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Reminder: Yesterday

Gaussians are the linear algebra of inference

» Gaussians are closed under

> linear projection / marginalization / sum rule
> linear restriction / conditioning / product rule

= they provide the linear algebra of inference
» combine with nonlinear features ¢, get nonlinear regression
» in fact, number of features can be infinite

= (nonparametric) Gaussian process regression



A few open questions

Today’s Program

» so what are kernels? What is the set of kernels?
» how should we design GP models?s
» how powerful are those models?s



Scaling Outputs

k = @(a,b)(1.72 x exp(-(bsxfun(@minus,a./2,b’./2)).%2));

v'kv >0 Vo = v 0%kv = 0%0 kv >0 Vo
w.l.o.g.
p(f) = GP(f;p k) = var[ f(2)] = 0*k(x,2) "= 67
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Scaling Outputs

k = @(a,b)(1.72 x exp(-(bsxfun(@minus,a./2,b’./2)).%2));

v'kv >0 Vo = v 0%kv = 0%0 kv >0 Vo

w.l.o.g.
p(f) = GP(f;p k) = var[ f(2)] = 0*k(x,2) "= 67
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Scaling Outputs

k = @(a,b)( * exp(-(bsxfun(@minus,a./2,b’./2)).%2));

v'kv >0 Vo = v 0%kv = 0%0 kv >0 Vo
w.l.o.g.
p(f) = GP(f; k) = var[ f(z)] = 0*k(z,2) " =" 62
20 \ T




Scaling Outputs

k = @(a,b)(10.72 * exp(-(bsxfun(@minus,a./2,b’./2)).*2));

v'kv >0 Vo = v 0%kv = 0%0 kv >0 Vo

w.l.o.g.
p(f) = GP(f;p k) = var[ f(2)] = 0*k(x,2) "= 67
20 — ——




Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(a/5);
k @(a,b) (20 x kSE(phi(a),phi(b)));

k(a.b) = Ym(@m®) = k(6(@).6)) = Lue(o(a)n(6())"

20
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» k(a,b) is pos. semidef. = k(¢(a), @(b)) is pos. semidef.



Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(a/5);
3 @(a,b) (20 x kSE(phi(a),phi(b)));

k(a.b) = Ym(@m®) = k(6(@).6)) = Lue(o(a)n(6())"
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» k(a,b) is pos. semidef. = k(¢(a), @(b)) is pos. semidef.



Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(a*x2);
k = @(a,b)(20 *x kSE(phi(a),phi(b)));

k(a.b) = Ym(@m®) = k(6(@).6)) = Lue(o(a)n(6())"

20

» k(a,b) is pos. semidef. = k(¢(a), @(b)) is pos. semidef.



Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(a*x2);
3 @(a,b) (20 x kSE(phi(a),phi(b)));

k(a.b) = Ym(@m®) = k(6(@).6)) = Lue(o(a)n(6())"
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» k(a,b) is pos. semidef. = k(¢(a), @(b)) is pos. semidef.



Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(((a+9)./5)."2);
k = @(a,b)(20 *x kSE(phi(a),phi(b)));

ka.b) = fmlam®™ = k(6(@),6(0) = Ln(o@)m (o))
20

Caution: This can have unintended consequences is ¢ is not
monotonic (long range interactions!)



Scaling Inputs

kSE = @(a,b) (exp(-(bsxfun(@minus,a,b’)).*2)); phi = @(a)(((a+9)./5)."2);
3 @(a,b) (20 x kSE(phi(a),phi(b)));

ka.b) = fmlam®™ = k(6(@),6(0) = Ln(o@)m (o))

20
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Caution: This can have unintended consequences is ¢ is not
monotonic (long range interactions!)



Scaling Inputs — Example: periodic functions p..c. mackay, 1998
phi = @(a)(sin(a)); kSE = @(a,b) (20 * exp(-(bsxfun(@minus,a./2,b’./2))."2));
k = @(a,b) (kSE(phi(a),phi(b)));




Scaling Inputs — Example: periodic functions p..c. mackay, 1998
phi = @(a)(sin(a)); kSE = @(a,b) (20 * exp(-(bsxfun(@minus,a./2,b’./2)).*2));
k= @(a,b)(kSE(phi(a),phi(b)));




Sums of Kernels are Kernels

k1
k2
k

@(a,b) (4.2 x exp(-(bsxfun(@minus,a./2,b’./2)).%2 ./ 10."2));
@(a,b)(1.72 *x exp(-(bsxfun(@minus,a./2,b’./2)).%2 ./ 0.5"2));
@(a,b)(k1(a,b) + k2(a,b));

T/l 2 T T2
vi(kxx +kxx)v=vkxxv+v'kxxv>0

20

Intuition: similarity under k' OR k2.



Sums of Kernels are Kernels

k1 @(a,b) (4.2 x exp(-(bsxfun(@minus,a./2,b’./2)).%2 ./ 10."2));
k2 = @(a,b)(1.72 * exp(-(bsxfun(@minus,a./2,b’./2)).*2 ./ 0.5*2));
3 @(a,b)(k1(a,b) + k2(a,b));

T/l 2 T T2
vi(kxx +kxx)v=vkxxv+v'kxxv>0

Intuition: similarity under k' OR k2.



Sums of Kernel and Parametric Features
@(a) (bsxfun(@power,a,[0:21));
@(a,b) (20 x exp(-(bsxfun(@minus,a./2,b’./2)).%2) + phi(a)*phi(b)’);

phi
3

20 T T
\ /
\ !
\ /
\ /
\ /
| \ / ]
10 ; -
b - ’ <
\\‘// ~ \\(/
N e ~ -
0 = —=
3 S
N
- ) S
e \ \
- = T S = N
A //’<\ ’// \\ \
z . - \ \
—10* / ’ \ \ —|
// // N \\
! ! ! ! ! ¥ | \

see Rasmussen & Williams, §2.7 for an efficient implementation



Sums of Kernel and Parametric Features
phi = @(a) (bsxfun(@power,a,[0:2]1));
k = @(a,b)(20 *x exp(-(bsxfun(@minus,a./2,b’./2)).72) + phi(a)*phi(b)’);

see Rasmussen & Williams, §2.7 for an efficient implementation



Multiple Inputs

just a quick reminder




Additive Models

k = @(a,b)(kSE(a(:,1),b(:,1)) + kSE(a(:,2),b(:,2))); Hastie & Tibshirani, 1990

D
k(a,b) =" ka(aa,ba)
d



Additive Models

@(a) (bsxfun(@power,a,[0:2])); Wahba, 1990, Rasmussen & Williams, 2006
@(a,b)(kSE(a(:,1),b(:,1)) + phi(a(:,2))*phi(b(:,2))’);

phi
3

D
k(a,b) = kq(aa,ba)
d

» use structure of kx x to drastically lower inference cost
» generalize to k(a,b) = X7 ka(aa,ba) + X7 ¥4 " kij(ai, aj,b;,b;) to
get functional ANOVA



Products of Kernels are Kernels

phi = @(a) (bsxfun(@power,a,[0:2]1));

k1 @(a,b) (20 x exp(-(bsxfun(@minus,a./2,b’./2)).2));
k @(a,b) (k1(a,b) .x (phi(a) * phi(b)’));

Theorem (I. Schur (proof in Bapat, 1997, Million 2007))

If A and B are positive semidefinite, then A ® B (=A.*B) is semidefinite.
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Intuition: similarity under k' AND &2. ;



Products of Kernels are Kernels

phi = @(a) (bsxfun(@power,a,[0:2]1));
k1 @(a,b) (20 x exp(-(bsxfun(@minus,a./2,b’./2)).2));

k @(a,b)(k1(a,b) .* (phi(a) * phi(b)’));

Theorem (I. Schur (proof in Bapat, 1997, Million 2007))

If A and B are positive semidefinite, then A ® B (=A.*B) is semidefinite.

20 AN T 77T y

Intuition: similarity under k' AND &2.



Summary: Kernel design

Mercer kernels form a semiring

» k is positive semidefinite = ak for a € R, is positive semidefinite
e.g. to change signal variance

» k(a,b) is pos. semidef. = k(¢(a), @(b)) is pos. semidef.
e.g. to change length scale

» k1, ko is positive semidefinite = k1 + ko is positive semidefinite
e.g. to encode OR similarity

» k1, ko is positive semidefinite = k; ® ko is positive semidefinite
e.g. to encode AND similarity

These rules can encode prior knowledge in Gaussian models.

If your model has no parameters, you haven’t found them yet.



Of all those hyperparameters, which ones should | use?

And how should | set them?

Can | get away with using few, or no hyperparameters?



How should | choose all those parameters?
they are everywhere

» f(x) = Z;xiwi

_1)2
» k(a,b) = 0% exp (— (a2>\b) )

» p(ylf.0) =N (y; fa, 0%1)
g k(a7 b) = 02k1((l7 b) + k2(a7 b) : k3(a7 b) + k4((]5(0), ¢(b))



Hierarchical Bayesian Inference
announce your hypotheses, and let mathematics do the magic

» sum rule

Py M) = [ byl £, Mp(F | M) af
» for Gaussians:
Pyl M) = [ NGy fx,0°DGP(fi 1) df
=N(y;ux, kxx +0°I)
» Bayes’ Theorem

p(y [ M)p(M)

p(Mly) = o)



Model Selection

for the SE kernel

~200
0.15 | :
300
- 0.1 :
2 400 =
~500 5-107% ) |
~600 ¢ ; 1 % 2 4



So how do you actually do this?
Markov Chain Monte Carlo

20
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A Shortcut

Type-Il Maximum Likelihood

0
0.15 | .
-200
& 0.1} .
%D ST
-400
5-1072 :
_ | | | |
600, 2 4 % 2 4
A A

v

frequentist estimator with good properties

gives a Gaussian process: analytically desirable

but ignores all other hypotheses

maximum need not be good representer of whole distribution!

v

v

v

20



A Shortcut

Type-Il Maximum Likelihood

21



So do we get away without making assumptions?

There is no unique natural way of choosing models

» parametrization of hypothesis classes is not unique

» there is always a “just so” hypothesis

» Minimizing training error gives overfitting

» Class of models is unbounded

» Choosing the “least complex” model is not well-defined.

» If your “model has no tuning parameters”, you haven’t found them yet.
» If your “model makes no assumptions”, you haven'’t found them yet.

Inference requires assumptions.

22



Building Explicit Models for Physical Processes
How to loose weight

mass [kg]

| | | | |
2010 2011 2012 2013 2014
10°
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Building Explicit Models for Physical Processes

How to loose weight

mass [kg]

|
2010 2011 2012 2013 2014
10°

» running (4x / week, > 7k): 1 Jul 2008 — 5 Dec 2009
» slacking: 1 Jan 2011 — 30 Aug 2011

> : 1 Jan 2011 — 30 Aug 2011

gym (2x / week): 1 Apr 2012 —

> : 13 May 2013 — 27 Jun 2013

v

23



You can'’t learn without making assumptions

Wiener process prior: k = @(a,b) (bsxfun(@min,a-d0,b’-d0) ./ ell);

mass [kg]

24



Designing the Model

Use prior knowledge

WAL IPwi R M- bratth
'qW\)MWﬂ " V] I‘W“WI

| | | | |
2010 2011 2012 2013 2014
109
» constant effects for each action: ¢rn, ddiet; Pgym» Pvegs Psiack

» random steps kwiener (@, b)
» random fluctuations ksg(a, b; A = 1sday)
» measurement noise ¢ = 0.1g (known)

2 2 2
k = 05 ks +0i kwiener+Octs ( Prun drun+ Pdiet Pt + Dslack Pelack+ Paym Pgym + Pveg Preg )

25



Infer superimposed functions
Gaussians are closed under linear maps . ..

SE Wi
fe= + Jt ener 4 +¢gy Wgym + (bt Wyeg + ¢t Wdiet + Qj)t wslack + ¢t Wryp

S(t-T)\' [ fse kse
6(t - T) Jwiener Fw
p(H)=N|| o waier |3 A, A Tt A
(b;un Wrun Ur2un
| —
L =:AT 2 A
p(fly) = N(fip-SA(ATSA+0* 1) (Y - A7), - SAKAE)
—
=K-1

p(wnn) = N(wrum Hrun — arun¢runT 1(Y AT,U’) arun Urund)runTK (brun r2un
p(fSE) N(fSE,,MSE _ k K 1(Y AT:U') kir&Ltm krun krun
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Individual effects

systematic effects

7! o
running -29 g/day +7 g/day
slacking +10 g/day  +4 g/day

-21 g/day +6 g/day
gym —2g/day +3 g/day

0 g/day +0 g/day

OO NETE T PTG DTSV BV PO RO SRRV PO STV YUY 1 vy Aervreg ST
T A R A oI Yy S —
S b L e

mass [kg]

| | | | |
2010 2011 2012 2013 2014
108
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Individual effects
Wiener drift

o) o
running -29 g/day +7 g/day
slacking +10 g/day  +4 g/day
-21 g/day +6 g/day
gym —2g/day +3 g/day
0 g/day +0 g/day
i o~ TN s
N . -
= || e Y~~~
PR L 0 ™ L v
g | L/ LT A *%mmmm
i | i i
| .
| | | | |
2010 2011 2012 2013 2014

-10°
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So What?

prediction doing nothing

mass [kg]

| | | | |
2010 2011 2012 2013 2014

28



So What?

prediction going to the gym

mass [kg]

| | | | |
2010 2011 2012 2013 2014

28



So What?

prediction going to the gym

mass [kg]

| | | | |
2010 2011 2012 2013 2014

combine (correlate) with other
measurements to predict changes in body
shape, exercise performance, ...

see Karsten Roth’s 'weightulator’ app




Structured Linear Regression Models

powerful, but not magic

Gaussian nonlinear regression models

» can model nontrivial nonlinear effects

» can incorporate (Gaussian) measurement noise

» can separate nonlinear effects from each other
but they are not magic!

» all predictions subject to nontrivial prior

» hyperparameter choices depend on other effects modeled
This is true for literally all of science to various degrees!

29
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(5 regularised least-squares

is Gaussian regression

o ) = PELEOPUR) _ Ny L, a? DN (i Fxx)
* p(y) N(y§mx,kxx+a2f)

=2logp(fly) = (y— fx) o2 I(y - fx) + (fx —mx) kx'x (fx = mx) + const.

=0y~ fx|7 + [ fx —mx]i, +const.

» the GP posterior mean is the regularised least-squares estimate
» aka kernel ridge regression
» regularizers are priors

» this also means a lot of theoretical concepts translate.
But not all of them. ..

31



Reproducing Kernel Hilbert Spaces

the very rough story

» posterior mean k,x (kxx +021) 'y = kyxa

» (leaving out lots of details) the reproducing kernel Hilbert space
(RKHS) of k is the space of f(z) = TN, k(x,z;)a;

» note: for nondegenerate kernels, GP samples are almost surely not in
the RKHS! The RKHS idea principally applies to the mean

32



Can GPs learn anything?

universal kernels Micchelli, Xu, Zhang, 2006

» For some kernels over RM | for example the square exponential, the
RKHS lies dense in the space of continuous functions

» s0 does this mean such GPs can learn any function?

33



Universal RKHSs
an experiment — prior

34



Universal RKHSs

an experiment — 1 evaluation

34



Universal RKHSs

an experiment — 2 evaluations

34



Universal RKHSs

an experiment — 5 evaluations

34



Universal RKHSs
an experiment — 10 evaluations

34



Universal RKHSs

an experiment — 20 evaluations

34



Universal RKHSs

an experiment — 50 evaluations

34



Universal RKHSs
an experiment — 100 evaluations

34



Universal RKHSs

an experiment — 500 evaluations

34



Convergence Rates are Important

non-obvious aspects of f can ruin convergence v.d.Vaart & v.Zanten, 2011

10°

If - £II?

1072

| | | Ll
10° 10 10 10° 10*
# function evaluations

If fis “not well represented” by the kernel (has low prior density), the
number of datapoints required to achieve € error can be exponential in e.
Outside of the observation range, there are no guarantees at all.

35



A Tale of Frequentists and Bayesians

Gaussian / £2 regression is an interesting case, because the exact same method is studied on both sides.

Bayesian: If this generative model is correct, this inference is optimal!
Frequentist: This estimator can learn everything given enough data!

36



A Tale of Frequentists and Bayesians

Gaussian / 2 regression is an interesting case, because the exact same method is studied on both sides.

Bayesian: Well, you haven’t used the right prior!
Frequentist: Well, you haven’t collected c samples yet!

36



A Tale of Frequentists and Bayesians

a few things people actually say

The insufferable Frequentist, on kernel ridge regression

>

>

>

“My method makes no assumptions because there are no priors.”
“Just use the RBF [squared-exp] kernel. It is universal.”

“I can show consistency and universality. The Bayesian can't.
Therefore my method is more mathematically pure (i.e. better).”

The insufferable Bayesian, on Gaussian process posterior means

>

“The prior is subjective. If you don't like it, you can always change it. |
don’t need to worry about what happens out of model. If the model
were wrong, I'd just use a different one.”

“The posterior faithfully represents all available information. We can
therefore use it to guide exploration (even though we never really
check model validity).”

37



A Tale of Frequentists and Bayesians

the linear version of an old battle

The “Bayesian” (probabilistic) view
» is particularly helpful for small datasets and extrapolation
» gives an intuition for model properties, assumptions
» allows hierarchical extension, “complete toolbox”
» can help build good models
The “frequentist” (asymptotic) view
» is particularly helpful for the large dataset limit, interpolation
» gives an intuition for model limitations
» can offer efficient computational “shortcuts”
» can help build general models

Frequentist: “If the assumptions are correct,
this is the worst that could happen.”

Bayesian: “If the prior is strictly correct,
the posterior is the exact, optimal answer.”

38



» Kernels can be combined algebraically to build expressive models
... but there is no universal model

» Hyperparameters can be inferred by hierarchical inference
... but the result always depends on hyperpriors

» Gaussian regression allows inference on superposed effects
... but priors need to be analysed carefully

» Both Bayesian and frequentist interpretations are helpful
blindly trust neither your prior nor asymptotic statements

» Gaussians are a fundamental concept, used widely

39
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Eigenfunctions

Kernels really are infinitely large positive semidefinite matrices

An eigenfunction ¢ : X — C obeys

[ ka.p)é(a) du(@) = Ao(v)

Theorem (Mercer)

For a positive definite kernel. Then, v?-almost everywhere,

umm=i&@wwﬂw

The eigenfunctions can be chosen orthonormal, i.e. [ ¢;(z)¢;(z) dx = d;;

So a GP puts mass on the space spanned by the
eigenfunctions. What is this space?

1



the RKHS

definition

» posterior mean k,x (kxx +02I) 1y = k.x
» the reproducing kernel Hilbert space (RKHS) of & is the space of

N N

» this space, with the inner product

N f.a.
(f.ghn =2 12

is a Hilbert space. It is uniquely defined' by k. (It is also reproduced
» s0 is the GP a distribution over that Hilbert space?

"Moor-Aronszajn theorem. Aronszajn, 1950
42



Are GPs distributions on the RKHS?

no!

» to sample f ~ GP(0,k), draw f; ~N(0,)\;),Vi=1,..., N, then

N NE[Q N
f@)= fioi(w) = E[IfI3]=E] -y =y

i=1 /\i i=1

~.

» for nondegenerate kernels (IV = o0), GP samples are almost surely
not in the RKHS! The posterior mean is more regular (usually:
smoother) than almost all samples.

» samples from a GP are “just outside” of the RKHS in that they are
almost surely not of finite norm, but of the right algebraic form.

43



So what?

This is not just a technical point. Example: linear splines

» RKHS: piecewise linear, i.e. smooth almost everywhere

» GP samples: non-differentiable almost everywhere

» when you think about the mean, think of the RKHS. But remember
that samples from a GP can be very different from the mean.

44
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