Gaussian Processes - Part III Advanced Topics

Philipp Hennig

MLSS 2013 30 August 2013

Max Planck Institute for Intelligent Systems Department of Empirical Inference Tübingen, Germany

Gaussians have been discovered before

In virtually every area of science affected by uncertainty

- Thermodynamics Brownian motion, Ornstein-Uhlenbeck process
- stochastic calculus stochastic differential equations, Itō calculus
- control theory stochastic control, Kalman filter
- signal processing
- other communities use other names for the same concept Kriging; Ridge-Regression, Kolmogorov-Wiener prediction; least-squares regression; Wiener process; Brownian bridge, ...
- Now: Gaussians show up in numerical methods, too ... quadrature, optimization, solving ODEs, control ...

Gaussian processes are central to many machine learning techniques, and all areas of quantitative science.

filtering

The big picture

we need a coherent framework for hierarchical machine learning

- uncertainty caused by finite computations should be accounted for
- uncertainty should propagate among numerical methods
- joint language required: probability

"off-the-shelf" methods are convenient, but not always efficient.

Numerical algorithms are the elements of inference

inferring solutions of non-analytic problems

http://www.probabilistic-numerics.org

Numerical algorithms estimate (infer) an intractable property of a function given evaluations of function values.

quadrature estimate $\int_a^b f(x) dx$ given $\{f(x_i)\}$ optimization estimate $\arg \min_x f(x)$ given $\{f(x_i), \nabla f(x_i)\}$ analysis estimate x(t) under x' = f(x, t) given $\{f(x_i, t_i)\}$ control estimate $\min_u x(t, u)$ under x' = f(x, t, u) $\{f(x_i, t_i, u_i)\}$

- even deterministic problems can be uncertain
- not a new idea¹, but rarely studied

We need a theory of probabilistic numerics.

Gaussians, because of their connection to linear functions, are at the heart of probabilistic interpretations of numerics.

¹H. Poincaré, 1896, Diaconis 1988, O'Hagan 1992

$$p(z) = \mathcal{N}(z; \mu, \Sigma) \quad \Rightarrow \quad p(Az) = \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}})$$

- this is not restricted to finite linear operators (matrices) A
- $A(x) = \mathbb{I}(a < x < b)$ gives $Af = \int_a^b f(x) dx$

$$p\left(\int_{a}^{b} f(x) \, \mathrm{d}x, \int_{c}^{d} f(x) \, \mathrm{d}x\right) = \mathcal{N}\left[\left(\int_{a}^{b} f(x) \, \mathrm{d}x\right); \left(\int_{a}^{b} \mu(x) \, \mathrm{d}x\right), \left(\int_{c}^{d} f_{a}(x) \, \mathrm{d}x'\right), \left(\int_{a}^{b} \int_{a}^{b} k(x, x') \, \mathrm{d}x \, \mathrm{d}x' - \int_{a}^{b} \int_{c}^{d} k(x, x') \, \mathrm{d}x \, \mathrm{d}x'\right)\right]$$

Inferring $F = \int f$ from observations of f

quadrature

Inferring $F = \int f$ from observations of f

quadrature

Quadrature with GPs

A O'Hagan, 1991; T Minka, 2000; M Osborne et al., 2012

- say what functions you expect to integrate
- find $\arg \min_X [k_{Ff_X} k_{Ff_X} k_{f_X f_X}^{-1} k_{f_X f_X} k_{f_X F}]$ (depends on kernel!)
- Bayesian quadrature

Gaussian processes can be used to construct quadrature rules.

Inferring f from observations of F $\mu_{f|F_X} = \mu_f + k_{fF_X} k_{F_X}^{-1} (F_X - f_X \mu) \qquad k_{ff|F_X} = k_{ff} - k_{fF_X} k_{F_X}^{-1} k_{F_X} k_{F_X} f$

For $f : \mathbb{R}^N \to \mathbb{R}$, find local minimum $\arg \min f(x)$, starting at x_0 .

An old idea: Newton's method

$$f(x) \approx f(x_t) + (x - x_t)^{\mathsf{T}} \nabla f(x_t) + \frac{1}{2} (x - x_t)^{\mathsf{T}} \underbrace{\nabla \nabla^{\mathsf{T}} f(x_t)}_{=:B(x_t)} (x - x_t)$$
$$\underbrace{x_{t+1} = x_t - B^{-1}(x_t) \nabla f(x_t)}_{=:B(x_t)}$$

Cost: $\mathcal{O}(N^3)$

⊸⊳

High-dimensional optimization requires giving up knowledge in return for lower cost.

Quasi-Newton methods (think BFGS, DFP, ...)

aka. variable metric optimization - low rank estimators for Hessians

Instead of evaluating Hessian, build (low-rank) estimator fulfilling local difference relation ...

$$\nabla f(x_{t+1}) - \nabla f(x_t) = B_{t+1}(x_{t+1} - x_t)$$
$$y_t = B_{t+1}s_t$$

- ... otherwise close to previous estimator in $||B_{t+1} B_t||_{F,V}$
- ... so minimize regularised loss

$$B_{t+1} = \underset{B \in \mathbb{R}^{N \times N}}{\arg \min} \left\{ \underset{B}{\lim \frac{1}{\beta}} \|y_t - Bs_t\|_V^2 + \|B - B_t\|_{F,V}^2 \right\}$$
$$= \underset{B}{\lim \arg \max} \underbrace{\mathcal{N}(y_t; Bs_t, \beta V) \mathcal{N}(\overrightarrow{B}; \overrightarrow{B}_t, V \otimes V)}_{\text{arg max}}$$
$$= \underset{B}{\arg \max} \underbrace{\mathcal{N}\left[B; B_t + \frac{(y_t - B_t s_t) V s_t^{\mathsf{T}}}{s_t^{\mathsf{T}} V s_t}, V \otimes \left(V - \frac{V s s^{\mathsf{T}} V}{s^{\mathsf{T}} V s}\right)\right]}_{\text{posterior}}$$

Quasi-Newton methods perform local maximum a-posteriori Gaussian inference on the Hessian's elements.

Optimization with GPs

nonparametric quasi-Newton methods

Idea: replace

$$\nabla f(x_{t+1}) - \nabla f(x_t) \approx B(x_{t+1} - x_t)$$
$$\implies = \int_{x_t}^{x_{t+1}} B(x) \, dx$$

• Gaussian process prior on $B(x^{\mathsf{T}}, x)$

$$p(B) = \mathcal{GP}(B, B_0(x^{\mathsf{T}}, x), k(x^{\mathsf{T}}, {x'}^{\mathsf{T}}) \otimes k(x, x'))$$

Gaussian likelihoods

$$p(y_i(x^{\mathsf{T}}) | B, s_i) = \lim_{\beta \to 0} \mathcal{N}\left(y_i; \sum_m s_{im} \int_0^1 B(x^{\mathsf{T}}, x(t)) \, \mathrm{d}t, k(x^{\mathsf{T}}, x'^{\mathsf{T}}) \otimes \beta\right)$$
$$p(y_i(x)^{\mathsf{T}} | B, s_i^{\mathsf{T}}) = \lim_{\beta \to 0} \mathcal{N}\left(y_i^{\mathsf{T}}; \sum_m s_{im}^{\mathsf{T}} \int_0^1 B(x^{\mathsf{T}}(t), x) \, \mathrm{d}t, \beta \otimes k(x, x')\right)$$

- posterior of same algebraic form as before, but with linear maps of nonlinear (integral of k) entries.
- same computational complexity as L-BFGS (Nocedal, 1980): $\mathcal{O}(N)$

nonparametric inference on elements of the Hessian

nonparametric quasi-Newton methods

functional generalizations

Hennig, ICML 2013

18

Learning nonparametric models of Hessians allows

- optimizing noisy functions
- dynamically changing functions
- parallelization
- <u>۱</u>

Gaussian processes can be used in optimization.

GPs are closed under differentiation Rasmussen & Williams, 2006, §9.4 $\mu_{f|f'_X} = \mu_f + k_{ff'_X} k_{f'_X}^{-1} (f'_X - \mu'_{f_X}) \qquad k_{ff|f'_X} = k_{ff} - k_{ff'_X} k_{f'_X}^{-1} k_{f'_X} f'_X f'_X$

GPs can have multiple outputs

Reminder of Part I

observe c'(t), infer c(t)

solve c'(t) = f(c(t), t) such that c(0) = a and c(1) = b

$$p(c(t)) = \mathcal{GP}(c; \mu_c, V \otimes k)$$
$$p(y_t | c) = \mathcal{N}(f(\hat{c}_t; t); \dot{c}_t, U)$$

- ► repeatedly estimate \hat{c}_t using GP posterior mean to "observe" $c'(t) = f(\hat{c}_t) + \delta_f$
- estimate error in this observation by propagating Gaussian uncertainty through *f*.

Recent work:

- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig & Hauberg http://arxiv.org/abs/1306.0308

observe c'(t), infer c(t)

solve c'(t) = f(c(t), t) such that c(0) = a and c(1) = b

$$p(c(t)) = \mathcal{GP}(c; \mu_c, V \otimes k)$$
$$p(y_t | c) = \mathcal{N}(f(\hat{c}_t; t); \dot{c}_t, U)$$

- ► repeatedly estimate \hat{c}_t using GP posterior mean to "observe" $c'(t) = f(\hat{c}_t) + \delta_f$
- estimate error in this observation by propagating Gaussian uncertainty through *f*.

Recent work:

- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig & Hauberg http://arxiv.org/abs/1306.0308

observe c'(t), infer c(t)

solve c'(t) = f(c(t), t) such that c(0) = a and c(1) = b

$$p(c(t)) = \mathcal{GP}(c; \mu_c, V \otimes k)$$
$$p(y_t | c) = \mathcal{N}(f(\hat{c}_t; t); \dot{c}_t, U)$$

- ► repeatedly estimate \hat{c}_t using GP posterior mean to "observe" $c'(t) = f(\hat{c}_t) + \delta_f$
- estimate error in this observation by propagating Gaussian uncertainty through *f*.

Recent work:

- Chkrebtii, Campbell, Girolami, Calderhead http://arxiv.org/abs/1306.2365
- Hennig & Hauberg http://arxiv.org/abs/1306.0308

The Advantages of a Probabilistic Formulation

joint uncertainty over solution

Hennig & Hauberg, under review

1st principal component

2nd principal component

The Advantages of a Probabilistic Formulation

uncertainty over problem

Hennig & Hauberg, under review

x1 [arbitrary units]

Gaussian processes can be used to solve differential equations.

Lots of "Gaussian integrals" are known

and can be used to map uncertainty through almost any function see e.g. M. Deisenroth's PhD, 2010

• write
$$f(x) = \sum_i \phi_i(x)^{\top} w$$
 such that

$$\int \phi_i(x) \mathcal{N}(x; \mu, \Sigma) \, \mathrm{d}x \qquad \int \phi_i(x) \phi_j(x) \mathcal{N}(x; \mu, \Sigma) \, \mathrm{d}x$$
is each tic

is analytic

Lots of "Gaussian integrals" are known

►

and can be used to map uncertainty through almost any function see e.g. M. Deisenroth's PhD, 2010

$$\int f(x)\mathcal{N}(x;\mu,\Sigma) \, \mathrm{d}x = \sum_{i} w_{i} \int \phi_{i}(x)\mathcal{N}(x;\mu,\Sigma) \, \mathrm{d}x$$
$$\int f^{2}(x)\mathcal{N}(x;\mu,\Sigma) \, x = \sum_{i} \sum_{j} w_{i}w_{j} \int \phi_{i}(x)\phi_{j}(x)\mathcal{N}(x;\mu,\Sigma) \, \mathrm{d}x$$
also works if $f \in \mathbb{R}^{N}$, and if $p(w) = \mathcal{N}(w;m,V)$

Some useful Gaussian integrals

an expressive basis set for function approximation

$$\int x^{p} \mathcal{N}(x;0,\sigma^{2}) \, \mathrm{d}x = \begin{cases} 0 & \text{if } p \text{ odd} \\ \sigma^{p} \prod_{i=1:2:p-1} i & \text{if } p \text{ even} \end{cases}$$
$$\int |x|^{p} \mathcal{N}(x;0,\sigma^{2}) \, \mathrm{d}x = \frac{\sigma^{p}}{\sqrt{\pi}} 2^{p/2} \Gamma\left(\frac{p+1}{2}\right)$$
$$\int (x-m)^{\mathsf{T}} V(x-m) \mathcal{N}(x;\mu,\Sigma) \, \mathrm{d}x = (\mu-m)^{\mathsf{T}} V(\mu-m) + \operatorname{tr}[V\Sigma]$$
$$\int \mathcal{N}(x;a,A) \mathcal{N}(x;b;B) \, \mathrm{d}x = \mathcal{N}(a,b,A+B)$$
$$\int \int_{-\infty}^{(x-m)/s} \mathcal{N}(\tilde{x},0,1) \, \mathrm{d}\tilde{x} \, \mathcal{N}(x;\mu,\sigma^{2}) \, \mathrm{d}x = \int_{-\infty}^{(\mu-m)/\sqrt{\left(s^{2}+\sigma^{2}\right)}} \mathcal{N}(\tilde{x},0,1)$$
$$= \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{\mu-m}{\sqrt{2\left(s^{2}+\sigma^{2}\right)}}\right) \right]$$

c.f. DB Owen, A table of normal integrals. Comm. Stat.-Sim. Comp. 1980

for moment computations

$$\int x^p \mathcal{N}(x;\mu,\sigma) = \sigma^p (-i\sqrt{2}\operatorname{sgn}\mu)^p U\left(-\frac{p}{2},\frac{1}{2},-\frac{1}{2}\frac{\mu^2}{\sigma^2}\right) \qquad p \in \mathbb{N}_0$$

for moment computations

$$\int x^p \mathcal{N}(x;\mu,\sigma) = \sigma^p (-i\sqrt{2}\operatorname{sgn}\mu)^p U\left(-\frac{p}{2},\frac{1}{2},-\frac{1}{2}\frac{\mu^2}{\sigma^2}\right) \qquad p \in \mathbb{N}_0$$

for moment computations

$$\int x^p \mathcal{N}(x;\mu,\sigma) = \sigma^p (-i\sqrt{2}\operatorname{sgn}\mu)^p U\left(-\frac{p}{2},\frac{1}{2},-\frac{1}{2}\frac{\mu^2}{\sigma^2}\right) \qquad p \in \mathbb{N}_0$$

for moment computations

$$\int x^p \mathcal{N}(x;\mu,\sigma) = \sigma^p (-i\sqrt{2}\operatorname{sgn}\mu)^p U\left(-\frac{p}{2},\frac{1}{2},-\frac{1}{2}\frac{\mu^2}{\sigma^2}\right) \qquad p \in \mathbb{N}_0$$

Expected values of error functions

for moment computations

Expected values of error functions

for moment computations

e.g. Rasmussen & Williams, §3.9

Expected values of error functions

for moment computations

Treating Cancer with GPs

Analytical Probabilistic Modelling in Radiation Therapy

image source: wikipedia

the data

CT images

the parameter space

multi-beam plans

setup errors can be disastrous

human bodies are complicated

Mark Bangert, DKFZ

- setup errors of 5mm and less can drastically change the clinical outcome
- accounting for these errors is currently not clinical practice
- some prior work²,³, but problems of computational cost

²Unkelbach et al.: Reducing the sensitivity of IMPT treatment plans to setup errors and range uncertainties via probabilistic treatment planning. 2009 Med. Phys. 36: 149

³Sobotta et al.: Accelerated evaluation of the robustness of treatment plans against geometric uncertainties by Gaussian processes. 2012 Phys. Med. Biol. 57 (23): 8023

Propagating Gaussian uncertainty through nonlinearities

using integrals against Gaussian measures

- works on virtually any continuous function
- guaranteed numerical precision, fixed at design time
- Iow computational cost: just matrix-matrix multiplications

Error Bars on Radiation Dose

setup error $1 \text{mm} \pm 2 \text{mm}$, range error 3%

Bangert, Hennig, Oelfke, 2013

Gaussian algebra can be used to build numerical methods for probabilistic computations.

Gaussians provide the linear algebra of inference

products of Gaussians are Gaussians

$$\mathcal{N}(x; a, A)\mathcal{N}(x; b, B) = \mathcal{N}(x; c, C)\mathcal{N}(a; b, A + B)$$

$$C := (A^{-1} + B^{-1})^{-1} \qquad c := C(A^{-1}a + B^{-1}b)$$

marginals of Gaussians are Gaussians

$$\int \mathcal{N}\left[\begin{pmatrix} x\\ y \end{pmatrix}; \begin{pmatrix} \mu_x\\ \mu_y \end{pmatrix}, \begin{pmatrix} \Sigma_{xx} & \Sigma_{xy}\\ \Sigma_{yx} & \Sigma_{yy} \end{pmatrix}\right] dy = \mathcal{N}(x; \mu_x, \Sigma_{xx})$$

(linear) conditionals of Gaussians are Gaussians

$$p(x|y) = \frac{p(x,y)}{p(y)} = \mathcal{N}\left(x; \mu_x + \Sigma_{xy}\Sigma_{yy}^{-1}(y-\mu_y), \Sigma_{xx} - \Sigma_{xy}\Sigma_{yy}^{-1}\Sigma_{yx}\right)$$

linear projections of Gaussians are Gaussians

$$p(z) = \mathcal{N}(z; \mu, \Sigma) \implies p(Az) = \mathcal{N}(Az, A\mu, A\Sigma A^{\mathsf{T}})$$

• analytical integrals allow moment matching "projection to Gaussians" $\int f(x)\mathcal{N}(x;\mu,\Sigma) = \text{known}$ e.g. for $f(x) = x^p, \operatorname{erf}(x), \mathcal{N}(x), x^\top V x$

Generalised linear models learn nonlinear functions

$$f(x) = \phi(x)^{\mathsf{T}} w$$
 $p(w) = \mathcal{N}(w; \mu, \Sigma)$

Generalised linear models learn nonlinear functions

$$f(x) = \phi(x)^{\mathsf{T}} w$$
 $p(w) = \mathcal{N}(w; \mu, \Sigma)$

infinite feature sets give nonparametric models

 $p(f) = \mathcal{GP}(f; \mu, k)$

powerful models

- kernels use infinitely many features
- kernels can be combined to form expressive models
- hyperparameters can be learned by hierarchical inference
- individual nonlinear effects can be separated from superpositions
- some kernels are universal

but no magic

- every model has parameters chosen a priori
- universal kernels can have logarithmic convergence rate

Gaussian processes are at heart of probabilistic numerics

Gaussians have great algebraic properties

- GPs are closed under linear projections, including
 - differentiation
 - integration
- GPs can be integrated against an expressive set of functions

They are the elementary tool of probabilistic numerics

- quadrature rules can be derived from GPs
- quasi-Newton optimization can be generalised using GPs
- GPs allow ODE solvers capable of probabilistic input
- moment matching allows numerical probabilistic computations

Numerics is about turning nonlinear problems into linear ones. That's what Gaussian regression does.

Questions?

Bibliography

- T. O'Hagan Bayes-Hermite Quadrature
 J. Statistical Planning and Inference 29, pp. 245–260
- C.E. Rasmussen & C.K.I. Williams Gaussian Processes for Machine Learning MIT Press, 2006
- T. Minka Deriving quadrature rules from Gaussian processes Tech. Report 2000
- M.A. Osborne, D. Duvenaud, R. Garnett, C.E. Rasmussen, S.J. Roberts, Z. Ghahramani Active Learning of Model Evidence Using Bayesian Quadrature Advances in NIPS, 2012
- P. Hennig & M. Kiefel Quasi-Newton Methods: a new direction ICML 2012 (short form), and JMLR 14 (2013), pp. 807–829
- P. Hennig Fast Probabilistic Optimization from Noisy Gradients ICML 2013
- J. Skilling Bayesian solution of ordinary differential equations Maximum Entropy and Bayesian Methods, 1991
- O. Chkrebtii, D.A. Campbell, M.A. Girolami, B. Calderhead Bayesian Uncertainty Quantification for Differential Equations http://arxiv.org/abs/1306.2365
- M. Bangert, P. Hennig, U. Oelfke Analytical probabilistic modeling for radiation therapy treatment planning Physics in Medicine and Biology, 2013, in press