Gaussian Processes - Part III Advanced Topics

Philipp Hennig

MLSS 2013
30 August 2013

Max Planck Institute for Intelligent Systems
Department of Empirical Inference
Tübingen, Germany

Gaussians have been discovered before

- Thermodynamics
- stochastic calculus
- control theory
- signal processing

Brownian motion, Ornstein-Uhlenbeck process stochastic differential equations, Itō calculus stochastic control, Kalman filter
filtering

- other communities use other names for the same concept

Kriging; Ridge-Regression, Kolmogorov-Wiener prediction; least-squares regression; Wiener process; Brownian bridge, ...

- Now: Gaussians show up in numerical methods, too ... quadrature, optimization, solving ODEs, control ...

Gaussian processes are central to many machine learning techniques, and all areas of quantitative science.

The big picture

we need a coherent framework for hierarchical machine learning
conditioning by quadrature

- uncertainty caused by finite computations should be accounted for
- uncertainty should propagate among numerical methods
- joint language required: probability
"off-the-shelf" methods are convenient, but not always efficient.

Numerical algorithms are the elements of inference

Numerical algorithms
estimate (infer) an intractable property of a function given evaluations of function values.
quadrature estimate $\int_{a}^{b} f(x) d x$
optimization estimate $\arg \min _{x} f(x)$
analysis estimate $x(t)$ under $x^{\prime}=f(x, t) \quad$ given $\left\{f\left(x_{i}, t_{i}\right)\right\}$
control estimate $\min _{u} x(t, u)$ under $x^{\prime}=f(x, t, u) \quad\left\{f\left(x_{i}, t_{i}, u_{i}\right)\right\}$

- even deterministic problems can be uncertain
- not a new idea ${ }^{1}$, but rarely studied

We need a theory of probabilistic numerics.

Gaussians, because of their connection to linear functions, are at the heart of probabilistic interpretations of numerics.

[^0]
Recall: GPs are closed under linear maps

$$
p(z)=\mathcal{N}(z ; \mu, \Sigma) \quad \Rightarrow \quad p(A z)=\mathcal{N}\left(A z, A \mu, A \Sigma A^{\top}\right)
$$

- this is not restricted to finite linear operators (matrices) A
- $A(x)=\mathbb{I}(a<x<b)$ gives $A f=\int_{a}^{b} f(x) \mathrm{d} x$

$$
\left.\begin{array}{l}
p\left(\int_{a}^{b} f(x) \mathrm{d} x, \int_{c}^{d} f(x) \mathrm{d} x\right)=\mathcal{N}\left[\binom{\int_{a}^{b} f(x) \mathrm{d} x}{\int_{c}^{d} f(x) \mathrm{d} x} ;\binom{\int_{a}^{b} \mu(x) \mathrm{d} x}{\int_{c}^{d} \mu(x) \mathrm{d} x},\right. \\
\left(\begin{array}{ll}
\int_{a}^{b} \int_{a}^{b} k\left(x, x^{\prime}\right) \mathrm{d} x \mathrm{~d} x^{\prime} & \int_{a}^{b} \int_{c}^{d} k\left(x, x^{\prime}\right) \mathrm{d} x \mathrm{~d} x^{\prime} \\
\int_{a}^{b} \int_{c}^{d} k\left(x, x^{\prime}\right) \mathrm{d} x \mathrm{~d} x^{\prime} & \int_{c}^{d} \int_{c}^{d} k\left(x, x^{\prime}\right) \mathrm{d} x \mathrm{~d}^{\prime}
\end{array}\right)
\end{array}\right], ~ \$
$$

Inferring $F=\int f$ from observations of f quadrature

Inferring $F=\int f$ from observations of f quadrature

Quadrature with GPs

A O’Hagan, 1991; T Minka, 2000; M Osborne et al., 2012

- say what functions you expect to integrate
- find $\arg \min _{X}\left[k_{F f_{X}}-k_{F f_{X}} k_{f_{X} f_{X}}^{-1} k_{f_{X} F}\right]$ (depends on kernel!)
- Bayesian quadrature

Gaussian processes can be used to construct quadrature rules.

Inferring f from observations of F

$\mu_{f \mid F_{X}}=\mu_{f}+k_{f F_{X}} k_{F_{X} F_{X}}^{-1}\left(F_{X}-\int_{X} \mu\right)$
$k_{f f \mid F_{X}}=k_{f f}-k_{f F_{X}} k_{F_{X} F_{X}}^{-1} k_{F_{X} f}$

Optimization

For $f: \mathbb{R}^{N} \rightarrow \mathbb{R}$, find local minimum $\arg \min f(x)$, starting at x_{0}.

An old idea: Newton's method

$$
\begin{aligned}
f(x) & \approx f\left(x_{t}\right)+\left(x-x_{t}\right)^{\top} \nabla f\left(x_{t}\right)+\frac{1}{2}\left(x-x_{t}\right)^{\top} \underbrace{\nabla^{\top} f\left(x_{t}\right)}_{=: B\left(x_{t}\right)}\left(x-x_{t}\right) \\
\rightarrow \quad x_{t+1} & =x_{t}-B^{-1}\left(x_{t}\right) \nabla f\left(x_{t}\right)
\end{aligned}
$$

Cost: $\mathcal{O}\left(N^{3}\right)$
High-dimensional optimization requires giving up knowledge in return for lower cost.

Quasi-Newton methods (think BFGS, DFP, ...)

aka. variable metric optimization - low rank estimators for Hessians

- Instead of evaluating Hessian, build (low-rank) estimator fulfilling local difference relation...

$$
\begin{aligned}
\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right) & =B_{t+1}\left(x_{t+1}-x_{t}\right) \\
y_{t} & =B_{t+1} s_{t}
\end{aligned}
$$

- ... otherwise close to previous estimator in $\left\|B_{t+1}-B_{t}\right\|_{F, V}$
- ... so minimize regularised loss

$$
\begin{aligned}
B_{t+1} & =\underset{B \in \mathbb{R}^{N \times N}}{\arg \min }\left\{\lim _{\beta \rightarrow 0} \frac{1}{\beta}\left\|y_{t}-B s_{t}\right\|_{V}^{2}+\left\|B-B_{t}\right\|_{F, V}^{2}\right\} \\
& =\lim _{\beta \rightarrow 0}^{\arg \max } \mathcal{N}\left(y_{t} ; B s_{t}, \beta V\right) \mathcal{N}\left(\vec{B}_{B} ; \vec{B}_{t}, V \otimes V\right) \\
& =\underset{B}{\arg \max \mathcal{N}} \underbrace{\left[B ; B_{t}+\frac{\left(y_{t}-B_{t} s_{t}\right) V s_{t}^{\top}}{s_{t}^{\top} V s_{t}}, V \otimes\left(V-\frac{V s s^{\top} V}{s^{\top} V s}\right)\right]}_{\text {posterior }}
\end{aligned}
$$

Quasi-Newton methods perform local maximum a-posteriori Gaussian inference on the Hessian's elements.

Optimization with GPs

- Idea: replace

$$
\begin{aligned}
\nabla f\left(x_{t+1}\right)-\nabla f\left(x_{t}\right) & \approx B\left(x_{t+1}-x_{t}\right) \\
\rightarrow & =\int_{x_{t}}^{x_{t+1}} B(x) d x
\end{aligned}
$$

- Gaussian process prior on $B\left(x^{\top}, x\right)$

$$
p(B)=\mathcal{G} \mathcal{P}\left(B, B_{0}\left(x^{\top}, x\right), k\left(x^{\top}, x^{\prime \top}\right) \otimes k\left(x, x^{\prime}\right)\right)
$$

- Gaussian likelihoods

$$
\begin{array}{r}
p\left(y_{i}\left(x^{\top}\right) \mid B, s_{i}\right)=\lim _{\beta \rightarrow 0} \mathcal{N}\left(y_{i} ; \sum_{m} s_{i m} \int_{0}^{1} B\left(x^{\top}, x(t)\right) \mathrm{d} t, k\left(x^{\top}, x^{\prime \top}\right) \otimes \beta\right) \\
p\left(y_{i}(x)^{\top} \mid B, s_{i}^{\top}\right)=\lim _{\beta \rightarrow 0} \mathcal{N}\left(y_{i}^{\top} ; \sum_{m} s_{i m}^{\top} \int_{0}^{1} B\left(x^{\top}(t), x\right) \mathrm{d} t, \beta \otimes k\left(x, x^{\prime}\right)\right)
\end{array}
$$

- posterior of same algebraic form as before, but with linear maps of nonlinear (integral of k) entries.
- same computational complexity as L-BFGS (Nocedal, 1980): $\mathcal{O}(N)$

A consistent model of the Hessian function

nonparametric quasi-Newton methods

Learning nonparametric models of Hessians allows

- optimizing noisy functions
- dynamically changing functions
- parallelization
- ...

\longleftarrow grad-descent
\longleftarrow Newton
\therefore Hessian-free
\ldots Nonparam.

Gaussian processes can be used in optimization.

GPs are closed under differentiation

Rasmussen \& Williams, 2006, §9.4 $\mu_{f \mid f_{X}^{\prime}}=\mu_{f}+k_{f f_{X}^{\prime}} k_{f_{X}^{\prime} f_{X}^{\prime}}^{-1}\left(f_{X}^{\prime}-\mu_{f_{X}}^{\prime}\right) \quad k_{f f \mid f_{X}^{\prime}}=k_{f f}-k_{f f_{X}^{\prime}} k_{f_{x}^{\prime} f_{X}^{\prime}}^{-1} k_{f_{X}^{\prime} f}$

GPs can have multiple outputs

Reminder of Part I

Solving ODEs with GPs

solve $c^{\prime}(t)=f(c(t), t)$ such that $c(0)=a$ and $c(1)=b$

$$
\begin{aligned}
& p(c(t))=\mathcal{G} \mathcal{P}\left(c ; \mu_{c}, V \otimes k\right) \\
& p\left(y_{t} \mid c\right)=\mathcal{N}\left(f\left(\hat{c}_{t} ; t\right) ; \dot{c}_{t}, U\right)
\end{aligned}
$$

- repeatedly estimate \hat{c}_{t} using GP posterior mean to "observe" $c^{\prime}(t)=f\left(\hat{c}_{t}\right)+\delta_{f}$
- estimate error in this observation by propagating Gaussian uncertainty through f.
Recent work:
- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig \& Hauberg http://arxiv.org/abs/1306.0308

Solving ODEs with GPs

solve $c^{\prime}(t)=f(c(t), t)$ such that $c(0)=a$ and $c(1)=b$

Brunction evaluations

$$
\begin{aligned}
& p(c(t))=\mathcal{G} \mathcal{P}\left(c ; \mu_{c}, V \otimes k\right) \\
& p\left(y_{t} \mid c\right)=\mathcal{N}\left(f\left(\hat{c}_{t} ; t\right) ; \dot{c}_{t}, U\right)
\end{aligned}
$$

- repeatedly estimate \hat{c}_{t} using GP posterior mean to "observe" $c^{\prime}(t)=f\left(\hat{c}_{t}\right)+\delta_{f}$
- estimate error in this observation by propagating Gaussian uncertainty through f.
Recent work:
- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig \& Hauberg http://arxiv.org/abs/1306.0308

Solving ODEs with GPs

solve $c^{\prime}(t)=f(c(t), t)$ such that $c(0)=a$ and $c(1)=b$

$$
\begin{aligned}
& p(c(t))=\mathcal{G P}\left(c ; \mu_{c}, V \otimes k\right) \\
& p\left(y_{t} \mid c\right)=\mathcal{N}\left(f\left(\hat{c}_{t} ; t\right) ; \dot{c}_{t}, U\right)
\end{aligned}
$$

- repeatedly estimate \hat{c}_{t} using GP posterior mean to "observe" $c^{\prime}(t)=f\left(\hat{c}_{t}\right)+\delta_{f}$
- estimate error in this observation by propagating Gaussian uncertainty through f.
Recent work:
- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig \& Hauberg http://arxiv.org/abs/1306.0308

The Advantages of a Probabilistic Formulation

joint uncertainty over solution

Hennig \& Hauberg, under review

2nd principal component

1st principal component

The Advantages of a Probabilistic Formulation

uncertainty over problem

x_{1} [arbitrary units]

Gaussian processes can be used to solve differential equations.

Lots of "Gaussian integrals" are known

and can be used to map uncertainty through almost any function
see e.g. M. Deisenroth's PhD, 2010

- write $f(x)=\sum_{i} \phi_{i}(x)^{\top} w$ such that

$$
\int \phi_{i}(x) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x \quad \int \phi_{i}(x) \phi_{j}(x) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x
$$

is analytic

Lots of "Gaussian integrals" are known

and can be used to map uncertainty through almost any function

$$
\begin{aligned}
& \int f(x) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x=\sum_{i} w_{i} \int \phi_{i}(x) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x \\
& \int f^{2}(x) \mathcal{N}(x ; \mu, \Sigma) x=\sum_{i} \sum_{j} w_{i} w_{j} \int \phi_{i}(x) \phi_{j}(x) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x
\end{aligned}
$$

- also works if $f \in \mathbb{R}^{N}$, and if $p(w)=\mathcal{N}(w ; m, V)$

Some useful Gaussian integrals

$$
\begin{aligned}
\int x^{p} \mathcal{N}\left(x ; 0, \sigma^{2}\right) \mathrm{d} x & = \begin{cases}0 & \text { if } p \text { odd } \\
\sigma^{p} \prod_{i=1: 2: p-1} i & \text { if } p \text { even }\end{cases} \\
\int|x|^{p} \mathcal{N}\left(x ; 0, \sigma^{2}\right) \mathrm{d} x & =\frac{\sigma^{p}}{\sqrt{\pi}} 2^{p / 2} \Gamma\left(\frac{p+1}{2}\right) \\
\int(x-m)^{\top} V(x-m) \mathcal{N}(x ; \mu, \Sigma) \mathrm{d} x & =(\mu-m)^{\top} V(\mu-m)+\operatorname{tr}[V \Sigma] \\
\int \mathcal{N}(x ; a, A) \mathcal{N}(x ; b ; B) \mathrm{d} x & =\mathcal{N}(a, b, A+B) \\
\iint_{-\infty}^{(x-m) / s} \mathcal{N}(\tilde{x}, 0,1) \mathrm{d} \tilde{x} \mathcal{N}\left(x ; \mu, \sigma^{2}\right) \mathrm{d} x & =\int_{-\infty}^{(\mu-m) / \sqrt{\left(s^{2}+\sigma^{2}\right)} \mathcal{N}(\tilde{x}, 0,1)} \\
& =\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{\mu-m}{\sqrt{2\left(s^{2}+\sigma^{2}\right)}}\right)\right]
\end{aligned}
$$

c.f. DB Owen, A table of normal integrals. Comm. Stat.-Sim. Comp. 1980

Expected values of monomials

for moment computations

$$
\int x^{p} \mathcal{N}(x ; \mu, \sigma)=\sigma^{p}(-i \sqrt{2} \operatorname{sgn} \mu)^{p} U\left(-\frac{p}{2}, \frac{1}{2},-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}\right) \quad p \in \mathbb{N}_{0}
$$

where U is Tricomi's confluent hypergeometric function (cheap)

Expected values of monomials

for moment computations

$$
\int x^{p} \mathcal{N}(x ; \mu, \sigma)=\sigma^{p}(-i \sqrt{2} \operatorname{sgn} \mu)^{p} U\left(-\frac{p}{2}, \frac{1}{2},-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}\right) \quad p \in \mathbb{N}_{0}
$$

where U is Tricomi's confluent hypergeometric function (cheap)

Expected values of monomials

for moment computations

$$
\int x^{p} \mathcal{N}(x ; \mu, \sigma)=\sigma^{p}(-i \sqrt{2} \operatorname{sgn} \mu)^{p} U\left(-\frac{p}{2}, \frac{1}{2},-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}\right) \quad p \in \mathbb{N}_{0}
$$

where U is Tricomi's confluent hypergeometric function (cheap)

Expected values of monomials

for moment computations

$$
\int x^{p} \mathcal{N}(x ; \mu, \sigma)=\sigma^{p}(-i \sqrt{2} \operatorname{sgn} \mu)^{p} U\left(-\frac{p}{2}, \frac{1}{2},-\frac{1}{2} \frac{\mu^{2}}{\sigma^{2}}\right) \quad p \in \mathbb{N}_{0}
$$

where U is Tricomi's confluent hypergeometric function (cheap)

Expected values of error functions

Expected values of error functions

Expected values of error functions

Treating Cancer with GPs

Analytical Probabilistic Modelling in Radiation Therapy

image source: wikipedia

the data

CT images

the parameter space

setup errors can be disastrous

- setup errors of 5 mm and less can drastically change the clinical outcome
- accounting for these errors is currently not clinical practice
- some prior work ${ }^{2},{ }^{3}$, but problems of computational cost

[^1]
Propagating Gaussian uncertainty through nonlinearities

using integrals against Gaussian measures

- works on virtually any continuous function
- guaranteed numerical precision, fixed at design time
- low computational cost: just matrix-matrix multiplications

Error Bars on Radiation Dose

Gaussian algebra can be used to build

 numerical methods for probabilistic computations.
Gaussians provide the linear algebra of inference

- products of Gaussians are Gaussians

$$
\begin{aligned}
& \mathcal{N}(x ; a, A) \mathcal{N}(x ; b, B)=\mathcal{N}(x ; c, C) \mathcal{N}(a ; b, A+B) \\
& \quad C:=\left(A^{-1}+B^{-1}\right)^{-1} \quad c:=C\left(A^{-1} a+B^{-1} b\right)
\end{aligned}
$$

- marginals of Gaussians are Gaussians

$$
\int \mathcal{N}\left[\binom{x}{y} ;\binom{\mu_{x}}{\mu_{y}},\left(\begin{array}{ll}
\Sigma_{x x} & \Sigma_{x y} \\
\Sigma_{y x} & \Sigma_{y y}
\end{array}\right)\right] \mathrm{d} y=\mathcal{N}\left(x ; \mu_{x}, \Sigma_{x x}\right)
$$

- (linear) conditionals of Gaussians are Gaussians

$$
p(x \mid y)=\frac{p(x, y)}{p(y)}=\mathcal{N}\left(x ; \mu_{x}+\Sigma_{x y} \Sigma_{y y}^{-1}\left(y-\mu_{y}\right), \Sigma_{x x}-\Sigma_{x y} \Sigma_{y y}^{-1} \Sigma_{y x}\right)
$$

- linear projections of Gaussians are Gaussians

$$
p(z)=\mathcal{N}(z ; \mu, \Sigma) \quad \Rightarrow \quad p(A z)=\mathcal{N}\left(A z, A \mu, A \Sigma A^{\top}\right)
$$

- analytical integrals allow moment matching "projection to Gaussians"

$$
\int f(x) \mathcal{N}(x ; \mu, \Sigma)=\text { known } \quad \text { e.g. for } f(x)=x^{p}, \operatorname{erf}(x), \mathcal{N}(x), x^{\top} V x
$$

Generalised linear models learn nonlinear functions

$$
f(x)=\phi(x)^{\top} w \quad p(w)=\mathcal{N}(w ; \mu, \Sigma)
$$

Generalised linear models learn nonlinear functions

$$
f(x)=\phi(x)^{\top} w \quad p(w)=\mathcal{N}(w ; \mu, \Sigma)
$$

infinite feature sets give nonparametric models

$$
p(f)=\mathcal{G} \mathcal{P}(f ; \mu, k)
$$

Gaussian processes are powerful, but not magic

powerful models

- kernels use infinitely many features
- kernels can be combined to form expressive models
- hyperparameters can be learned by hierarchical inference
- individual nonlinear effects can be separated from superpositions
- some kernels are universal
but no magic
- every model has parameters chosen a priori
- universal kernels can have logarithmic convergence rate

Gaussian processes are at heart of probabilistic numerics

Gaussians have great algebraic properties

- GPs are closed under linear projections, including
- differentiation
- integration
- GPs can be integrated against an expressive set of functions

They are the elementary tool of probabilistic numerics

- quadrature rules can be derived from GPs
- quasi-Newton optimization can be generalised using GPs
- GPs allow ODE solvers capable of probabilistic input
- moment matching allows numerical probabilistic computations

Numerics is about turning nonlinear problems into linear ones.
That's what Gaussian regression does.

Questions?

Bibliography

- T. O'Hagan

Bayes-Hermite Quadrature
J. Statistical Planning and Inference 29, pp. 245-260

- C.E. Rasmussen \& C.K.I. Williams

Gaussian Processes for Machine Learning
MIT Press, 2006

- T. Minka

Deriving quadrature rules from Gaussian processes
Tech. Report 2000

- M.A. Osborne, D. Duvenaud, R. Garnett, C.E. Rasmussen, S.J. Roberts, Z. Ghahramani Active Learning of Model Evidence Using Bayesian Quadrature Advances in NIPS, 2012
- P. Hennig \& M. Kiefel

Quasi-Newton Methods: a new direction
ICML 2012 (short form), and JMLR 14 (2013), pp. 807-829

- P. Hennig

Fast Probabilistic Optimization from Noisy Gradients
ICML 2013

- J. Skilling

Bayesian solution of ordinary differential equations
Maximum Entropy and Bayesian Methods, 1991

- O. Chkrebtii, D.A. Campbell, M.A. Girolami, B. Calderhead

Bayesian Uncertainty Quantification for Differential Equations
http://arxiv.org/abs/1306.2365

- M. Bangert, P. Hennig, U. Oelfke

Analytical probabilistic modeling for radiation therapy treatment planning
Physics in Medicine and Biology, 2013, in press

[^0]: ${ }^{1}$ H. Poincaré, 1896, Diaconis 1988, O’Hagan 1992

[^1]: ${ }^{2}$ Unkelbach et al.: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. 2009 Med. Phys. 36: 149
 ${ }^{3}$ Sobotta et al.: Accelerated evaluation of the robustness of treatment plans against geometric uncertainties by Gaussian processes. 2012 Phys. Med. Biol. 57 (23): 8023

