
MLSS ’13: Network Modeling and Information
Propagation

Manuel Gomez Rodriguez

1 Introduction to SNAP: Network Modeling

Building the MLSS package

First, you need to ssh to the MLSS machine (Windows users, please download
Putty):

$ ssh mlssX@172.16.172.16
(password: mlss379)

Then, download the MLSS practical code package, unpack it and compile it:

$ wget ftp://172.16.172.16/pub/networks/code-networks.tgz
$ tar zvfx code-networks.tgz
$ cd code-networks/
$ make

Several warnings will appear when you compile the code package. As long as
you do not get an Error message, you are fine. You can also download the code
locally to your laptop, it will help to have a local copy to look up some library
functions and files. Now you can go to the subfolder mlss-13/ where you will
start creating networks and coding!

Creating graphs and networks

We will start by creating manually two small examples of a graph and a network
(i.e., a graph with some data stored in the nodes and/or edges) using SNAP:

$ ./generate_network

The above program should print out the nodes and connectivity, and generate four
files graph.png, graph.dot, network.png and network.dot.

Question 1.1. Do you recognize the graph and the network structures from the
print out? Draw the graph and the networks by hand. Check whether you are right

1



by downloading to your computer graph.png and network.png via ssh. If
your computer is a linux/macos, open a console, go to the folder you would like to
download the images and type:

$ scp mlssX@172.16.172.16:˜/code-networks/mlss-13/graph.png .
$ scp mlssX@172.16.172.16:˜/code-networks/mlss-13/network.png .

If you have windows, download winscp at http://winscp.net/. �

Question 1.2. Open the source code, generate network.cpp, and find out
how the code works. Simple editors which are available in the MLSS machine are
vim, joe or pico to open the file. To better understand the code, you can check
out a quick intro to SNAP at http://snap.stanford.edu/snap/quick.
html. �

Coding 1.1. Change generate network.cpp to create a different graph and
network. In particular, the code you need to modify is delimited by TODO com-
ments. Once you have changed the file, compile the code by running make at
the current folder (mlss-13/). After re-running generate network, check
whether the outputted files graph.png and network.png look like you thought.

If you create graphs and networks with a large number of nodes or edges, you
will notice that graph.png and network.png, created using Graphviz1, soon
become messy. Gephi will help us to visualize such large graphs later. �

Creating large random graphs and networks

Now, we will generate large random networks that mimic the structure of real-
world social networks which we will use in the next section to simulate propagation
processes or cascades. We initially consider two models of directed real-world
social networks: the Forest Fire (scale free) model [2] and the Kronecker Graph
model [9]. We will generate networks that have a weight associated to each edge,
which we will use for our propagation models. To make it easier for you, we have
coded a program (generate random network) which generates both Forest
Fire and Kronecker networks.

Question 1.3 Generate several Forest Fire networks with different network pa-
rameters and compare their properties (in- and out-degree distribution, clustering
coefficient, number of triangles, etc...) using compute properties. In partic-
ular, you should try different burning probabilities (option -g), number of nodes
and edge weights range (options -la and -ua; generated uniformly at random).
To help you get started, check the following command line, which generates a For-

1http://www.graphviz.org

2

http://winscp.net/
http://snap.stanford.edu/snap/quick.html
http://snap.stanford.edu/snap/quick.html
http://www.graphviz.org


est Fire network with 1,000 nodes with a burning forward probability of 0.2 and a
burning backward probability of 0.17:

$ ./generate_random_network -t:1 -g:"0.2;0.17" -n:1000 -o:"ff-
network" -st:1 -sg:1

The program will output two files: ff-network.txt and ff-network.gexf,
which include a text and Gephi version of the network. Once you have generated
several networks, can you tell what are the burning probabilities controlling for? �

You can learn how the Forest Fire model actually works by reading Sections
4.2.1. and 4.2.2 of Leskovec et al. ([10], http://www.cs.cmu.edu/˜jure/
pubs/powergrowth-tkdd.pdf).

Question 1.4 Generate several Kronecker networks with different parameter matri-
ces, such as Erdős-Rényi random [4] (parameter matrix [0.5 0.5;0.5 0.5]), hierar-
chical [3] ([0.9 0.1;0.1 0.9]) and core-periphery [11] ([0.9 0.5;0.5 0.3]) networks.
You should choose 2n nodes and any number of edges you wish by setting the
options -n and e. Compare their properties using compute properties. To
help you started, we provide you the command line to generate a Erdős-Rényi ran-
dom network with 512 nodes and ∼1024 edges2 drawn from the Kronecker Graph
model:

$ ./generate_random_network -t:0 -g:"0.5 0.5; 0.5 0.5" -n:512 -e
:1024 -o:"random-network" -st:1 -sg:1

As previously, the command will output two files: random-network.txt and
random-network.gexf. Once you have generate several of these networks,
can you tell which network properties are more influenced by the choice of param-
eter matrix? �

You can learn how the Kronecker graph model actually works by reading Sec-
tion 3.1 of Leskovec et al. ([9], http://arxiv.org/pdf/0812.4905v2.
pdf).

Coding 1.2 (optional): implement another model of directed random networks us-
ing SNAP. You will only need to edit mlss.cpp at the TODO comment (there is
only one within the file). It may be helpful to use some of the random graph gener-
ators provided by SNAP, check out code-networks/snap-core/ggen.h.
You will need to call the functions writing something like TSnap::method(Graph,
...). Do not forget to compile the code again by typing make after you finish
editing.

Take into account that some of the graph generators produce an undirected
graph (PUNGraph), and you will have to convert it to a directed graph (PNGraph).

2The Kronecker Graph model will create 1,024 edges but some of them may be self loops and are
deleted.

3

http://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
http://www.cs.cmu.edu/~jure/pubs/powergrowth-tkdd.pdf
http://arxiv.org/pdf/0812.4905v2.pdf
http://arxiv.org/pdf/0812.4905v2.pdf


In those cases, decide the direction of each original undirected edge uniformly at
random using TFlt::Rnd.GetUniDev(). �

2 Introduction to Gephi: Network visualization

Setting up Gephi

Download Gephi to your personal computer from http://www.gephi.org/
users/download/3, install it and open it.

Layout, properties and manipulation

Use Gephi to open any of the .gexf network files which are located in the folder
code-networks/mlss-13/data/. They are networks based on real data.
Additionally, you can also open the random networks you generated previously
or generate new ones by running again ./generate random network (use
-sg:1 to generate a Gephi file. You can also convert the networks text files (in
case you did not use -sg:1) using convert to gephi.

Question 2.1. Visualize the networks using different layout algorithms. For this,
you should use the Layout box on the left bottom corner. Which of them do you
think works better? Can you draw any conclusions based on a particular layout?
Can you guess what do the real networks represent? If you would like to know
more about Gephi layouts, have a look to the tutorial http://gephi.org/
tutorials/gephi-tutorial-layouts.pdf.�

Question 2.2. Manipulate the networks. For this, use the Filters box on the right
top corner. Have a look at the topology menu and try several filters (e.g., degree
range, giant component, ego networks). You will need to drag and drop it the filter
to the query box on the right bottom corner. Find out how to stack filters (create
subfilters).�

Question 2.3. Compute properties of the network. For this, go to the Window
menu and select Statistics to open up the Statistics menu. Compute several statis-
tics, including modularity. Then, partition the network and rank nodes using the
Partition and Rank boxes on the top left corner; use different measurements for the
partition and rank. Do you find clear partitions or clusters in the networks? Which
measures work better? Do the networks have a hierarchical or core-periphery
structure?�

3There are Linux, macOS and Windows versions

4

http://www.gephi.org/users/download/
http://www.gephi.org/users/download/
http://gephi.org/tutorials/gephi-tutorial-layouts.pdf
http://gephi.org/tutorials/gephi-tutorial-layouts.pdf


You can learn more about Gephi by reading the wiki at http://wiki.
gephi.org/. You can also find an example of a research project which uses
Gephi extensively at http://snap.stanford.edu/infopath/, where all
information networks images (http://snap.stanford.edu/infopath/
graphs.html) and videos of dynamic information networks (http://snap.
stanford.edu/infopath/videos.html) have been generated with Gephi.

3 Information Propagation and Influence Maximization

Until here, you have learned a bit about SNAP and Gephi, and get to know two
mathematical models of social and information networks. Now, we will use this
knowledge to study information propagation over networks, and study the influence
(spread) maximization problem. In particular:

1. You will simulate the propagation of contagions over networks using a widely
known probabilistic models of influence and information propagation: the
discrete time independent cascade model [6]. You can think of a contagion
as an information unit which appears at some node of a network and then
spreads like an epidemic from node to node over the edges of the underlying
network. In case of information diffusion, the contagion represents a piece of
information [8] and infection events correspond to times when nodes men-
tion or copy the information from one of their neighbors in the network.

2. You will solve the influence maximization problem: you will look for the
most influential source node set of a given size in a network. A contagion
that starts spreading in such an influential set of nodes is expected to reach
the greatest number of nodes in the network.

3. If time remains, given a fixed source set we will look for the optimal set of
edges to add to a network in order to reach the greatest number of nodes in
the network.

Discrete-time independent cascade model

The remainder of the practical use the discrete-time independent cascade model,
and it will help you to understand it well. The model works as follows: A spread-
ing process (or cascade) starts when a source node set A becomes infected at epoch
t = 0. Then, source nodes have a single chance to try to infect their children (i.e.,
neighbors that they can reach directly through an outgoing edge) at epoch t = 1
with some probability. When a child becomes active, it has a single chance of ac-
tivating each currently inactive children at epoch t = 2, and so on. The activation

5

http://wiki.gephi.org/
http://wiki.gephi.org/
http://snap.stanford.edu/infopath/
http://snap.stanford.edu/infopath/graphs.html
http://snap.stanford.edu/infopath/graphs.html
http://snap.stanford.edu/infopath/videos.html
http://snap.stanford.edu/infopath/videos.html


attempts succeeds with probability pvw, where v denotes parent and w denotes chil-
dren. Here, note that the time is modeled only implicitly through the epochs – we
will now extend the independent cascade model to continuous time domain.

Question 3.1 (optional). Look at the implementation of the independent cascade
model in the function GenCascadeIC(...) of mlss.cpp.�

Influence Estimation

Given a spreading process that started in the set of source nodes A, we define
N(A) as the number of nodes infected at the end of the spreading process and
then define the influence function σ(A) as the average total number of nodes , i.e.,
σ(A) =EN(A). Now, we will simulate spreading processes and estimate influence.

Question 3.2. Generate a Kronecker core-periphery network with 128 nodes, ∼
256 edges and edge weights (edge probabilities) uniformly distributed between 0
and 0.5. Then, generate 1,000 spreading processes (or cascades) over the network
using a random source node set of size 2 (fixed for all cascades). To help you get
started, we tell you how to generate the cascades:

$ ./simulate_ic -i:"your-core-periphery-network-namefile.txt" -t
:1 -ns:5 -c:1000 -cg:25 -sg:1 -o:"core-periphery-cascades-128
"

where your-core-periphery-network-namefile.txt should be the
filename of your core-periphery network. The command will print out the (ran-
dom) source set, average influence and standard error based on the simulated 1,000
cascades. It will also output several files, including two plots and a Gephi file.

Have a look at the plots, and find out what they show. The code automatically
tried to fit the quantities of one of the plots to a functional relationship. Do you
know which type of relationship?

Question 3.3. Open the Gephi file of the cascades you just generated in the pre-
vious question using Gephi. Then, press the bottom “Enable Timeline”, that will
help you to visualize the cascades spreading. For this, look for the small shell on
the left bottom and play around with different values for the custom bounds and the
play settings. Push the play bottom also on the top left, and you should be able to
observe cascades spreading over the network for the appropriate bounds and play
settings. It may help to choose the right layout.�

Question 3.4. Explore the effect of choosing other source sets. In particular, try
different fixed (deterministic) source sets of difference sizes by modifying options
-t: and -ns:. Node id’s will be distributed from 0 to 127. Do you find large

6



differences in average influence or cascade size distribution for different source
sets?�

Question 3.5. Generate networks with different characteristics, i.e., different net-
work types, edge densities, and edge weights and simulate spreading processes
over them. Do you notice large differences in average influence or cascade size
distributions? Which are the characteristics that have a greater impact?�

Question 3.6. Here, we will study some property that may help you to come up
with algorithms to select optimal source sets which maximize the average influ-
ence. Select at random a node u and two source sets S1 and S2 with 1 and 10
sources respectively, not including u. Compute the average influence for S1, S2,
S1∪u and S2∪u. Repeat this several times for different u, S1 and S2 and save the
average influence each time. Can you guess a general property? Do you know
whether the property you are observing has a name? Why do you think this is
happening? Hint: A lecture you will have on Saturday will be related.�

Influence Maximization: nodes

Now that you know how to simulate spreading processes and understand them, try
to find the optimal set of sources that maximize the average influence in a given
network. We have implemented a baseline that chooses the K nodes with highest
out-degree in maximize sources ic.cpp.

Coding 3.1. You need to think of other methods to choose influential nodes and
implement them in maximize sources ic.cpp. Your code should go in the
space delimited by TODO comments. You may like to rank nodes by (i) some
network property you can compute directly from the network, (ii) some measure
computed on simulated spreading processes, or (iii) hybrid approach combining
(i) and (ii). Can you think of any related theoretical computer science NP-hard
problem? This may help you to find some efficient approximate solution to the
problem with provable theoretical guarantees. Your implementation should work
for any number of source nodes K.�

Question 3.7. Test your method(s) in one (or more) of the random networks you
have generated in previous sections, generate new ones or try your method(s) in the
networks located at code-networks/mlss-13/data/. Note that networks
in code-networks/mlss-13/data/ are unweighted and you will have to
set an edge probability with option -p: both in maximize sources ic and
simulate ic. Once you believe you have found a good method, join the com-
petition.�

Competition. Apply your methods for finding optimal source sets of size K =

7



1 . . .10 to the networks in code-networks/mlss-13/data/. Use option
-p:0.5 both in maximize sources ic and simulate ic. For every net-
work, create 10 files, one per K, in which you write the node id’s (or node id for
K = 1) of your solution in a single line, separated by a semicolon (;). For example,
for K = 4 the file should contain only one line:

10;2;3;4
For the filenames, use the following format. For example, for the network

mlss-network.txt, K = 3 and imagine your surnames are Gomez and Ro-
driguez, then the filename should be called mlss-network-3-gomez-rodriguez.
Everytime you have a better solution for a network and a fix K, move the file to the
folder /home/networks/results/ at the MLSS machine.�

Whenever you believe you have mastered influence maximization or you would
like to try something perhaps more challenging, move on to the next section.

Influence Maximization: edges

Here, we will try to find the optimal set of edges that added to the network max-
imize the average influence on a network given any random source set. For the
added edges, we assume they are always active, i.e., its edge probability is 1.0.
We have implemented a baseline that chooses K random edges starting from nodes
with the smallest out-degree in maximize edges ic.cpp.

Coding 3.2. You need to think of other methods to choose optimal edges and im-
plement them in maximize edges ic.cpp. Your code should go in the space
delimited by TODO comments. Do you think it is an easier or a harder problem
than finding the optimal source set?�

References

[1] N. T. J. Bailey. The Mathematical Theory of Infectious Diseases and its Ap-
plications. Hafner Press, 2nd edition, 1975.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in random networks.
Science, 286:509–512, 1999.

[3] A. Clauset, C. Moore, and M. E. J. Newman. Hierarchical structure and the
prediction of missing links in networks. Nature, 453(7191):98–101, 2008.

[4] P. Erdős and A. Rényi. On the evolution of random graphs. Publication of
the Mathematical Institute of the Hungarian Academy of Science, 5:17–67,
1960.

8



[5] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the Tem-
poral Dynamics of Diffusion Networks. In ICML ’11: Proceedings of the
28th International Conference on Machine Learning, 2011.

[6] D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influ-
ence through a social network. In KDD ’03: Proceedings of the 9th ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, 2003.

[7] J. Leskovec, L. A. Adamic, and B. A. Huberman. The dynamics of viral
marketing. In EC’ 06: Proceedings of the eigth International Conference on
Electronic Commerce, 2006.

[8] J. Leskovec, L. Backstrom, and J. Kleinberg. Meme-tracking and the dynam-
ics of the news cycle. In KDD ’09: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2009.

[9] J. Leskovec, D. Chakrabarti, J. Kleinberg, C. Faloutsos, and Z. Ghahramani.
Kronecker graphs: An approach to modeling networks. The Journal of Ma-
chine Learning Research, 11:985–1042, 2010.

[10] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Transactions on Knowledge Discovery from
Data (TKDD), 1(1):2, 2007.

[11] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical prop-
erties of community structure in large social and information networks. In
WWW ’08, 2008.

[12] E. M. Rogers. Diffusion of Innovations. Free Press, New York, fourth edition,
1995.

9


	Introduction to SNAP: Network Modeling
	Introduction to Gephi: Network visualization
	Information Propagation and Influence Maximization

