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Reminder: Yesterday
Gaussians are the linear algebra of inference

▸ Gaussians are closed under
▸ linear projection / marginalization / sum rule
▸ linear restriction / conditioning / product rule⇒ they provide the linear algebra of inference

▸ combine with nonlinear features φ, get nonlinear regression
▸ in fact, number of features can be infinite⇒ (nonparametric) Gaussian process regression
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A few open questions
Today’s Program

▸ so what are kernels? What is the set of kernels?
▸ how should we design GP models?s
▸ how powerful are those models?s
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Scaling Outputs
k = @(a,b)(1.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));

v⊺kv ≥ 0 ∀v ⇒ v⊺θ2kv = θ2v⊺kv ≥ 0 ∀v
p(f) = GP(f ;µ, k) ⇒ var[f(x)] = θ2k(x,x)w.l.o.g.= θ2
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Scaling Outputs
k = @(a,b)(1.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));

v⊺kv ≥ 0 ∀v ⇒ v⊺θ2kv = θ2v⊺kv ≥ 0 ∀v
p(f) = GP(f ;µ, k) ⇒ var[f(x)] = θ2k(x,x)w.l.o.g.= θ2
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Scaling Outputs
k = @(a,b)(10.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));

v⊺kv ≥ 0 ∀v ⇒ v⊺θ2kv = θ2v⊺kv ≥ 0 ∀v
p(f) = GP(f ;µ, k) ⇒ var[f(x)] = θ2k(x,x)w.l.o.g.= θ2
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Scaling Outputs
k = @(a,b)(10.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));

v⊺kv ≥ 0 ∀v ⇒ v⊺θ2kv = θ2v⊺kv ≥ 0 ∀v
p(f) = GP(f ;µ, k) ⇒ var[f(x)] = θ2k(x,x)w.l.o.g.= θ2
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Scaling Inputs
kSE = @(a,b)(exp(-(bsxfun(@minus,a,b’)).^2)); phi = @(a)(a/5);
k = @(a,b)(20 * kSE(phi(a),phi(b)));

k(a, b) = ⨋
`
η`(a)η`(b)⊺ ⇒ k(φ(a), φ(b)) = ⨋

`
η`(φ(a))η`(φ(b))⊺

▸ k(a, b) is pos. semidef. ⇒ k(φ(a), φ(b)) is pos. semidef.
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Scaling Inputs
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`
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▸ k(a, b) is pos. semidef. ⇒ k(φ(a), φ(b)) is pos. semidef.
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Scaling Inputs
kSE = @(a,b)(exp(-(bsxfun(@minus,a,b’)).^2)); phi = @(a)(a*2);
k = @(a,b)(20 * kSE(phi(a),phi(b)));

k(a, b) = ⨋
`
η`(a)η`(b)⊺ ⇒ k(φ(a), φ(b)) = ⨋

`
η`(φ(a))η`(φ(b))⊺

▸ k(a, b) is pos. semidef. ⇒ k(φ(a), φ(b)) is pos. semidef.
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Scaling Inputs
kSE = @(a,b)(exp(-(bsxfun(@minus,a,b’)).^2)); phi = @(a)(((a+9)./5).^2);
k = @(a,b)(20 * kSE(phi(a),phi(b)));

k(a, b) = ⨋
`
η`(a)η`(b)⊺ ⇒ k(φ(a), φ(b)) = ⨋

`
η`(φ(a))η`(φ(b))⊺

Caution: This can have unintended consequences is φ is not
monotonic (long range interactions!)
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Scaling Inputs
kSE = @(a,b)(exp(-(bsxfun(@minus,a,b’)).^2)); phi = @(a)(((a+9)./5).^2);
k = @(a,b)(20 * kSE(phi(a),phi(b)));

k(a, b) = ⨋
`
η`(a)η`(b)⊺ ⇒ k(φ(a), φ(b)) = ⨋

`
η`(φ(a))η`(φ(b))⊺

Caution: This can have unintended consequences is φ is not
monotonic (long range interactions!)
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Scaling Inputs – Example: periodic functions
phi = @(a)(sin(a)); kSE = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));
k = @(a,b)(kSE(phi(a),phi(b)));

D.J.C. MacKay, 1998
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Scaling Inputs – Example: periodic functions
phi = @(a)(sin(a)); kSE = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));
k = @(a,b)(kSE(phi(a),phi(b)));

D.J.C. MacKay, 1998
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Sums of Kernels are Kernels
k1 = @(a,b)(4.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2 ./ 10.^2));
k2 = @(a,b)(1.^2 * exp(-(bsxfun(@minus,a./2,b’./2)).^2 ./ 0.5^2));
k = @(a,b)(k1(a,b) + k2(a,b));

v⊺(k1
XX + k2

XX)v = v⊺k1
XXv + v⊺k2

XXv ≥ 0

Intuition: similarity under k1 OR k2.
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Sums of Kernel and Parametric Features
phi = @(a)(bsxfun(@power,a,[0:2]));
k = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2) + phi(a)*phi(b)’);

see Rasmussen & Williams, §2.7 for an efficient implementation

9 ,



Sums of Kernel and Parametric Features
phi = @(a)(bsxfun(@power,a,[0:2]));
k = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2) + phi(a)*phi(b)’);

see Rasmussen & Williams, §2.7 for an efficient implementation
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Multiple Inputs
just a quick reminder
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Additive Models
k = @(a,b)(kSE(a(:,1),b(:,1)) + kSE(a(:,2),b(:,2))); Hastie & Tibshirani, 1990

k(a, b) = D∑
d

kd(ad, bd)
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Additive Models
phi = @(a)(bsxfun(@power,a,[0:2]));
k = @(a,b)(kSE(a(:,1),b(:,1)) + phi(a(:,2))*phi(b(:,2))’);

Wahba, 1990, Rasmussen & Williams, 2006

k(a, b) = D∑
d

kd(ad, bd)
▸ use structure of kXX to drastically lower inference cost▸ generalize to k(a, b) = ∑D

d kd(ad, bd) +∑D
i ∑i−1

j kij(ai, aj , bi, bj) to
get functional ANOVA
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Products of Kernels are Kernels
phi = @(a)(bsxfun(@power,a,[0:2]));
k1 = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));
k = @(a,b)(k1(a,b) .* (phi(a) * phi(b)’));

Theorem (I. Schur (proof in Bapat, 1997, Million 2007))

If A and B are positive semidefinite, then A⊙B (=A.*B) is semidefinite.

Intuition: similarity under k1 AND k2.
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Products of Kernels are Kernels
phi = @(a)(bsxfun(@power,a,[0:2]));
k1 = @(a,b)(20 * exp(-(bsxfun(@minus,a./2,b’./2)).^2));
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Summary: Kernel design

Mercer kernels form a semiring
▸ k is positive semidefinite⇒ αk for α ∈ R+ is positive semidefinite

e.g. to change signal variance
▸ k(a, b) is pos. semidef. ⇒ k(φ(a), φ(b)) is pos. semidef.

e.g. to change length scale
▸ k1, k2 is positive semidefinite⇒ k1 + k2 is positive semidefinite

e.g. to encode OR similarity
▸ k1, k2 is positive semidefinite⇒ k1 ⊙ k2 is positive semidefinite

e.g. to encode AND similarity

These rules can encode prior knowledge in Gaussian models.

If your model has no parameters, you haven’t found them yet.
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Of all those hyperparameters, which ones should I use?
And how should I set them?

Can I get away with using few, or no hyperparameters?
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How should I choose all those parameters?
they are everywhere

▸ f(x) = ?∑
i=1x

iwi

▸ k(a, b) = θ2 exp(−(a − b)2

2λ
)

▸ p(y ∣ f, σ) = N (y; fx, σ
2I)

▸ k(a, b) = θ2k1(a, b) + k2(a, b) ⋅ k3(a, b) + k4(φ(a), φ(b))
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Hierarchical Bayesian Inference
announce your hypotheses, and let mathematics do the magic

▸ sum rule
p(y ∣M) = ∫ p(y ∣ f,M)p(f ∣M) df

▸ for Gaussians:

p(y ∣M) = ∫ N (y; fX , σ
2I)GP(f ;µ, k) df

= N (y;µX , kXX + σ2I)
▸ Bayes’ Theorem

p(M ∣ y) = p(y ∣M)p(M)
p(y)
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Model Selection
for the SE kernel
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So how do you actually do this?
Markov Chain Monte Carlo
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A Shortcut
Type-II Maximum Likelihood
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▸ frequentist estimator with good properties▸ gives a Gaussian process: analytically desirable▸ but ignores all other hypotheses▸ maximum need not be good representer of whole distribution!
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A Shortcut
Type-II Maximum Likelihood
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So do we get away without making assumptions?
There is no unique natural way of choosing models

▸ parametrization of hypothesis classes is not unique
▸ there is always a “just so” hypothesis
▸ Minimizing training error gives overfitting
▸ Class of models is unbounded
▸ Choosing the “least complex” model is not well-defined.
▸ If your “model has no tuning parameters”, you haven’t found them yet.
▸ If your “model makes no assumptions”, you haven’t found them yet.

Inference requires assumptions.
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Building Explicit Models for Physical Processes
How to loose weight

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]

▸ running (4× / week, ≥ 7k): 1 Jul 2008 – 5 Dec 2009
▸ slacking: 1 Jan 2011 – 30 Aug 2011
▸ dieting: 1 Jan 2011 – 30 Aug 2011
▸ gym (2× / week): 1 Apr 2012 –
▸ vegetarian diet: 13 May 2013 – 27 Jun 2013
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Building Explicit Models for Physical Processes
How to loose weight

2010 2011 2012 2013 2014 ⋅105
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▸ running (4× / week, ≥ 7k): 1 Jul 2008 – 5 Dec 2009
▸ slacking: 1 Jan 2011 – 30 Aug 2011
▸ dieting: 1 Jan 2011 – 30 Aug 2011
▸ gym (2× / week): 1 Apr 2012 –
▸ vegetarian diet: 13 May 2013 – 27 Jun 2013
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You can’t learn without making assumptions
Wiener process prior: k = @(a,b)(bsxfun(@min,a-d0,b’-d0) ./ ell);

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]
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Designing the Model
Use prior knowledge

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]

▸ constant effects for each action: φrun, φdiet, φgym, φveg, φslack

▸ random steps kWiener(a, b)
▸ random fluctuations kSE(a, b;λ = 1sday)
▸ measurement noise σ = 0.1g (known)

k = θ2
SEkSE+θ2

WkWiener+θ2
eff(φrunφ

⊺
run+φdietφ

⊺
diet+φslackφ

⊺
slack+φgymφ

⊺
gym+φvegφ

⊺
veg)
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Infer superimposed functions
Gaussians are closed under linear maps . . .

ft = fSE
t + fWiener

t + +φgym
t wgym + φveg

t wveg + φdiet
t wdiet + φslack

t wslack + φrun
t wrun

p(f) = N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝

δ(t − T )
δ(t − T )
φlin
t⋮

φrun
t

⎞⎟⎟⎟⎟⎟⎠

⊺

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶A⊺

⎛⎜⎜⎜⎜⎜⎝

fSE

fWiener

wdiet⋮
wrun

⎞⎟⎟⎟⎟⎟⎠
;A⊺µ,A

⎛⎜⎜⎜⎜⎜⎝

kSE

kW

σ2
diet ⋱

σ2
run

⎞⎟⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Σ

A

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
p(f ∣ y) = N (f ;µ −ΣA (A⊺ΣA + σ2I)−1´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶K−1

(Y −A⊺µ),Σ −ΣAK−1A⊺Σ)
p(wrun) = N (wrun;µrun − σ2

runφ
run
T

⊺
K−1(Y −A⊺µ), σ2

run − σ2
runφ

run
T

⊺
K−1φrunσ2

run)
p(fSE) = N (fSE;µSE − kSE

tTK
−1(Y −A⊺µ), krun

tt − krun
tT K

−1krun
Tt )
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Individual effects
systematic effects

µ σ

running −29 g/day ±7 g/day
slacking +10 g/day ±4 g/day
dieting −21 g/day ±6 g/day
gym − 2 g/day ±3 g/day
vegetarian diet 0 g/day ±0 g/day

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]
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Individual effects
Wiener drift

µ σ

running −29 g/day ±7 g/day
slacking +10 g/day ±4 g/day
dieting −21 g/day ±6 g/day
gym − 2 g/day ±3 g/day
vegetarian diet 0 g/day ±0 g/day

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]
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So What?
prediction doing nothing

2010 2011 2012 2013 2014 ⋅105

m
as

s
[k

g]

combine (correlate) with other
measurements to predict changes in body
shape, exercise performance, . . .
see Karsten Roth’s ’weightulator’ app
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prediction going to the gym
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Structured Linear Regression Models
powerful, but not magic

Gaussian nonlinear regression models
▸ can model nontrivial nonlinear effects
▸ can incorporate (Gaussian) measurement noise
▸ can separate nonlinear effects from each other

but they are not magic!
▸ all predictions subject to nontrivial prior
▸ hyperparameter choices depend on other effects modeled

This is true for literally all of science to various degrees!
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`2 regularised least-squares
is Gaussian regression

p(fX ∣ y) = p(y ∣ fX)p(fX)
p(y) = N (y; fX , σ

2I)N (fX ;mX , kXX)N (y;mX , kXX + σ2I)−2 log p(f ∣ y) = (y − fX)⊺σ−2I(y − fX) + (fX −mX)⊺k−1
XX(fX −mX) + const.

= σ−2∥y − fX∥2
I + ∥fX −mX∥2

kXX
+ const.

▸ the GP posterior mean is the regularised least-squares estimate
▸ aka kernel ridge regression
▸ regularizers are priors
▸ this also means a lot of theoretical concepts translate.

But not all of them. . .
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Reproducing Kernel Hilbert Spaces
the very rough story

▸ posterior mean kxX(kXX + σ2I)−1y = kxXα▸ (leaving out lots of details) the reproducing kernel Hilbert space
(RKHS) of k is the space of f(x) = ∑N

i=1 k(x,xi)αi▸ note: for nondegenerate kernels, GP samples are almost surely not in
the RKHS! The RKHS idea principally applies to the mean
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Can GPs learn anything?
universal kernels Micchelli, Xu, Zhang, 2006

▸ For some kernels over RM , for example the square exponential, the
RKHS lies dense in the space of continuous functions

▸ so does this mean such GPs can learn any function?
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Universal RKHSs
an experiment – prior
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Universal RKHSs
an experiment – 1 evaluation
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Universal RKHSs
an experiment – 2 evaluations
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Universal RKHSs
an experiment – 5 evaluations
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Universal RKHSs
an experiment – 10 evaluations
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Universal RKHSs
an experiment – 20 evaluations
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Universal RKHSs
an experiment – 50 evaluations
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Universal RKHSs
an experiment – 100 evaluations
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Universal RKHSs
an experiment – 500 evaluations
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Convergence Rates are Important
non-obvious aspects of f can ruin convergence v.d.Vaart & v.Zanten, 2011

100 101 102 103 104

10−2

100

# function evaluations

∥f−
f̂
∥2

If f is “not well represented” by the kernel (has low prior density), the
number of datapoints required to achieve ε error can be exponential in ε.
Outside of the observation range, there are no guarantees at all.
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A Tale of Frequentists and Bayesians
Gaussian / `2 regression is an interesting case, because the exact same method is studied on both sides.

Bayesian: If this generative model is correct, this inference is optimal!

Frequentist: This estimator can learn everything given enough data!
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A Tale of Frequentists and Bayesians
Gaussian / `2 regression is an interesting case, because the exact same method is studied on both sides.
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−5
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Bayesian: Well, you haven’t used the right prior!
Frequentist: Well, you haven’t collected ∞ samples yet!
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A Tale of Frequentists and Bayesians
a few things people actually say

The insufferable Frequentist, on kernel ridge regression

▸ “My method makes no assumptions because there are no priors.”
▸ “Just use the RBF [squared-exp] kernel. It is universal.”
▸ “I can show consistency and universality. The Bayesian can’t.

Therefore my method is more mathematically pure (i.e. better).”

The insufferable Bayesian, on Gaussian process posterior means

▸ “The prior is subjective. If you don’t like it, you can always change it. I
don’t need to worry about what happens out of model. If the model
were wrong, I’d just use a different one.”

▸ “The posterior faithfully represents all available information. We can
therefore use it to guide exploration (even though we never really
check model validity).”
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A Tale of Frequentists and Bayesians
the linear version of an old battle

The “Bayesian” (probabilistic) view
▸ is particularly helpful for small datasets and extrapolation
▸ gives an intuition for model properties, assumptions
▸ allows hierarchical extension, “complete toolbox”
▸ can help build good models

The “frequentist” (asymptotic) view
▸ is particularly helpful for the large dataset limit, interpolation
▸ gives an intuition for model limitations
▸ can offer efficient computational “shortcuts”
▸ can help build general models

Frequentist: “If the assumptions are correct,
this is the worst that could happen.”

Bayesian: “If the prior is strictly correct,
the posterior is the exact, optimal answer.”
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Summary

Il ne faudrait pas avoir uns sort de superstition pour la méthode des
moindres carrés. [. . . ] Elle suppose, en effect, qu’il n’y a pas d’erreur
systématique, et il y en a toujours.

Henri Poincaré
Calcul des probabilités, 1896

▸ Kernels can be combined algebraically to build expressive models
. . . but there is no universal model

▸ Hyperparameters can be inferred by hierarchical inference
. . . but the result always depends on hyperpriors

▸ Gaussian regression allows inference on superposed effects
. . . but priors need to be analysed carefully

▸ Both Bayesian and frequentist interpretations are helpful
blindly trust neither your prior nor asymptotic statements

▸ Gaussians are a fundamental concept, used widely
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Eigenfunctions
Kernels really are infinitely large positive semidefinite matrices

An eigenfunction φ ∶ X_C obeys

∫ k(a, b)φ(a) dν(x) = λφ(b)
Theorem (Mercer)

For a positive definite kernel. Then, ν2-almost everywhere,

k(a, b) = ∞∑
i=1λiφi(a)φ∗i (b)

The eigenfunctions can be chosen orthonormal, i.e. ∫ φi(x)φj(x) dx = δij
So a GP puts mass on the space spanned by the

eigenfunctions. What is this space?
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the RKHS
definition

▸ posterior mean kxX(kXX + σ2I)−1y = kxXα
▸ the reproducing kernel Hilbert space (RKHS) of k is the space of

f(x) = N∑
i=1 fiφi(x) s.t.

N∑
i=1 f

2
i /λi <∞

▸ this space, with the inner product

⟨f, g⟩H = N∑
i

figi
λi

is a Hilbert space. It is uniquely defined1 by k. (It is also reproduced
by k, i.e. ⟨f, k(⋅, x)⟩H = f(x)).

▸ so is the GP a distribution over that Hilbert space?

1Moor-Aronszajn theorem. Aronszajn, 1950
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Are GPs distributions on the RKHS?
no!

▸ to sample f ∼ GP(0, k), draw fi ∼ N (0, λi),∀i = 1, . . . ,N , then

f(x) = N∑
i

fiφi(x) ⇒ E[∥f∥2H] = E[⟨f, f⟩H] = N∑
i=1

E[f2
i ]

λi
= N∑

i=1 1

▸ for nondegenerate kernels (N =∞), GP samples are almost surely
not in the RKHS! The posterior mean is more regular (usually:
smoother) than almost all samples.

▸ samples from a GP are “just outside” of the RKHS in that they are
almost surely not of finite norm, but of the right algebraic form.
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So what?
This is not just a technical point. Example: linear splines

▸ RKHS: piecewise linear, i.e. smooth almost everywhere
▸ GP samples: non-differentiable almost everywhere
▸ when you think about the mean, think of the RKHS. But remember

that samples from a GP can be very different from the mean.
44 ,
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