...,m}

h̄(er ;α∗), with er : r -th unit vector



Frank-Wolfe Algorithm: Deciphered

I What does the minimization problem over corners mean?

h̄(ey ′ ;α
∗) + const. = 〈 ∇αh(α∗)︸ ︷︷ ︸

=(Q′Q)α∗−4

, ey ′〉

= 〈Qey′ ,Qα∗︸︷︷︸
=w

〉+4(y , y ′)

= 〈
∑

i δψi (y
′
i ),w〉+

∑
i 4(yi , y

′
i )

so that

ŷi = arg max
y ′
{〈δψi (y

′),w〉+4(yi , y
′)}

which is just the separation oracle!



Algorithms: Frank-Wolfe, Subgradient, Cutting Plane

I How does Frank-Wolfe relate to the other methods?

I FW ↔ Subgradients:
I Same update direction of primal solution w
I But: Smarter step-size policy derived from dual (see below)
I But: Duality gap for meaningful termination condition (see below)

I FW ↔ improved cutting planes:
I Selected dual variables correspond to added constraints
I But: incremental update step vs. optimization of relaxed QP
I But: #SV can be larger due to incremental method, no need to

re-formulate SVM struct

I Further advantages
I Simple and clean analysis
I Per-instance updates (block-coordinate optimization)



Frank-Wolfe Algorithm: Primal-Dual Version

I Apply Frank-Wolfe to dual QP, but translate into primal updates

I Compute primal update direction (subgradient)

w̄ :=
1

λ

n∑
i=1

δψi (ŷi ), 4̄ :=
1

n

n∑
i=1

4(yi , ŷi )

I Perform convex combination update

w t+1 = (1− γt)w t + γtw̄ , 4t+1 = (1− γt)4t + γ4̄

here the optimal γt can be computed analytically (closed-form line
search) from w t , 4̄ and w̄

I Convergence rate: ε-approximation is found in at most O(R
2

λε )
steps



Block-Coordinate Frank-Wolfe

I Domain of the dual QP factorizes α ∈ Snm−1 (product of simplicies)

α = (αi )
n
i=1, s.t. αi ≥ 0 and 〈αi , 1〉 = 1

α = ( α1 α2 α3 . . . )

I Perform Frank-Wolfe update over each block (randomly selected).
I single-instance mode: alternates single oracle call and update step
I back to successive strengthening, but replace: re-optimization with

fast updates
I convergence rate analysis; duality gap as stopping criterion
I excellent scalability



Frank-Wolfe Methods: Scalability [LJJSP13]

I Frank-Wolfe very similar to improved cutting plane method

I Block-coordinate version much faster, better than stochastic
subgradient descent

I Main caveat: primal-dual version needs to store one weight vector
per training instance!!



Implicit Oracle as LP Relaxation

I Sometimes, oracle can be integrated into the QP

max
y∈Y
{〈δψi (y),w〉+4(yi , y)}

= max
zi∈Z
〈zi , ci + Fiw〉+ di

I Examples: binary MRFs with sub modular potentials, matchings,
tree-structured MRFs

I Saddle point formulation:

min
w

max
z

{
λ

2
‖w‖2 +

n∑
i=1

〈zi , ci + Fiw〉 − 〈ψ(xi , yi ),w〉

}

I Make use of extragradient method [TLJJ06] - gradients &
projections



Bi-partite Matching

I Graph G(V ,E ) with V = V s ∪ V t , E = V s × V t

I Matching scores sjk ∈ R for each edge (j , k) ∈ E .

I Alignment variables yjk ∈ {0, 1} and their relaxation zjk ∈ [0; 1]

I LP relaxation of integer program

max
0≤z≤1

∑
(j ,k)∈E

sjkzjk , s.t.
∑
j

zjk ≤ 1 (∀k) and
∑
k

zjk ≤ 1 (∀j)

I LP is guaranteed to have integral solutions

I Integrating into SVM struct QP

max
{0≤zi≤1}

∑
e∈E

zie 〈ψ(xi , ye),w〉︸ ︷︷ ︸
si,jk , e=(j ,k)

+ (1− 2yie)︸ ︷︷ ︸
Hamming loss



Section 4

Decomposition-Based Algorithms



Factor Graphs
I In many cases of practical interest, the compatibility function

naturally allows for an additive decomposition over factors or parts

f (x , y) =
∑
c∈C

fc(xc , yc)

which can formally be described as a factor graph.
I In the linear case, this can be induced via a feature decomposition

ψ(x , y) =
∑
c∈C

ψc(xc , yc), such that

f (x , y ;w) = 〈w , ψ(x , y)〉 =
∑
c

〈w , ψc(xc , yc)〉︸ ︷︷ ︸
=:fc (xc ,yc )

I We typically require that the loss decomposes in a compatible
manner

4(y , y ′; x) =
∑
c∈C
4c(yc , y

′
c ; xc)



Representer Theorem for the Factorized Case

I Conditions as before but factor structure assumed. Denote
configurations for factor c as z ∈ Z(c).

I Representation

f (x , y) =
n∑

i=1

∑
c∈C

∑
z∈Z(c)︸ ︷︷ ︸∑

c |Z(c)|�|Y|

µicz 〈ψc(xic , z), ψc(xic , yc)〉︸ ︷︷ ︸
=:kc ((xic ,z),(xic ,yc ))

I Note that this offers the possibility to

1. define kernels on a per factor level
2. use a low-dimensional parametrization that does not need to rely on

sparseness



Decomposing the Dual QP

I Dual has the following structure (rescaling by n as appropriate to
make α probability mass function)

min
α≥0

h(α) :=
1

2
‖Qα‖2 − 〈α,4〉 s.t.

∑
y

αiy = 1 (∀i)

I Introduce marginal probabilities

µicz :=
∑
i ,y

1[yc = z ]αiy ,
∑
z

µicz =
∑
i ,y

αiy = 1

I Decompose loss (similar for QtQ)∑
y

αiy4(yi , y) =
∑
y

αiy

∑
c

4c(yic , yc)

=
∑
c,z

(∑
y

1[yc = z ]αiy

)
︸ ︷︷ ︸

=µicz

4c(yic , z)



Decomposing the Dual QP (continued)

I Define with multi-index (icz):

Q•,icz := ψc(xic , yic)− ψc(xic , z), µC := (µicz), 4C := (4icz)

I Factorized QP

µ∗C = arg min
µC≥0

{
1

2
‖QµC‖2 − 〈µC ,4C〉

}
s.t. µC is on the marginal polytope

I µC needs to be normalized and locally consistent (non-trivial).
I objective broken up into parts - global view enforced via constraints!

I Example: Singly connected factor graph. Local consistency:∑
r :(r ,s)∈C

µirs = µis (∀i , s)

I For general factor graphs: only enforce local consistency =
relaxation in the spirit of approximate belief propagation [TGK03]



Conditional Exponential Family Models

I Structured prediction from a statistical modeling angle

I f from some RHKS with kernel k over X × Y
I Conditional exponential families

p(y |x ; f ) = exp [f (x , y)− g(x , f )] , where

g(x , f ) :=

∫
Y

exp [f (x , y)] dν(y)

I Univariate case (y ∈ R), generalized linear models

p(y |x ;w) = exp [y〈w , φ(x)〉 − g(x ,w)]

I Non-parameteric models, e.g. ANOVA kernels

k((x , y), (x ′, y ′) = yy ′k(x , x ′)



Conditional Random Fields

I Conditional log-likelihood criterion [LMP01, LZL04]

f ∗ := arg min
f ∈H

λ

2
‖f ‖2
H︸ ︷︷ ︸

stabilizer

− 1

n

n∑
i=1

log p(yi |xi ; f )︸ ︷︷ ︸
log-loss

I Optimization methods:
I improved iterative scaling [LMP01]
I pre-conditioned conjugate gradient descent, limited memory

quasi-Newton [SP03]
I finite dimensional case: requires computing expectations of

sufficient statistics E [ψ(Y , x)] for x = xi , i = 1, . . . , n.

∇w [...]
!

= 0 ⇐⇒ λw∗ =
1

n

n∑
i=1

ψ(xi , yi )︸ ︷︷ ︸
sample statistics

− 1

n

n∑
i=1

∑
y∈Y

ψ(xi , y)p(y |xi ;w∗)︸ ︷︷ ︸
expected statistics



Dual CRF

I Representer theorems apply to log-loss. Log-linear dual:

α∗ = arg min
α≥0

h(α) :=
1

2
‖Qα‖2 +

n∑
i=1

∑
y∈Y

αiy logαiy

s.t.
∑
y∈Y

αiy = 1 (∀i)

I Compare with SVM struct

1

2
‖Qα‖2

+
n∑

i=1

∑
y∈Y

αiy logαiy

1

2
‖Qα‖2

−
n∑

i=1

∑
y∈Y

αiy4(yi , y)

I same data matrix Q constructed from δψi (y) (or QtQ via kernels)
I same n-factor simplex constraints on α
I entropy maximization, instead of linear penalty (based on loss)



Exponentiated Gradient Descent

I Exponentiated gradient descent [CGK+08] can be applied to solve
both duals (hinge loss and logarithmic loss)

I General update equation

α
(t+1)
iy ∝ α(t)

iy · exp [∇h(α)]

= α
(t)
iy · exp [λ〈w∗, δψi (y)〉 − 4(yi , y)]

I Can be motivated by performing gradient descent on the
canonical/natural parameters (and re-formulating in mean-value
parameterization)

θ(t+1) = θ(t) + δθ(t) ⇒ α(t+1) = exp[〈ψ, θ(t+1)〉] = exp[〈ψ, δθ(t)〉]α(t)

I on-line version: generalizes SMO for solving dual problem (when no
closed form solution exists)



Factorized Exponentiated Gradient Descent

I Work with factorized dual QP: e.g. [TGK03], SMO over marginal
variables µC .

I Better: adopt exponentiated gradient descent [CM05, CGK+08]

I Derivation: summing on both sides of the update equation...

µ
(t+1)
icz =

∑
y

1[yc = z ]α
(t)
iy exp [λ〈w∗, δψi (y)〉 − 4(yi , y)]

∝
∑
y

1[yc = z ]α
(t)
iy exp [λ〈w∗, ψc(xi , yiz)− ψc(xi , z)〉 − 4(yiz , z)]

= µ
(t)
icz · exp [λ〈w∗, ψc(xi , yiz)− ψc(xi , z)〉 − 4(yiz , z)]

I w∗ can (representer theorem) computed from µ and ψc (or via kc),
4c terms.

I Similar for log-loss, faster convergence rates O(log 1/ε).



Section 5

Conclusion & Discussion



Structured Prediction

I Support Vector Machines: can be generalized to structured
prediction in a scalable manner

I Oracle-based architecture: decouples general learning method from
domain-specific aspects

I Features & loss function: can be incorporated in a flexible manner

I Kernels: efficient dual methods exist that can rely on kernels
(crossed feature maps, factor-level kernels)

I Algorithms: rich set of scalable methods; cutting planes,
subgradients, Frank-Wolfe, exponentiated gradient

I Decomposition-based methods: can exploit insights and algorithms
from approximate probabilistic inference

I Conditional random fields: close relation (decomposition, dual,
sparseness?)

I Applications: ever increasing number of applications and use cases
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