
Structured Prediction
w/ Large Margin Methods

Thomas Hofmann

thomas.hofmann@ethz.ch

thofmann@google.com

Data Analytics Laboratory, ETH Zürich

& Google Engineering Center, Zürich

Machine Learning Summer School
Tübingen, September 3-4, 2013



Section 1

Motivation & Overview



Structured Prediction

Generalize supervised machine learning methods to deal with
structured outputs and/or with multiple, interdependent outputs.

Structured objects such as se-
quences, strings, trees, labeled
graphs, lattices, etc.

Multiple response variables
that are interdependent = col-
lective classification



Jiggsaw Metaphor

Holistic prediction 6= independent prediction of pieces

It is not just about solving one instance of a puzzle, but learning
how to solve a whole class of puzzles.

inspired by Ben Taskar’s tutorial



Natural Language Processing

I PoS tagging, named entity detection, language modeling

I Syntactic sentence parsing, dependency parsing

I Semantic parsing
I B. Taskar, D. Klein, M. Collins, D. Koller, and C.

Manning, Max-Margin Parsing, EMNLP, 2004

I R. McDonald, K. Crammer, F. Pereira, Online
large-margin training of dependency parsers. ACL 2005

I H. C. Daume III, Practical Structured Learning
Techniques for Natural Language Processing, Ph.D.
Thesis, Univ. Southern California, 2006

I R. McDonald, K. Hannan, Kerry, T. Neylon, M. Wells, J.
Reynar, Structured models for fine-to-coarse sentiment
analysis, ACL 2007

I B. Roark, M. Saraclar, M. Collins: Discriminative n-gram
language modeling. Computer Speech & Language
21(2): 373-392, 2007

I Y. Zhang, S. Clark, Syntactic processing using the
generalized perceptron and beam search, Computational
Linguistics 2011.

I C. Cherry, G. Foster, Batch tuning strategies for
statistical machine translation, NAACL 2012.

I L. S. Zettlemoyer, M. Collins, Learning to Map Setences
to Logical Form: Structured classification with
probabilistic categorial grammars, arXiv, 2012



Information Retrieval

I Learning to rank, e.g. search engines

I Multidocument summarization

I Whole page clickthrough prediction

I Entity linking and reference resolution

I Y Yue, T. Finely, F. Radlinski, T. Joachims: A support
vector method for optimizing average precision. SIGIR
2007

I L. Li et al: Enhancing diversity, coverage and balance for
summarization through structure learning, WWW 2009.

I T. Berg-Kirkpatrick, Taylor, D. Gillick, D. Klein: Jointly
Learning to Extract and Compress, ACL. 2011

I R. Sipos, P. Shivaswamy, T. Joachims: Large-margin
learning of submodular summarization models, ACL 2012



Computer Vision

I Image segmentation

I Scene understanding

I Object localization & recognition

I T. Caetano & R. Hartley, ICCV 2009 Tutorial on
Structured Prediction in Computer Vision

I M. P. Kumar, P. Torr, A. Zisserman, Efficient
Discriminative Learning of Parts-based Models, ICCV
2009.

I C. H. Lampert, M. B. Blaschko, T. Hofmann: Efficient
Subwindow Search: A Branch and Bound Framework for
Object Localization, PAMI 2009

I A. G. Schwing, T. Hazan, M. Pollefeys, R. Urtasun:
Efficient structured prediction for 3D indoor scene
understanding, CVPR 2012

I A. Patron-Perez, M. Marszalek, I. Reid, A. Zisserman:
Structured learning of human interactions in TV shows,
PAMI 2012



Computational Biology

I Protein structure & function prediction

I Gene finding, structure prediction (splicing)

I Y. Liu, E. P. Xing, and J. Carbonell, Predicting protein
folds with structural repeats using a chain graph model,
ICML 2005

I G. Rätsch and S. Sonnenburg, Large Scale Hidden
Semi-Markov SVMs, NIPS 2006.

I A. Sokolov and A. Ben-Hur, A Structured-Outputs
Method for Prediction of Protein Function, In
Proceedings of the 3rd International Workshop on
Machine Learning in Systems Biology, 2008.

I K. Astikainen et al., Towards Structured Output
Prediction of Enzyme Function, BMC Proceedings 2008,
2 (Suppl. 4):S2

I G. Schweikert et al, mGene: Accurate SVM-based gene
finding with an application to nematode genomes,
Genome Res. 2009 19: 2133-2143

I N. Görnitz, C. Widmer, G. Zeller, A. Kahles, S.
Sonnenburg, G. Rätsch: Hierarchical Multitask
Structured Output Learning for Large-scale Sequence
Segmentation, NIPS 2011



Overview

1. ⇒ Overview

2. Model
I Structured prediction SVM
I Margins & loss functions for structured prediction

3. Oracle-based Algorithms
I Cutting plane methods
I Subgradient-based approaches
I Frank-Wolfe algorithm
I Dual extragradient method

4. Decomposition-based Algorithms
I Representer theorem and dual decomposition
I Conditional random fields
I Exponentiated gradient

5. Conclusion & Discussion



Section 2

Model



Structured Prediction

I Input space X , output space Y
I |Y| = m can be large due to combinatorics

I e.g. label combinations, recursive structures

I Given training data (xi , yi ) ∈ X × Y, i = 1, . . . , n
I drawn i.i.d. from unknown distribution D

I Goal: find a mapping F

F : X → Y

I with a small prediction error

err(F ) = ED [4(Y ,F (X ))]

I relative to some loss function 4 : Y × Y → R+
0 ,

with 4(y , y) = 0 and 4(y , y ′) > 0 for y 6= y ′.



Examples: Loss Functions

I Multilabel prediction
I Y = {−1, 1}k
I 4(y , y ′) = 1

2 (k − 〈y , y ′〉) (Hamming loss)

I Taxonomy classification
I Y = {1, . . . , k}, k classes arranged in a taxonomy
I 4(y , y ′) = tree distance between y and y ′

I cf. [CH04, BMK12]

I Syntactic parsing
I Y = {labeled parse trees}
I 4(y , y ′) = # labeled spans on which y and y ′ do not agree
I cf. [TKC+04]

I Learning to rank
I Y = {permutations of set of items}
I 4(y , y ′) = mean average precision of ranking y ′ vs. optimal y
I cf. [YFRJ07]



Multiclass Prediction

I Apply standard multiclass approach to Y with |Y| = m.

I Define Y-family of discriminant functions fy : X → R, y ∈ Y
I Prediction based on winner-takes-all rule

F (x) = arg max
y∈Y

fy (x)

I Typical: linear discriminants with weight vector wy ∈ Rd and

fy (x) := 〈φ(x),wy 〉

I shared input representation via feature map φ : X → Rd

I Trained via one-vs-all or as a single ’machine’

I References: [RK04, WW99, CS02, LLW04]



Multiclass Prediction ≺ Structured Prediction

I What happens as m > n ?
I Not enough training data to even have a single example for every

output.

I Taking outputs as atomic entities without any internal structure
does not enable generalization across outputs

I There is no learning, only memorization of outputs.

I Need to go beyond the standard multiclass setting and enable
learning across X × Y. Two lines of thought:

I Feature-based Prediction: extract features from inputs & outputs,
define discriminant functions with those features

I Factor-based Prediction: decompose output space into variables
and identify factors [coming back to this later ]



Feature-based Prediction

I Joint feature maps

ψ : X × Y → Rd , kψ((x , y), (x ′y ′)) := 〈ψ(x , y), ψ(x ′, y ′)〉

to extract features from input-output pairs.

I Canonical construction by crossing features extracted separately
from inputs and outputs

ψ = φX × φY : X × Y → Rdx ·dy , ψ(x , y) := φX (x)× φY(y) .

I Can be more selective about features crossed (subsets).
I Other constructions (beyond crossing) are possible.

I When using inner products one gets the compelling factorization

kψ((x , y), (x ′, y ′)) = kφX (x , x ′) · kφY (y , y ′) .



Example: Label Sequence (HMM) [ATH+03]

I Hidden Markov Models: X = (Rd)l , Y = {1, . . . , k}l , where
I l : length of sequence
I k : cardinality of hidden variable
I d : dimensionality of observations

I First feature template: local observations

ψ1
c (x , y) =

l∑
t=1

1[y t = c] · φ(x t)

I adding up all observations that are assigned to same class
c ∈ {1, . . . k}

I Second feature template: pairwise nearest neighbor interactions

ψ2
c,c̄(x , y) =

l−1∑
t=1

1[y t = c] · 1[y t+1 = c̄]

I counting number of times labels (c , c̄) are neighbors



Example: Optimizing Ranking [YFRJ07]

I Kandall’s tau:

τ =
# concord. pairs - # discord. pairs

# all pairs
= 1− 2 ·# discordant pairs

# all pairs

I Output ranking encoded via pairwise ordering

Y = {−1, 1}k×k , y≺ij =

{
1 if i ≺ j

−1 otherwise

I Combined feature function

ψ(x , y) =
∑
i<j

yij [φ(xi )− φ(xj)]

Bipartite case C+(x)∪C−(x) = {1, . . . , k}, relev./non-relev. items

ψ(x , y) =
∑

i∈C+(x)

∑
j∈C−(x)

yij [φ(xi )− φ(xj)]



Example: Learning Alignments [JHYY09]

I Input: two annotated (protein) sequences x = (sa, sb).

I Output: alignment y between two sequences x

I Joint features:

I Types of features: combinations of amino acid, secondary
structure, solvent accessibility; sliding window; PSI-BLAST profile
scores;



Multiclass + Output Features = Structured Predction

I Generalize multiclass prediction and define linear discriminants

multiclass→ fy (x ;w) := f (x , y ;w) = 〈ψ(x , y),w〉 ← structured

I Parameter sharing across outputs (with same features)

I Recover feature-less multiclass by defining (1 out of m encoding)

〈φY(y), φY(y ′)〉 = δyy ′

i.e. feature vectors involving different classes y , y ′ are orthogonal.

I Allows to incorporate prior knowledge into multiclass problems
I Hierarchical classification - encode class taxonomy []
I Entity reference resolution - encode prior entity names and types

I Requires single ’machine’ formulation as weight vectors are not
separated → How can we generalize SVMs?



Binary Support Vector Machine

Convex Quadratic Program (primal)

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

subject to yi 〈w , φ(xi )〉 ≥ 1− ξi (∀i)

I Examples (xi , yi ) ∈ X × {−1, 1}, i = 1, . . . , n

I Feature map φ : X → Rd

I Weight vector w ∈ Rd

I Slack variables ξi ≥ 0

I Regularization parameter λ ∈ R+



Margin-rescaled Constraints

For each instance (xi , yi ) define m := |Y| constraints via

f (xi , yi ;w)− f (xi , y ;w) ≥ 4(yi , y)− ξi (∀y ∈ Y)

I Require correct output yi to be scored higher than all incorrect
outputs y 6= yi by a margin

I Adjust target margin for incorrect outputs to be 4(yi , y)

I Provides an upper bound on the empirical loss via

ξ∗i = max
y
{4(yi , y)− [f (xi , yi ;w)− f (xi , y ;w)]

≥ 4(yi , ŷ)− [f (xi , yi ;w)− f (xi , ŷ ;w)]︸ ︷︷ ︸
≤0 for ŷ

≥ 4(yi , ŷ)

where ŷi := arg maxy f (xi , y ;w) is the predicted output



Slack-rescaled Constraints

For each instance (xi , yi ) define m := |Y| − 1 constraints via

f (xi , yi ;w)− f (xi , y ;w) ≥ 1− ξi
4(yi , y)

(∀y ∈ Y − {yi})

I Require correct output yi to be scored higher than all incorrect
outputs y 6= yi by a margin

I Penalize margin violations proportional to 4(yi , y)

I Provides an upper bound on the empirical loss via

ξ∗i = max
y
{4(yi , y)−4(yi , y)[f (xi , yi ;w)− f (xi , y ;w)]}

≥ 4(yi , ŷ)−4(yi , ŷ)︸ ︷︷ ︸
≥0

[f (xi , yi ;w)− f (xi , ŷ ;w)]︸ ︷︷ ︸
≤0

≥ 4(yi , ŷ)

where ŷi := arg maxy f (xi , y ;w) is the predicted output



Softmargin, Illustration

Geometric sketch



Structured Prediction SVM

Convex Quadratic Program (primal)

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

subject to 〈w , δψi (y)〉 ≥ 4(yi , y)− ξi (∀i ,∀y ∈ Y − {yi})
binary: [ subject to 〈w , yiφ(xi )〉 ≥ 1 − ξi (∀i) ]

where δψi (y) := ψ(xi , yi )− ψ(xi , y).

I Examples (xi , yi ) ∈ X × Y, i = 1, . . . , n

I Feature map ψ : X × Y → Rd

I Weight vector w ∈ Rd

I Slack variables ξi ≥ 0, regularization parameter λ ∈ R+

I Generalizes multiclass SVM [CS02]



RepresenterTheorem

I Denote by H and RKHS on X × Y with kernel k. A sample set
S = {(xi , yi ) : i = 1, . . . , n} is given. Furthermore let C(f ;S ′) be a
functional that depends on f only through its values on the
augmented sample S ′ := {(xi , y) : (xi , yi ) ∈ S}. Let Λ be a strictly
monotonically increasing function. Then the solution of the
optimization problem f̂ (S) := arg minf ∈H C(f ,S) + Λ(‖f ‖H) can
be written as

f̂ (·) =
∑
i ,y

βiyk(·, (xi , y))

I Linear case

ŵ =
∑
i ,y

βiyψ(xi , y)

I See: T. Hofmann, B. Schölkopf, A.J. Smola, Kernel methods in
machine learning, The Annals of Statistics 2008.



Deriving the Wolfe Dual (1)

Lagrangian

L(. . . ) =
λ

2
‖w‖2 +

1

n
‖ξ‖1 −

∑
i ,y 6=yi

αiy [〈δψi (y),w〉 −4(yi , y) + ξi ]− 〈ξ, ξ̂〉

Gradient components

∇ξL =
1

n
− ξ̂ −

∑
y

α•y
!

= 0 ⇒ 0 ≤
∑
y

αiy ≤
1

n
(∀i)

∇wL = λw −
∑
i ,y 6=yi

αiyviyδψi (y)
!

= 0 ⇒ w∗(α) =
1

λ

∑
i ,y 6=yi

αiyδψi (y)

Re-writing in matrix notation as w(α)∗ = Qα with

Q := (Qr ,iy ) ∈ Rd×n(m−1), with Q•,iy :=
1

λ
δψi (y)



Deriving the Wolfe Dual (2)

Plugging-in solution and exploiting known inequalities

min
α≥0

h(α) :=
1

2
‖Qα‖2 − 〈α,4〉 s.t. n

∑
y

αiy ≤ 1 (∀i)

binary: [
1

2
‖Q̃α‖2 − 〈α, 1〉 s.t. nαi ≤ 1 (∀i) ]

I Quantity: n ·m dual variables instead of n

I Quality: structure of dual is very similar

I Constraints only couple variables in blocks {αiy : y ∈ Y − {yi}}

I Natural factorization of α ∈ Rn(m−1)
≥0 = R(m−1)

≥0 × · · · × R(m−1)
≥0︸ ︷︷ ︸

n times

I α/n is a probability mass function αiyi := 1− n
∑

y 6=yi
αiy

I What is a support vector? pair (i , y) with active constraint



Linear Case: Representer Theorem

Looking at the solution w∗ we see that

w∗ =
∑
i

∑
y 6=yi

αiyδψi (y) =
∑
i

∑
y 6=yi

αiy [ψ(xi , yi )− ψ(xi , y)]

=
∑
i

∑
y 6=yi

αiy


︸ ︷︷ ︸

:=βiyi

ψ(xi , yi ) +
∑
i

∑
y 6=yi

(−αiy )︸ ︷︷ ︸
:=βiy

ψ(xi , y)

=
∑
i ,y

βiyψ(xi , y)

as it should be according to the representer theorem.



Section 3

Oracle-Based Algorithms



The Challenge

SVMstruct QP

(w∗, ξ∗) = arg min
w ,ξ≥0

H(w , ξ) :=
λ

2
〈w ,w〉+

1

n
‖ξ‖1

with (w , ξ) ∈
⋂
iy

Ωiy , i = 1, . . . , n, y ∈ Y − {yi}

where Ωiy := {(w , ξ) : 〈w , δψi (y)〉 ≥ 4(yi , y)− ξi}

I Structure of QP is not changed, but number of constraints can be
vastly increased relative to binary classification

I e.g. if Y is vector of binary labels so that Y = {−1, 1}l and m = 2l

I Scalable algorithms for this challenge? 10 years of research!



Structured Prediction Perceptron

I Michael Collins 2002, Discriminative training methods for hidden
markov models: Theory and experiments with perceptron
algorithms [Col02]

I Perceptron learning avoids the challenge by only focussing on the
worst output at a time

I instead of enforcing constraints over all possible incorrect outputs

I Standard perceptron algorithm with the following modifications
I Compute prediction

ŷi := F (xi ) = arg max
y
〈w , ψ(xi , y)〉

I Perform update according to

w ←

{
w + ψ(xi , yi )− ψ(xi , ŷ) = w + δψi (ŷ) if ŷ 6= yi

w otherwise

I Novikoff’s theorem and mistake bound can be generalized



Separation Oracles

I One idea of the perceptron algorithm turns out to be key: identify
the output with the most violating margin constraint

I We call such a sub-routine a separation oracle

Perceptron ŷi ∈ arg max
y

f (xi , y ;w)

Margin re-scaling ŷi ∈ arg max
y
{4(yi , y)− f (xi , yi ;w) + f (xi , y ;w)}

Slack re-scaling ŷi ∈ arg max
y
{4(yi , y)[1− f (xi , yi ;w) + f (xi , y ;w)]}

I Dependent on the method, the separation oracle is used to identify
I violated constraints (successive strengthening)

I update directions for the primal (subgradient)

I variables in the dual (SMO)

I update directions for the dual (Frank-Wolfe)



Large Margin Algorithms - Taxonomy & History



Successive QP Strengthening

I Create sequence of QPs that are relaxations of SVMstruct.

I Feasible domain Ω =
⋂

iy Ωiy ∩ (Rd × Rn
≥0)

I Relaxed QP: same objective, yet Ω̂ ⊃ Ω

I optimal solution (ŵ , ξ̂) for relaxed QP will have
H(ŵ , ξ̂) ≤ H(w∗, ξ∗), but possibly (ŵ , ξ̂) ∈ Ω̂− Ω.

I goal: fulfill remaining constraints with tolerance ε, (ŵ , ξ̂ + ε) ∈ Ω

I why? this would give H(ŵ , ξ̂ + ε) = H(ŵ , ξ̂) + ε ≥ H(w∗, ξ∗).

I Construct strict sequence of increasingly stronger relaxations via

Ω(0) = Rd × Rn
≥0, Ω(t + 1) := Ω(t) ∩ Ωi ŷ

where (i , ŷ) is a constraint selected at step t fulfilling

arg min
(w ,ξ)∈Ω(t)

H(w , ξ) 6∈ Ωε
i ŷ , Ωε

iy := {(w , ξ) : (w , ξ + ε) ∈ Ωiy}



Strengthening via Separation Oracle

→



Strengthening via Separation Oracle

I Loop through all training examples (in fixed order)

I Call separation oracle for (xi , yi )

I Concretely for margin re-scaling

ŷi ∈ arg max
y
{4(yi , y)− f (xi , yi ;w) + f (xi , y ;w)}

will identify (one of) the most violating constraint(s) for given i ,
provided there are such constraints

I We can easily check, whether violation is > ε.

I Termination at step T , if no such constraints exist for
i = 1, . . . , n.

I Significance: can ensure T ≤ O(n/ε2) or (with mild conditions)
even T ≤ O(n/ε). No dependency on |Y|!



Strengthening via Separation Oracle; Example (n = 1)

I Step 0: (ŵ , ξ̂) = arg minΩ(0)H(w , ξ) = (0, 0)

I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y),

Ω(1) = Ω(0) ∩ Ω1ŷ

I Step 2: (ŵ , ξ̂) = arg minΩ(2)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y)− 〈δψ1(y), ŵ〉

Ω(2) = Ω(1) ∩ Ω1ŷ

provided that Ωε
iy ∩ Ω(1) 6= ∅.

I Step 3: (ŵ , ξ̂) = arg minΩ(3)H(w , ξ), where
...



Strengthening via Separation Oracle; Example (n = 1)

I Step 0: (ŵ , ξ̂) = arg minΩ(0)H(w , ξ) = (0, 0)

I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y),

Ω(1) = Ω(0) ∩ Ω1ŷ

I Step 2: (ŵ , ξ̂) = arg minΩ(2)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y)− 〈δψ1(y), ŵ〉

Ω(2) = Ω(1) ∩ Ω1ŷ

provided that Ωε
iy ∩ Ω(1) 6= ∅.

I Step 3: (ŵ , ξ̂) = arg minΩ(3)H(w , ξ), where
...



Strengthening via Separation Oracle; Example (n = 1)

I Step 0: (ŵ , ξ̂) = arg minΩ(0)H(w , ξ) = (0, 0)

I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y),

Ω(1) = Ω(0) ∩ Ω1ŷ

I Step 2: (ŵ , ξ̂) = arg minΩ(2)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y)− 〈δψ1(y), ŵ〉

Ω(2) = Ω(1) ∩ Ω1ŷ

provided that Ωε
iy ∩ Ω(1) 6= ∅.

I Step 3: (ŵ , ξ̂) = arg minΩ(3)H(w , ξ), where
...



Strengthening via Separation Oracle; Example (n = 1)

I Step 0: (ŵ , ξ̂) = arg minΩ(0)H(w , ξ) = (0, 0)

I Step 1: (ŵ , ξ̂) = arg minΩ(1)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y),

Ω(1) = Ω(0) ∩ Ω1ŷ

I Step 2: (ŵ , ξ̂) = arg minΩ(2)H(w , ξ), where

ŷ ∈ arg max
y
4(y1, y)− 〈δψ1(y), ŵ〉

Ω(2) = Ω(1) ∩ Ω1ŷ

provided that Ωε
iy ∩ Ω(1) 6= ∅.

I Step 3: (ŵ , ξ̂) = arg minΩ(3)H(w , ξ), where
...



Improved Cutting Planes: Motivation
I Successive strengthening (as above) is expensive

I only one constraint (for one example) gets added in each step
I requires re-optimization (= solving a QP) after each such step
I can warm-start, but still...

I How about, we compute all oracles in parallel

ŷ = (ŷ1, . . . , ŷn) ∈ Yn

I Derive a strengthening from that Ω(t + 1) = Ω(t) ∩ Ωŷ

I Naively could set Ωŷ :=
⋂

i Ωi ŷi
I ... but how would that give us improved termination guarantees?
I ... how can we avoid blow-up in number of constraints?

I Instead summarize into a single linear constraint with a single
shared slack variable ζ ≥ 0. Fulfill margin on average

n∑
i=1

〈ψi (ŷi ),w〉 ≥
n∑

i=1

4(yi , ŷi )− ζ



Improved Cutting Planes: Algorithm

I [JFY09] show that the QP containing all such average constraints
for all combinations y ∈ Yn is solution equivalent to SVMstruct, if
one identifies ζ = ‖ξi‖1.

min
w ,ξ

λ

2
〈w ,w〉+ 1

n‖ξ‖1 s.t.

〈δψi (y),w〉 ≥ 4(yi , y)− ξi
(∀i , y ∈ Y) ∼ n ·m

min
w ,ζ

λ

2
〈w ,w〉+ ζ s.t.∑

i 〈δψi (y),w〉 ≥
∑

i4(yi , y)−ζ
(∀y ∈ Yn) ∼ mn

I [JFY09] also provide O(1/ε)-bounds on the number of epochs
I overall runtime O(n/ε) (in the linear case), not counting oracle

I Dual QP optimization
I one variable for each selected (average constraint), highly sparse
I complexity of O(n2); with reduced rank approx. O(nr + r3)



Improved Cutting Planes: Experiments

Experiments from [JFY09]

I # calls to separation oracle 2-3x reduced

I CPU time, 5x-1000x dependent on time spent on QP vs. oracle
⇒ much more efficient usage of optimization time

I 1000-10000x fewer support vectors, but not when multiplied by n

I Approximation result O(1/ε)

I Book-keeping overhead for storing #SVs ·n descriptors of size
O(logm)



Subgradient Method for SVMstruct

I Can we avoid solving many relaxed QPs?
How about a gradient descent flavor method?

I We can avoid linearizing (i.e. rolling out) the constraints.
Work directly with (unconstrained) piecewise linear objective

w∗ = arg min
w

λ

2
〈w ,w〉+

1

n

n∑
i=1

max
y
{4(yi , y)− 〈δψi (y),w〉}︸ ︷︷ ︸

oracle ŷi :=arg max()

I Compute subgradient, e.g. via

g = λw +
1

n

n∑
i=1

δψi (ŷi )

I Perform batch or stochastic updates on w (learning rate?)

I Proposed by [RBZ07]; see also PEGASOS [SSSSC11]



Background: Subgradient Methods

I Let f : RD → R be a convex, not necessarily differentiable
function. A vector v ∈ RD is called a subgradient of f at x0, if

f (x) ≥ f (x0) + 〈v , x − x0〉
for all x

I Differentiable point x0: unique subgradient = gradient ∇f (x0).



Frank-Wolfe Algorithm

I Frank & Wolfe, 1956: An algorithm for quadratic programming

I Minimize linearization at current iterate over corners of domain

’new iterate’ := (1− η) · ’old iterate’ + η · ’optimal corner’

I Features

I linearity: linear, not quadratic function minimization in every step

I sparseness: convex combination of selected corners

I projection-free: iterates stay in convex domain

I learning rate: O(1/t) schedule or via line search

I duality gap: implicitly computes duality gap

I Applied to SVMstruct by [LJJSP13]



Frank-Wolfe Algorithm: Quadratic vs. Linearized

I Quadratic objective
(contour line plot)

I Linearized objective



Frank-Wolfe Algorithm: Schematic 3D View

[taken from Lacoste-Julien et al., 2013]



Frank-Wolfe Algorithm: Dual SVM-struct Objective

I Dual objective

h(α) =
1

2
‖Qα‖2 − 〈4, α〉

I Gradient

∇αh(α∗) = (Q ′Q)α∗ −4

I Linearization

h̄(α;α∗) = h(α∗)︸ ︷︷ ︸
=const.

+〈∇αh(α∗), α− α∗〉≤ h(α)︸ ︷︷ ︸
convexity

I Minimization problem

e∗ := arg min
{er :r=1,...,m}

h̄(er ;α∗), with er : r -th unit vector



Frank-Wolfe Algorithm: Deciphered

I What does the minimization problem over corners mean?

h̄(ey ′ ;α
∗) + const. = 〈 ∇αh(α∗)︸ ︷︷ ︸

=(Q′Q)α∗−4

, ey ′〉

= 〈Qey′ ,Qα∗︸︷︷︸
=w

〉+4(y , y ′)

= 〈
∑

i δψi (y
′
i ),w〉+

∑
i 4(yi , y

′
i )

so that

ŷi = arg max
y ′
{〈δψi (y

′),w〉+4(yi , y
′)}

which is just the separation oracle!



Algorithms: Frank-Wolfe, Subgradient, Cutting Plane

I How does Frank-Wolfe relate to the other methods?

I FW ↔ Subgradients:
I Same update direction of primal solution w
I But: Smarter step-size policy derived from dual (see below)
I But: Duality gap for meaningful termination condition (see below)

I FW ↔ improved cutting planes:
I Selected dual variables correspond to added constraints
I But: incremental update step vs. optimization of relaxed QP
I But: #SV can be larger due to incremental method, no need to

re-formulate SVM struct

I Further advantages
I Simple and clean analysis
I Per-instance updates (block-coordinate optimization)



Frank-Wolfe Algorithm: Primal-Dual Version

I Apply Frank-Wolfe to dual QP, but translate into primal updates

I Compute primal update direction (subgradient)

w̄ :=
1

λ

n∑
i=1

δψi (ŷi ), 4̄ :=
1

n

n∑
i=1

4(yi , ŷi )

I Perform convex combination update

w t+1 = (1− γt)w t + γtw̄ , 4t+1 = (1− γt)4t + γ4̄

here the optimal γt can be computed analytically (closed-form line
search) from w t , 4̄ and w̄

I Convergence rate: ε-approximation is found in at most O(R
2

λε )
steps



Block-Coordinate Frank-Wolfe

I Domain of the dual QP factorizes α ∈ Snm−1 (product of simplicies)

α = (αi )
n
i=1, s.t. αi ≥ 0 and 〈αi , 1〉 = 1

α = ( α1 α2 α3 . . . )

I Perform Frank-Wolfe update over each block (randomly selected).
I single-instance mode: alternates single oracle call and update step
I back to successive strengthening, but replace: re-optimization with

fast updates
I convergence rate analysis; duality gap as stopping criterion
I excellent scalability



Frank-Wolfe Methods: Scalability [LJJSP13]

I Frank-Wolfe very similar to improved cutting plane method

I Block-coordinate version much faster, better than stochastic
subgradient descent

I Main caveat: primal-dual version needs to store one weight vector
per training instance!!



Implicit Oracle as LP Relaxation

I Sometimes, oracle can be integrated into the QP

max
y∈Y
{〈δψi (y),w〉+4(yi , y)}

= max
zi∈Z
〈zi , ci + Fiw〉+ di

I Examples: binary MRFs with sub modular potentials, matchings,
tree-structured MRFs

I Saddle point formulation:

min
w

max
z

{
λ

2
‖w‖2 +

n∑
i=1

〈zi , ci + Fiw〉 − 〈ψ(xi , yi ),w〉

}

I Make use of extragradient method [TLJJ06] - gradients &
projections



Bi-partite Matching

I Graph G(V ,E ) with V = V s ∪ V t , E = V s × V t

I Matching scores sjk ∈ R for each edge (j , k) ∈ E .

I Alignment variables yjk ∈ {0, 1} and their relaxation zjk ∈ [0; 1]

I LP relaxation of integer program

max
0≤z≤1

∑
(j ,k)∈E

sjkzjk , s.t.
∑
j

zjk ≤ 1 (∀k) and
∑
k

zjk ≤ 1 (∀j)

I LP is guaranteed to have integral solutions

I Integrating into SVM struct QP

max
{0≤zi≤1}

∑
e∈E

zie 〈ψ(xi , ye),w〉︸ ︷︷ ︸
si,jk , e=(j ,k)

+ (1− 2yie)︸ ︷︷ ︸
Hamming loss



Section 4

Decomposition-Based Algorithms



Factor Graphs
I In many cases of practical interest, the compatibility function

naturally allows for an additive decomposition over factors or parts

f (x , y) =
∑
c∈C

fc(xc , yc)

which can formally be described as a factor graph.
I In the linear case, this can be induced via a feature decomposition

ψ(x , y) =
∑
c∈C

ψc(xc , yc), such that

f (x , y ;w) = 〈w , ψ(x , y)〉 =
∑
c

〈w , ψc(xc , yc)〉︸ ︷︷ ︸
=:fc (xc ,yc )

I We typically require that the loss decomposes in a compatible
manner

4(y , y ′; x) =
∑
c∈C
4c(yc , y

′
c ; xc)



Representer Theorem for the Factorized Case

I Conditions as before but factor structure assumed. Denote
configurations for factor c as z ∈ Z(c).

I Representation

f (x , y) =
n∑

i=1

∑
c∈C

∑
z∈Z(c)︸ ︷︷ ︸∑

c |Z(c)|�|Y|

µicz 〈ψc(xic , z), ψc(xic , yc)〉︸ ︷︷ ︸
=:kc ((xic ,z),(xic ,yc ))

I Note that this offers the possibility to

1. define kernels on a per factor level
2. use a low-dimensional parametrization that does not need to rely on

sparseness



Decomposing the Dual QP

I Dual has the following structure (rescaling by n as appropriate to
make α probability mass function)

min
α≥0

h(α) :=
1

2
‖Qα‖2 − 〈α,4〉 s.t.

∑
y

αiy = 1 (∀i)

I Introduce marginal probabilities

µicz :=
∑
i ,y

1[yc = z ]αiy ,
∑
z

µicz =
∑
i ,y

αiy = 1

I Decompose loss (similar for QtQ)∑
y

αiy4(yi , y) =
∑
y

αiy

∑
c

4c(yic , yc)

=
∑
c,z

(∑
y

1[yc = z ]αiy

)
︸ ︷︷ ︸

=µicz

4c(yic , z)



Decomposing the Dual QP (continued)

I Define with multi-index (icz):

Q•,icz := ψc(xic , yic)− ψc(xic , z), µC := (µicz), 4C := (4icz)

I Factorized QP

µ∗C = arg min
µC≥0

{
1

2
‖QµC‖2 − 〈µC ,4C〉

}
s.t. µC is on the marginal polytope

I µC needs to be normalized and locally consistent (non-trivial).
I objective broken up into parts - global view enforced via constraints!

I Example: Singly connected factor graph. Local consistency:∑
r :(r ,s)∈C

µirs = µis (∀i , s)

I For general factor graphs: only enforce local consistency =
relaxation in the spirit of approximate belief propagation [TGK03]



Conditional Exponential Family Models

I Structured prediction from a statistical modeling angle

I f from some RHKS with kernel k over X × Y
I Conditional exponential families

p(y |x ; f ) = exp [f (x , y)− g(x , f )] , where

g(x , f ) :=

∫
Y

exp [f (x , y)] dν(y)

I Univariate case (y ∈ R), generalized linear models

p(y |x ;w) = exp [y〈w , φ(x)〉 − g(x ,w)]

I Non-parameteric models, e.g. ANOVA kernels

k((x , y), (x ′, y ′) = yy ′k(x , x ′)



Conditional Random Fields

I Conditional log-likelihood criterion [LMP01, LZL04]

f ∗ := arg min
f ∈H

λ

2
‖f ‖2
H︸ ︷︷ ︸

stabilizer

− 1

n

n∑
i=1

log p(yi |xi ; f )︸ ︷︷ ︸
log-loss

I Optimization methods:
I improved iterative scaling [LMP01]
I pre-conditioned conjugate gradient descent, limited memory

quasi-Newton [SP03]
I finite dimensional case: requires computing expectations of

sufficient statistics E [ψ(Y , x)] for x = xi , i = 1, . . . , n.

∇w [...]
!

= 0 ⇐⇒ λw∗ =
1

n

n∑
i=1

ψ(xi , yi )︸ ︷︷ ︸
sample statistics

− 1

n

n∑
i=1

∑
y∈Y

ψ(xi , y)p(y |xi ;w∗)︸ ︷︷ ︸
expected statistics



Dual CRF

I Representer theorems apply to log-loss. Log-linear dual:

α∗ = arg min
α≥0

h(α) :=
1

2
‖Qα‖2 +

n∑
i=1

∑
y∈Y

αiy logαiy

s.t.
∑
y∈Y

αiy = 1 (∀i)

I Compare with SVM struct

1

2
‖Qα‖2

+
n∑

i=1

∑
y∈Y

αiy logαiy

1

2
‖Qα‖2

−
n∑

i=1

∑
y∈Y

αiy4(yi , y)

I same data matrix Q constructed from δψi (y) (or QtQ via kernels)
I same n-factor simplex constraints on α
I entropy maximization, instead of linear penalty (based on loss)



Exponentiated Gradient Descent

I Exponentiated gradient descent [CGK+08] can be applied to solve
both duals (hinge loss and logarithmic loss)

I General update equation

α
(t+1)
iy ∝ α(t)

iy · exp [∇h(α)]

= α
(t)
iy · exp [λ〈w∗, δψi (y)〉 − 4(yi , y)]

I Can be motivated by performing gradient descent on the
canonical/natural parameters (and re-formulating in mean-value
parameterization)

θ(t+1) = θ(t) + δθ(t) ⇒ α(t+1) = exp[〈ψ, θ(t+1)〉] = exp[〈ψ, δθ(t)〉]α(t)

I on-line version: generalizes SMO for solving dual problem (when no
closed form solution exists)



Factorized Exponentiated Gradient Descent

I Work with factorized dual QP: e.g. [TGK03], SMO over marginal
variables µC .

I Better: adopt exponentiated gradient descent [CM05, CGK+08]

I Derivation: summing on both sides of the update equation...

µ
(t+1)
icz =

∑
y

1[yc = z ]α
(t)
iy exp [λ〈w∗, δψi (y)〉 − 4(yi , y)]

∝
∑
y

1[yc = z ]α
(t)
iy exp [λ〈w∗, ψc(xi , yiz)− ψc(xi , z)〉 − 4(yiz , z)]

= µ
(t)
icz · exp [λ〈w∗, ψc(xi , yiz)− ψc(xi , z)〉 − 4(yiz , z)]

I w∗ can (representer theorem) computed from µ and ψc (or via kc),
4c terms.

I Similar for log-loss, faster convergence rates O(log 1/ε).



Section 5

Conclusion & Discussion



Structured Prediction

I Support Vector Machines: can be generalized to structured
prediction in a scalable manner

I Oracle-based architecture: decouples general learning method from
domain-specific aspects

I Features & loss function: can be incorporated in a flexible manner

I Kernels: efficient dual methods exist that can rely on kernels
(crossed feature maps, factor-level kernels)

I Algorithms: rich set of scalable methods; cutting planes,
subgradients, Frank-Wolfe, exponentiated gradient

I Decomposition-based methods: can exploit insights and algorithms
from approximate probabilistic inference

I Conditional random fields: close relation (decomposition, dual,
sparseness?)

I Applications: ever increasing number of applications and use cases



Yasemin Altun, Ioannis Tsochantaridis, Thomas Hofmann, et al.

Hidden Markov Support Vector Machines.

In ICML, volume 3, pages 3–10, 2003.

Alexander Binder, Klaus-Robert Müller, and Motoaki Kawanabe.

On taxonomies for multi-class image categorization.

International Journal of Computer Vision, 99(3):281–301, 2012.

O. Chapelle, C.B. Do, Q.V. Le C.H. Teo, and A.J. Smola.

Tighter bounds for structured estimation.

In Advances in neural information processing systems, pages
281–288, 2008.

Michael Collins, Amir Globerson, Terry Koo, Xavier Carreras, and
Peter L Bartlett.

Exponentiated gradient algorithms for conditional random fields and
max-margin markov networks.

The Journal of Machine Learning Research, 9:1775–1822, 2008.

Lijuan Cai and Thomas Hofmann.

Hierarchical document categorization with support vector machines.



In Proceedings of the thirteenth ACM international conference on
Information and knowledge management, pages 78–87. ACM, 2004.

Peter L Bartlett Michael Collins and Ben Taskar David McAllester.

Exponentiated gradient algorithms for large-margin structured
classification.

In Advances in Neural Information Processing Systems 17:
Proceedings of the 2004 Conference, volume 17, page 113. The MIT
Press, 2005.

Michael Collins.

Discriminative training methods for hidden markov models: Theory
and experiments with perceptron algorithms.

In Proceedings of the ACL-02 conference on Empirical methods in
natural language processing-Volume 10, pages 1–8. Association for
Computational Linguistics, 2002.

Koby Crammer and Yoram Singer.

On the algorithmic implementation of multiclass kernel-based vector
machines.

The Journal of Machine Learning Research, 2:265–292, 2002.



R. Collobert, F. Sinz, Jason J. Weston, and L. Bottou.

Trading convexity for scalability.

In Proceedings of the 23rd International Conference on Machine
Learning, pages 201–208. ACM, 2006.

Thorsten Joachims, Thomas Finley, and Chun-Nam John Yu.

Cutting-plane training of structural SVMs.

Machine Learning, 77(1):27–59, 2009.

Thorsten Joachims, Thomas Hofmann, Yisong Yue, and Chun-Nam
Yu.

Predicting structured objects with Support Vector Machines.

Communications of the ACM, 52(11):97–104, 2009.

Simon Lacoste-Julien, Martin Jaggi, Mark Schmidt, and Patrick
Pletscher.

Block-coordinate Frank-Wolfe optimization for structural SVMs.

In International Conference on Machine Learning (ICML), 2013.

Yoonkyung Lee, Yi Lin, and Grace Wahba.



Multicategory support vector machines: Theory and application to
the classification of microarray data and satellite radiance data.

Journal of the American Statistical Association, 99(465):67–81,
2004.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira.

Conditional random fields: Probabilistic models for segmenting and
labeling sequence data.

In Proceedings of the Eighteenth International Conference on
Machine Learning, ICML ’01, pages 282–289, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

John Lafferty, Xiaojin Zhu, and Yan Liu.

Kernel conditional random fields: representation and clique selection.

In Proceedings of the twenty-first international conference on
Machine learning, page 64. ACM, 2004.

Nathan D Ratliff, J Andrew Bagnell, and Martin Zinkevich.

(approximate) subgradient methods for structured prediction.

In International Conference on Artificial Intelligence and Statistics,
pages 380–387, 2007.



Ryan Rifkin and Aldebaro Klautau.

In defense of one-vs-all classification.

The Journal of Machine Learning Research, 5:101–141, 2004.

Fei Sha and Fernando Pereira.

Shallow parsing with conditional random fields.

In Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on Human
Language Technology-Volume 1, pages 134–141. Association for
Computational Linguistics, 2003.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew
Cotter.

Pegasos: Primal estimated sub-gradient solver for SVM.

Mathematical Programming, 127(1):3–30, 2011.

Ben Taskar, Carlos Guestrin, and Daphne Koller.

Max-margin markov networks.

In Advances in Neural Information Processing Systems. MIT Press,
2003.



Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and
Christopher Manning.

Max-margin parsing.

In In Proceedings of EMNLP, 2004.

Ben Taskar, Simon Lacoste-Julien, and Michael I Jordan.

Structured prediction, dual extragradient and Bregman projections.

The Journal of Machine Learning Research, 7:1627–1653, 2006.

Jason Weston and Chris Watkins.

Support vector machines for multi-class pattern recognition.

In ESANN, volume 99, pages 61–72, 1999.

Yisong Yue, Thomas Finley, Filip Radlinski, and Thorsten Joachims.

A support vector method for optimizing average precision.

In Proceedings of the 30th annual international ACM SIGIR
conference on Research and development in information retrieval,
pages 271–278. ACM, 2007.

Alan L Yuille and Anand Rangarajan.

The concave-convex procedure.



Neural Computation, 15(4):915–936, 2003.


	Motivation & Overview 
	Model
	Oracle-Based Algorithms
	Decomposition-Based Algorithms
	Conclusion & Discussion

