Causal Inference
 Conditional Independences and Beyond

Dominik Janzing \& Bernhard Schölkopf
Max Planck Institute for Intelligent Systems
Tübingen, Germany
http://www.tuebingen.mpg.de/bs

Roadmap

- informal motivation
- functional causal models
- causal graphical models; d-separation, Markov conditions, faithfulness
- formalizing interventions
- causal inference...
- using time order
- using conditional independences
- using restricted function classes
- using "independence" of mechanisms
- not using statistics

Dependence vs. Causation

Storks Delliver Bables ($\rho=0.008$)

Robert Matthews
Articlo first publahed online: 25 DEC 2001 DOI: $10.1111 / 1467-9639.00013$
Teaching Statisies Thast, 2000
lssue

Teaching Statistic
Volume 22, Issue 38. June 2000

Coantry	Arra $\left(\mathrm{km}^{2}\right)$	Storks (pairs)	Humans $\left(10^{\prime}\right)$	Birth rate $\left(10^{3} / \mathrm{yr}^{2}\right)$
Albania	28,750	100	3.2	83
Austria	83,860	300	7.6	87
Belgium	30,520	1	9.9	118
Bulgaria	111,000	5000	9.0	117
Denmark	43,100	9	5.1	59
France	544,000	140	56	774
Germany	357,000	3300	78	901
Gretce	132,000	2500	10	106
Holland	41,900	4	15	188
Hungary	93,000	5000	11	124
Italy	301,280	5	57	551
Poland	312,680	30,000	maltoraimpcompuserne.com	
Portugal	92,390	1500	10	120
Romania	237,500	5000	23	367
Spain	504,750	8000	39	439
Switzerland	41,290	150	6.7	82
Turkey	779,450	25,000	56	1576

Table 1. Geographic, human and stork data for 17 European countrits

Chandoo.org

Woleome Excel Tips Charting Advanced Excel VBA Excel Dashboards Project Wgmt. Formulas Downloads

Amazon's recommendation system - is it crazy?

posted on Janwary 12th, 2008 in business, Mumor, tectnology, woncer niy -6 commenes

We have a saying in Telugu that goes like this, "thaadu vundhi kada ani eddu kontama?" which means, "just because you have a rope you dont buy a bullock to tie". Amazon's recommendation system must have been coded by someone with a skewed view of reality. How else can you explain this?

amazon.com

Your Ampuen ite:
 11 Toamenema

Shop All Departments

Search Electronics
Eloctronics
Bowse Brands
Top Solern

Mobile Edge Exp Other products by Makis
bolololot E E (2le cout
List Price: $\$ 40.94$
Price: $\$ 48.32 \mathrm{~B}$
You Save: $\$ 1.67$ (3)
Availability In Stock.

Wast it delivered Tum at chackout Iese detals

21 used 解 neve avail

fiet largerimage and ather viea

Pace urour cenchatomerimash

Better Together

Buy this item with BP Pavilion DV761001S 14.1* Entertarment. Hewlett-Packard today!

Total List Price: \$1.123.50 Buy Together Today: \$394.31

The NEW ENGLAND JOURNAL of MEDICINE

HOw

Nencles a multinepla -
ismues -
apecultila a tomea -
FOR AUTHORS
gasmas datici

Association of Coffee Drinking with Total and Cause-Specific Mortality

 tho.N Eng I Mes 2012 300.185\%- 7804 May 17, 2012
Abstract Antcly Refersnoes Cring Auticlea (9)

BACKGROUND

Collee is one of the most widely consumed bererages, but the association between ooffee consumption and the risk of death remains uncleor.

Fsel Text of Background.

METHODS

We examined the associabion of coffee driking with subsecuent lotal and cause-specific mortality among 229,199 men and 173,141 women in the Nistional Institutes of Health-AARP Diet and Healh Study who were 50 to 71 yeers of ape st baseline. Participants with cancer, heart disesse, and stroke were excluded. Cotlee consumption was astessed once at baseline.

We present risk estimates separately for men and women. Multivariate models were adjusted for the following baseline factors: age; body-mass index (BMI), race or ethnic group; level of education; alcohol consumption; the number of cigarettes smoked per day, use or nonuse of pipes or cigars, and time of smoking cessation (<1 year, 1 to < y years, 5 to <10 years, or ≥ 10 years before baseline), health status; presence or absence of diabetes; marital status; level of physical activity;
total energy intake; consumption of fuits, vegetables, red meat, white meat, and saturated fat and Iotal energy intake; consumption of frits, vegetables, red meat, white meat, and saturated fat; and use of any vitamin supplement (yes vs. no). In adorition, nisk estimates for death from cancer were adust or hor milvive mols. Less then 5\% ot the cohot lecked any single covaine for each covalite, we 2- / Mala

RESULTS

During $5,148,760$ person-years of follow-up between 1995 and 2008, a total of 33,731 men and 18,784 women died. In age-adjusted models, the risk of death was increased among coffee drinkers. However, coffee drinkers were also more likely to smoke, and, after adjustment for tobacco-smoking status and other potential confounders, there was a significant inverse association between coffee consumption and mortality. Adjusted hazard ratios for death among men who drank

CONCLUSIONS

In this large prospective study, coffee consumption was inversely associated with total and cause-specific mortality. Whether this was a causal or associational finding cannot be determined from our data.

12.12 .2007

Deutsches Kinderkrebsregister untersucht Häufigkeit von Krebserkrankungen bei Kindern in der Nähe von Kernkraftwerken

Neue Studie verōffentlicht

Immer wieder wird der Verdacht getubert, dass Kinder in der Nahe von Kernkraftwerken Daufiger an Krebs erkranken. Eine frikere Studie des Kinderkrebsregisters mas Kindern urter 15 jahren schien darauf hingudeuten, dass speziell in den ersten Lebensjahren das Leukamie-Risiko in den betreffenden Gegenden erthiht wat.

In diesen Tages erscheinen zeel wissenschafliche Veroffentichungen uber eine neue Studie des Deutschen Kinderkreberegisters in Mainx. Das Ergebnis: In Deutschland findet man einen Zusammenhang zwischen der Nahe der Wohnung as einem Kernkraftwerk und der Haufigkeit, mit der Kinder vor itrem finften Geburtstag an Krebs und besgonders an Leukamie erkranken. Alerdings erlaubt die Studie keine Aussage daribeer, wodurch sich die beobachtete Erhohung der Rerahil von Kinderkrebshallen in der Uugebung deutscher Kernkraftwerke erkliren lisst, So kommt nech dem heutigen Wissensstand Strahlung, die von Kernicaftwerken im Normalbetrieb ausgeht, als Ursache Nir die beobachtete Risikoerhohung nicht in Betracht. Denkbar whre, dass bis jetzt noch unbekannte Faktoren beteligt sind oder dass es sich doch um Zufall handelt.

B Kontakt

Dr. Peter Kastsch
(Leiter des Deutschen
Kinderkrebsvegisters)
Dt. Kinderkrebsregister am 1 MBEI
Tel 4.496131 17-3111

E-Mall

Homepage

Prot. Dr, Maria Biettner (Direktorin des IMBEI) Institut far Mediainsche Blometrie, Epidemiologie und Informatic ([MBEI) Tel +496131 17-3252
E-Mail

"Correlation does not tell us anything about causality"

- Better to talk of dependence than correlation
- Most statisticians would agree that causality does tell us something about dependence
- But dependence does tell us something about causality too:

Statistical Implications of Causality

Reichenbach's
Common Cause Principle

links causality and probability:
(i) if X and Y are statistically dependent, then there is a Z causally influencing both;
(ii) Z screens X and Y from each other (given Z, the observables X and Y become independent)

special cases:

Notation

- A, B event
- X, Y, Z random variable
- x value of a random variable
- Pr probability measure
- P_{X} probability distribution of X
- p density
- p_{X} or $p(X)$ density of P_{X}
- $p(x)$ density of P_{X} evaluated at the point x
- always assume the existence of a joint density, w.r.t. a product measure

Independence

Two events A and B are called independent if

$$
\operatorname{Pr}(A \cap B)=\operatorname{Pr}(A) \cdot \operatorname{Pr}(B)
$$

A_{1}, \ldots, A_{n} are called independent if for every subset $S \subset\{1, \ldots, n\}$ we have

$$
\operatorname{Pr}\left(\bigcap_{i \in S} A_{i}\right)=\prod_{i \in S} \operatorname{Pr}\left(A_{i}\right) .
$$

Note: for $n \geq 3$, pairwise independence $\operatorname{Pr}\left(A_{i} \cap A_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \cdot \operatorname{Pr}\left(A_{j}\right)$ for all i, j does not imply independence.

Independence of random variables

Two real-valued random variables X and Y are called independent,

$$
X \Perp Y,
$$

if for every $a, b \in \mathbb{R}$, the events $\{X \leq a\}$ and $\{Y \leq b\}$ are independent.

Equivalently, in terms of densities: for all x, y,

$$
p(x, y)=p(x) p(y)
$$

Note:
If $X \Perp Y$, then $E[X Y]=E[X] E[Y]$, and $\operatorname{cov}[X, Y]=E[X Y]-E[X] E[Y]=0$.
The converse is not true: $\operatorname{cov}[X, Y]=0 \nRightarrow X \Perp Y$.
However, we have, for large $\mathcal{F}:(\forall f, g \in \mathcal{F}: \operatorname{cov}[f(X), g(Y)]=0) \Rightarrow X \Perp Y$

Conditional Independence of random variables

Two real-valued random variables X and Y are called conditionally independent given Z,

$$
(X \Perp Y) \mid Z \quad \text { or } \quad X \Perp Y \mid Z \quad \text { or } \quad(X \Perp Y \mid Z)_{p}
$$

if

$$
p(x, y \mid z)=p(x \mid z) p(y \mid z)
$$

for all x, y, and for all z s.t. $p(z)>0$.

Note: conditional independence neither implies nor is implied by independence.
I.e., there are X, Y, Z such that we have only independence or only conditional independence.

- $X_{i}=f_{i}\left(\right.$ ParentsOf $_{i}$, Noise $\left._{i}\right)$, with independent Noise $_{1}, \ldots$, Noise $_{n}$.
- "Noise" means "unexplained" (or "exogenous"), we use U_{i}
- Can add requirement that f_{1}, \ldots, f_{n}, Noise $_{1}, \ldots$, Noise $_{n}$ "independent" (cf. Lemeire \& Dirkx 2006, Janzing \& Schölkopf 2010 - more below)

Functional Causal Model, ctd.

- this model can be shown to satisfy Reichenbach's principle:

1. functions of independent variables are independent, hence dependence can only arise in two vertices that depend (partly) on the same noise term(s).
2. if we condition on these noise terms, the variables become independent

Functional Causal Model, ctd.

- Independence of noises is a form of "causal sufficiency:" if the noises were dependent, then Reichenbach's principle would tell us the causal graph is incomplete
- Interventions are realized by replacing functions by values

- the model entails a joint distribution $p\left(X_{1}, \ldots, X_{n}\right)$. Questions:
(1) What can we say about it?
(2) Can we recover G from p ?

Functional Model and Markov conditions

(Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

- Existence of a functional causal model
- Local Causal Markov condition: X_{j} statistically independent of nondescendants, given parents (i.e.: every information exchange with its nondescendants involves its parents)
- Global Causal Markov condition: d-separation (characterizes the set of independences implied by local Markov condition)
- Factorization $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j} p\left(X_{j} \mid\right.$ Parents $\left._{j}\right)$ (conditionals as causal mechanisms generating statistical dependence)
(subject to technical conditions)

Counterfactuals and Interventions

- David Hume (1711-76): "... we may define a cause to be an object, followed by another, and where all the objects similar to the first are followed by objects similar to the second. Or in other words where, if the first object had not been, the second never had existed."
- Jerzy Neyman (1923): consider m plots of land and ν varieties of crop. Denote $U_{i j}$ the crop yield that would be observed if variety $i=1, \ldots, \nu$ were planted in plot $j=1, \ldots, m$
For each plot j, we can only experimentally determine one $U_{i j}$ in each growing season.

The others are called "counterfactuals".

- this leads to the view of causal inference as a missing data problem - the "potential outcomes" framework (Rubin, 1974)
- in $X_{i}=f_{i}\left(\right.$ ParentsOf $_{i}$, Noise $\left._{i}\right)$, the equality sign is interpreted as an assignment ":=" - interventions can only take place on the right hand side

From Ordinary Differential Equations to Structural Causal Models: the deterministic case

Joris M. Mooij
Institute for Computing and
Information Sciences
Radboud University Nijmegen
The Netherlands

Dominik Janzing

Max Planck Institute
for Intelligent Systems
Tübingen, Germany

Bernhard Schölkopf
Max Planck Institute
for Intelligent Systems
Tübingen, Germany

Abstract

We show how, and under which conditions, the equilibrium states of a first-order Ordinary Differential Equation (ODE) system can be described with a deterministic Structural Causal Model (SCM). Our exposition sheds more light on the concept of causolity as expressed within the framework of Structural Causal Models, especially for cyclic models.

algorithms (starting from different assumptions) have been proposed for inferring cyelic causal models from observational data (Richardson, 1996; Lacerda et al., 2008; Schmidt and Murphy, 2009; Itani et al., 2010; Mooij et al., 2011).

The most straightforward extension to the cyclic case seems to be offered by the structural causal model framework. Indeed, the formalism stays intact when one simply drops the acyclicity constraint. However, the question then arises how to interpret cyclic structural equations. One option is to assume an under-

UAI 2013

Pearl's do-calculus

- Motivation: goal of causality is to infer the effect of interventions
- distribution of Y given that X is set to x :

$$
p(Y \mid d o X=x) \text { or } p(Y \mid d o x)
$$

- don't confuse it with $P(Y \mid x)$
- can be computed from p and G

Computing $p\left(X_{1}, \ldots, X_{n} \mid d o x_{i}\right)$

from $p\left(X_{1}, \ldots, X_{n}\right)$ and G

- Start with causal factorization

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j=1}^{n} p\left(X_{j} \mid P A_{j}\right)
$$

- Replace $p\left(X_{i} \mid P A_{i}\right)$ with $\delta_{X_{i} x_{i}}$

$$
p\left(X_{1}, \ldots, X_{n} \mid d o x_{i}\right):=\prod_{j \neq i} p\left(X_{j} \mid P A_{j}\right) \delta_{X_{i} x_{i}}
$$

Computing $p\left(X_{k} \mid d o x_{i}\right)$

summation over x_{i} yields

$$
p\left(X_{1}, \ldots, X_{i-1}, X_{i+1}, \ldots, X_{n} \mid \text { do } x_{i}\right)=\prod_{j \neq i} p\left(X_{j} \mid P A_{j}\left(x_{i}\right)\right)
$$

- distribution of X_{j} with $j \neq i$ is given by dropping $p\left(X_{i} \mid P A_{i}\right)$ and substituting x_{i} into $P A_{j}$ to get $P A_{j}\left(x_{i}\right)$.
- obtain $p\left(X_{k} \mid d o x_{i}\right)$ by marginalization

Examples for $p(. \mid d o x)=p(. \mid x)$

Examples for $p(. \mid d o x) \neq p(. \mid x)$

- $p(Y \mid d o x)=P(Y) \neq P(Y \mid x)$

- $p(Y \mid d o x)=P(Y) \neq P(Y \mid x)$

Example: controlling for confounding

$X \not \Perp Y$ partly due to the confounder Z and partly due to $X \rightarrow Y$

- causal factorization

$$
p(X, Y, Z)=p(Z) p(X \mid Z) p(Y \mid X, Z)
$$

- replace $P(X \mid Z)$ with $\delta_{X x}$

$$
p(Y, Z \mid d o x)=p(Z) \delta_{X x} p(Y \mid X, Z)
$$

- marginalize

$$
p(Y \mid d o x)=\sum_{z} p(z) p(Y \mid x, z) \neq \sum_{z} p(z \mid x) p(Y \mid x, z)=p(Y \mid x)
$$

Identifiability problem

e.g. Tian \& Pearl (2002)

- given the causal DAG G and two nodes X_{i}, X_{j}
- which nodes need to be observed to compute $p\left(X_{i} \mid d o x_{j}\right)$?

Inferring the DAG

- Key postulate: Causal Markov condition
- Essential mathematical concept: d-separation
(describes the conditional independences required by a causal DAG)

d-separation (Pearl 1988)

Path $=$ sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be blocked by the set Z if

- q contains a chain $i \rightarrow m \rightarrow j$ or a fork $i \leftarrow m \rightarrow j$ such that the middle node is in Z, or
- q contains a collider $i \rightarrow m \leftarrow j$ such that the middle node is not in Z and such that no descendant of m is in Z.
Z is said to d-separate X and Y in the DAG G, formally

$$
(X \Perp Y \mid Z)_{G}
$$

if Z blocks every path from a node in X to a node in Y.

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both

Example (unblocking of paths)

- path from X to Y is blocked by \emptyset
- unblocked by conditioning on Z or W or both

Unblocking by conditioning on common effects

Berkson's paradox (1946)
Example: X, Y, Z binary

$$
X \Perp Y \quad \text { but } \quad X \not \Perp Y \mid Z
$$

- assume: for politicians there is no correlation between being a good speaker and being intelligent
- politician is successful if (s)he is a good speaker or intelligent
- among the successful politicians, being intelligent is negatively correlated with being a good speaker

Asymmetry under inverting arrows

(Reichenbach 1956)

Examples (d-separation)

$$
\begin{aligned}
& (X \Perp Y \mid Z W)_{G} \\
& (X \Perp Y \mid Z U W)_{G} \\
& (X \Perp Y \mid V Z U W)_{G} \\
& (X \not \Perp Y \mid V Z U)_{G}
\end{aligned}
$$

Causal inference for time-ordered variables

assume $X \not \Perp Y$ and X earlier. Then $X \leftarrow Y$ excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not solve it

Causal inference for time-ordered variables

assume X_{1}, \ldots, X_{n} are time-ordered and causally sufficient

- start with complete DAG

- remove as many parents as possible:
$p \in P A_{j}$ can be removed if

$$
X_{j} \Perp p \mid P A_{j} \backslash p
$$

(going from potential arrows to true arrows "only" requires statistical testing)

Time series and Granger causality

Does X cause Y and/or Y cause X ?

exclude instantaeous effects and common causes

- if

$$
Y_{\text {present }} \not \Perp X_{\text {past }} \mid Y_{\text {past }}
$$

there must be arrows from X to Y (otherwise d-separation)

- Granger (1969): the past of X helps when predicting Y_{t} from its past
- strength of causal influence often measured by transfer entropy

$$
I\left(Y_{\text {present }} ; X_{\text {past }} \mid Y_{\text {past }}\right)
$$

Confounded Granger

Hidden common cause Z relates X and Y

due to different time delays we have

$$
Y_{\text {present }} \not \Perp X_{\text {past }} \mid Y_{\text {past }}
$$

but

$$
X_{\text {present }} \Perp Y_{\text {past }} \mid X_{\text {past }}
$$

Granger infers $X \rightarrow Y$

Why transfer entropy does not quantify causal strength (Ay \& Polani, 2008)

deterministic mutual influence between X and Y

- although the influence is strong

$$
I\left(Y_{\text {present }} ; X_{\text {past }} \mid Y_{\text {past }}\right)=0
$$

because the past of Y already determines its present

- quantitatively still wrong for non-deterministic relation
- recent paper on definitions of causal strength: Janzing, Balduzzi, GrosseWentrup, Schölkopf, Annals of Statistics 2013

Quantifying causal influence for general DAGs

Given:
causally sufficient set of variables X_{1}, \ldots, X_{n} with

- known causal DAG G
- known joint distribution $P\left(X_{1}, \ldots, X_{n}\right)$

Goal:

construct a measure that quantifies the strength of $X_{i} \rightarrow X_{j}$ with the following properties:

Postulate 1: (mutual information)

For this simple DAG we postulate

$$
c_{X \rightarrow Y}=I(X ; Y)
$$

(no other path from X to Y, hence the dependence is caused by the arrow $X \rightarrow Y$)

Postulate 2: (localility)

causes of causes and effects of effects don't matter

here we also postulate $c_{X \rightarrow Y}=I(X ; Y)$

Postulate 3: (strength majorizes conditional dependence, given the other parents)

(without $X \rightarrow Y$ the Markov condition would imply $I(X ; Y \mid Z)=0$)

Why $c_{X \rightarrow Y}=I(X ; Y \mid Z)$ is a bad idea

as a limiting case (weak influence $Z \rightarrow Y$),
where we postulated $c_{X \rightarrow Y}=I(X ; Y)$ instead of $I(X ; Y \mid Z)$

Our approach: "edge deletion"

- define a new distribution

$$
P_{X \rightarrow Y}(x, y, z)=P(z) P(x \mid z) \sum_{x^{\prime}} P\left(y \mid x^{\prime}, z\right) P\left(x^{\prime}\right)
$$

- define causal strength by the 'impact of edge deletion'

$$
c_{X \rightarrow Y}:=D\left(P \| P_{X \rightarrow Y}\right)
$$

- intuition of edge deletion:
cut the wire between devices and feed the open end with an iid copy of the original signal

related work:
Ay \& Krakauer (2007)

Properties of our measure

- strength also defined for set of edges
- satisfies all our postulates
- also applicable to time series
- conceptually more reasonable than Granger causality and transfer entropy

Inferring the causal DAG without time information

- Setting: given observed n-tuples drawn from $p\left(X_{1}, \ldots, X_{n}\right)$, infer G
- Key postulates: Causal Markov condition and causal faithfulness

Causal faithfulness

Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold true that are implied by the Markov condition, i.e.,

$$
(X \Perp Y \mid Z)_{G} \Leftarrow \Leftarrow \quad(X \Perp Y \mid Z)_{p}
$$

Recall: Markov condition reads

$$
(X \Perp Y \mid Z)_{G} \quad \Rightarrow \quad(X \Perp Y \mid Z)_{p}
$$

Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

$$
\begin{aligned}
X & =U_{X} \\
Y & =\alpha X+U_{Y} \\
Z & =\beta X+\gamma Z+U_{Z}
\end{aligned}
$$

with independent noise terms U_{X}, U_{Y}, U_{Z}

$$
\beta+\alpha \gamma=0 \quad \Rightarrow \quad X \Perp Z
$$

Examples of unfaithful distributions (2)

binary causes with XOR as effect

- for $p(X), p(Y)$ uniform: $X \Perp Z, Y \Perp Z$. i.e., unfaithful (since X, Z and Y, Z are connected in the graph).
- for $p(X), p(Y)$ non-uniform: $X \not \Perp Z, Y \not \Perp Z$. i.e., faithful

unfaithfulness considered unlikely because it only occurs for non-generic parameter values

Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:

- accept only those DAGs G as causal hypotheses for which

$$
(X \Perp Y \mid Z)_{G} \quad \Leftrightarrow \quad(X \Perp Y \mid Z)_{p}
$$

- identifies causal DAG up to Markov equivalence class (DAGs that imply the same conditional independences)

Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov equivalent iff they have the same skeleton and the same v-structures.

skeleton: corresponding undirected graph
v-structure: substructure $X \rightarrow Y \leftarrow Z$ with no edge between X and Z

Markov equivalent DAGs

same skeleton, no v-structure

$$
X \Perp Z \mid Y
$$

Markov equivalent DAGs

same skeleton, same v-structure at W

Algorithmic construction of causal hypotheses

IC algorithm by Verma \& Pearl (1990) to reconstruct DAG from p
idea:

1. Construct skeleton
2. Find v-structures
3. direct further edges that follow from

- graph is acyclic
- all v-structures have been found in 2)

Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set $S_{X Y}$ such that

$$
\left(X \Perp Y \mid S_{X Y} .\right.
$$

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened off by conditioning on an appropriate set

$$
X \Perp Y \mid\{Z, W\}
$$

... but not by conditioning on all other variables!

$$
S_{X Y} \text { is called a Sepset for }(X, Y)
$$

Efficient construction of skeleton

PC algorithm by Spirtes \& Glymour (1991)
iteration over size of Sepset

1. remove all edges $X-Y$ with $X \Perp Y$
2. remove all edges $X-Y$ for which there is a neighbor $Z \neq Y$ of X with $X \Perp Y \mid Z$
3. remove all edges $X-Y$ for which there are two neighbors $Z_{1}, Z_{2} \neq Y$ of X with $X \Perp Y \mid Z_{1}, Z_{2}$
4. ...

Advantages

- many edges can be removed already for small sets
- testing all sets $S_{X Y}$ containing the adjacencies of X is sufficient
- depending on sparseness, algorithm only requires independence tests with small conditioning tests
- polynomial for graphs of bounded degree

Find v-structures

- given $X-Y-Z$ with X and Y non-adjacent
- given $S_{X Y}$ with $X \Perp Y \mid S_{X Y}$
a priori, there are 4 possible orientations:

$$
\left.\begin{array}{l}
X \rightarrow Z \rightarrow Y \\
X \leftarrow Z \rightarrow Y \\
X \leftarrow Z \leftarrow Y \\
X \leftarrow Z \\
X \rightarrow Z \leftarrow Y
\end{array}\right\} \quad Z \in S_{X Y}
$$

Orientation rule: create v-structure if $Z \notin S_{X Y}$

Direct further edges (Rule 1)

(otherwise we get a new v-structure)

Direct further edges (Rule 2)

(otherwise one gets a cycle)

Direct further edges (Rule 3)

could not be completed without creating a cycle or a new v-structure

Direct further edges (Rule 4)

could not be completed without creating a cycle or a new v-structure

Examples

(taken from Spirtes et al, 2010)
true DAG

start with fully connected undirected graph

remove all edges $X-Y$ with $X \Perp Y \mid \emptyset$

$$
X \Perp W \quad Y \Perp W
$$

remove all edges having Sepset of size 1

$$
X \Perp Z|Y \quad X \Perp U| Y \quad Y \Perp U|Z \quad W \Perp U| Z
$$

find v-structure

$$
Z \notin S_{Y W}
$$

orient further edges (no further v-structure)

edge $X-Y$ remains undirected

Conditional independence tests

- discrete case: contingency tables
- multi-variate gaussian case:
covariance matrix
non-Gaussian continuous case: challenging, recent progress via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)

Improvements

- CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995) uses weaker form of faithfulness
- FCI (fast causal inference) by Spirtes, Glymour, Scheines (1993) and Spirtes, Meek, Richardson (1999) infers causal links in the presence of latent common causes
- for implementations of the algorithms see homepage of the TETRAD project at Carnegie Mellon University Pittsburgh

Bayesian approach e.g. Cooper, Heckerman, Meek (1997),
Stegle, Janzing, Zhang, Schölkopf (2010)
idea:

- define prior over possible DAGs
- the conditionals $p\left(X_{j} \mid P A_{j}\right)$ are free parameters in the factorization

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j=1}^{n} p\left(X_{j} \mid P A_{j}\right)
$$

- define priors on the parameter space of each DAG
- compute posterior probabilities of DAGs
implicit preference of faithful DAGs
Note: whether Markov equivalent DAGs obtain the same posterior probability depends on the prior

Large scale evaluation of PC-related approach

Maathuis, Colombo, Kalisch \& Bühlmann (2007)

Given

- Observational data: expression profiles of 5,361 genes of yeast (wild type)
- Interventional data: expression profiles of 5,361 genes for interventions on 234 genes

Evaluation:

- use observational data to select the genes that are most influenced by the interventions
(new method: compute lower bound on the effect over all equivalent DAGs)
- compare with those selected from interventional data
success rates clearly significant: e.g. 33 true positive instead of 5
hasahowewyen 17 full greome wast deletion datal, leperbet ecasioe peafilia nents /ebverveunder the came deta deaning) , the intarwensshoh mosuate134 sisple-pere and the ebier.
 6) grees for 63
mal ditas as the paing she total rleiol gones on is. $24 \times 5,540$ Methods). We stuge of there weur target set DM apeld ides. pobucivational upera predicted - $50.250 .1 / 000$

 nudien intering of ettect:

Equivalence of Markov conditions

Theorem: the following are equivalent:

- Existence of a functional causal model
- Local Causal Markov condition: X_{j} statistically independent of nondescendants, given parents
- Global Causal Markov condition: d-separation
- Factorization $p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j} p\left(X_{j} \mid P A_{j}\right)$
(subject to technical conditions)

Local Markov \Rightarrow factorization (Lauritzen 1996)

- Assume X_{n} is a terminal node, i.e., it has no descendants, then $N D_{n}=$ $\left\{X_{1}, \ldots, X_{n-1}\right\}$. Thus the local Markov condition implies

$$
X_{n} \Perp\left\{X_{1}, \ldots, X_{n-1}\right\} \mid P A_{n}
$$

- Hence the general decomposition

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{n} \mid x_{1}, \ldots, x_{n-1}\right) p\left(x_{1}, \ldots, x_{n-1}\right)
$$

becomes

$$
p\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{n} \mid p a_{n}\right) p\left(x_{1}, \ldots, x_{n-1}\right)
$$

- Induction over n yields

$$
p\left(x_{1}, \ldots, x_{n}\right)=\prod_{j=1}^{n} p\left(x_{j} \mid p a_{j}\right)
$$

Factorization \Rightarrow global Markov

(Lauritzen 1996)
Need to prove $(X \Perp Y \mid Z)_{G} \Rightarrow(X \Perp Y \mid Z)_{p}$.
Assume $(X \Perp Y \mid Z)_{G}$

- define the smallest subgraph G^{\prime} containing X, Y, Z and all their ancestors
- consider moral graph $G^{\prime m}$ (undirected graph containing the edges of G^{\prime} and links between all parents)
- use results that relate factorization of probabilities with separation in undirected graphs

Global Markov \Rightarrow local Markov

Know that if Z d-separates X, Y, then $X \Perp Y \mid Z$.
Need to show that $X_{j} \Perp N D_{j} \mid P A_{j}$.
Simply need to show that the parents $P A_{j}$ d-separate X_{j} from its non-descendants $N D_{j}$:
All paths connecting X_{j} and $N D_{j}$ include a $P \in P A_{j}$, but never as a collider

$$
\cdot \rightarrow P \leftarrow X_{j}
$$

Hence all paths are chains

$$
\cdot \rightarrow P \rightarrow X_{j}
$$

or forks

$$
\cdot \leftarrow P \rightarrow X_{j}
$$

Therefore, the parents block every path between X_{j} and $N D_{j}$.

functional model \Rightarrow local Markov condition

(Pearl 2000)

- augmented DAG G^{\prime} contains unobserved noise
- local Markov-condition holds for G^{\prime} :
(i): the unexplained noise terms U_{j} are jointly independent, and thus (unconditionally) independent of their non-descendants
(ii): for the X_{j}, we have

$$
X_{j} \Perp N D_{j}^{\prime} \mid P A_{j}^{\prime}
$$

because X_{j} is a (deterministic) function of $P A_{j}^{\prime}$.

- local Markov in G^{\prime} implies global Markov in G^{\prime}
- global Markov in G^{\prime} implies local Markov in G (proof as last slide)

factorization \Rightarrow functional model

generate each $p\left(X_{j} \mid P A_{j}\right)$ in

$$
p\left(X_{1}, \ldots, X_{n}\right)=\prod_{j=1}^{n} p\left(X_{j} \mid P A_{j}\right)
$$

by a deterministic function:

- define a vector valued noise variable U_{j}
- each component $U_{j}\left[p a_{j}\right]$ corresponds to a possible value $p a_{j}$ of $P A_{j}$
- define structural equation

$$
x_{j}=f_{j}\left(p a_{j}, u_{j}\right):=u_{j}\left[p a_{j}\right] .
$$

- let component $U_{j}\left[p a_{j}\right]$ be distributed according to $p\left(X_{j} \mid p a_{j}\right)$.

Note: joint distribution of all $U_{j}\left[p a_{j}\right]$ is irrelevant, only marginals matter

different point of view

- G denotes set of deterministic mechanisms
- U randomly chooses a mechanism

U chooses $g \in\{I D, N O T, 1,0\}$
the same $p(X, Y)$ can be induced by different distributions on G :
- model 1 (no causal link from X to Y)

$$
P(g=0)=1 / 2, \quad P(g=1)=1 / 2
$$

- model 2 (random switching between $I D$ and $N O T$)

$$
P(g=I D)=1 / 2, \quad P(g=N O T)=1 / 2
$$

both induce the uniform distribution for Y, independent of X

INTERVAL

Recap: Functional Causal Model

- $X_{i}=f_{i}\left(\right.$ ParentsOf $_{i}$, Noise $\left._{i}\right)$, with jointly independent Noise $_{1}, \ldots$, Noise $_{n}$.

- entails $p\left(X_{1}, \ldots, X_{n}\right)$ with particular conditional independence structure Under certain assumptions, given p, can recover an equivalence class containing the correct graph using conditional independence testing.

Problems:

1. does not work for graphs with only 2 vertices (even with infinite data)
2. if we don't have infinite data, conditional independence testing can be arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.

Friedrich Nietzsche's

 TWILIGHT OF THE IDOLS

 TWILIGHT OF THE IDOLS}
or How to Philosophize with a Hammer

Translated, with commentary, by R.J. Hollingdale

$$
[\ldots]
$$

The Four Great Errors

 1Gotzen-Dämmerung
 \sim

Frimdrich Notasphe

The error of mistaking cause for consequence. - There is no more dangerous error than that of mistaking the consequence for the cause: I call it reason's intrinsic form of corruption. Nonetheless, this error is among the most ancient and most recent

Dominik Janzing \& Bernhard Schölkopf. August 30, 2013

Restricting the Functional Model

- consider the graph $X \rightarrow Y$
- general functional model

$$
Y=f(X, N)
$$

$$
X \Perp N
$$

Note: if N can take d different values, it could switch randomly between mechanisms $f^{1}(X), \ldots, f^{d}(X)$

- additive noise model

$$
Y=f(X)+N
$$

Causal Inference with Additive Noise, 2-Variable Case

Forward model:
$y:=f(x)+n$, with $x \Perp n$

Identifiability: when is there a
backward model of the same form?

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
虎 Peters et al.: Detecting the Direction of Causal Time Series. ICML 2009

Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008)

Theorem 1 Let the joint probability density of x and y be given by

$$
\begin{equation*}
p(x, y)=p_{n}(y-f(x)) p_{x}(x), \tag{1}
\end{equation*}
$$

where p_{n}, p_{x} are positive probability densities on \mathbb{R}. If there is a backward model

$$
\begin{equation*}
p(x, y)=p_{\tilde{n}}(x-g(y)) p_{y}(y), \tag{2}
\end{equation*}
$$

then, denoting $\nu:=\log p_{n}$ and $\xi:=\log p_{x}$ and assuming sufficient differentiability, the triple $\left(f, p_{x}, p_{n}\right)$ must satisfy the following differential equation for all x, y with $\nu^{\prime \prime}(y-f(x)) f^{\prime}(x) \neq 0$:

$$
\begin{equation*}
\xi^{\prime \prime \prime}=\xi^{\prime \prime}\left(-\frac{\nu^{\prime \prime \prime} f^{\prime}}{\nu^{\prime \prime}}+\frac{f^{\prime \prime}}{f^{\prime}}\right)-2 \nu^{\prime \prime} f^{\prime \prime} f^{\prime}+\nu^{\prime} f^{\prime \prime \prime}+\frac{\nu^{\prime} \nu^{\prime \prime \prime} f^{\prime \prime} f^{\prime}}{\nu^{\prime \prime}}-\frac{\nu^{\prime}\left(f^{\prime \prime}\right)^{2}}{f^{\prime}} \tag{3}
\end{equation*}
$$

where we have skipped the arguments $y-f(x), x$, and x for ν, ξ, and f and their derivatives, respectively. Moreover, if for a fixed pair (f, ν) there exists $y \in \mathbb{R}$ such that $\nu^{\prime \prime}(y-f(x)) f^{\prime}(x) \neq 0$ for all but a countable set of points $x \in \mathbb{R}$, the set of all p_{x} for which p has a backward model is contained in a 3-dimensional affine space.

Corollary 1 Assume that $\nu^{\prime \prime \prime}=\xi^{\prime \prime \prime}=0$ everywhere. If a backward model exists, then f is linear.

Idea of the proof

If $p(x, y)$ admits an additive noise model

$$
Y=f(X)+E
$$

we have

$$
p(x, y)=q(x) r(y-f(x)) .
$$

It then satisfies the differential equation

$$
\frac{\partial}{\partial x}\left(\frac{\partial^{2} \log p(x, y) / \partial x^{2}}{\partial^{2} \log p(x, y) / \partial x \partial y}\right)=0
$$

If it also holds with exchanging x and y, only specific cases remain.

Alternative View (cf. Zhang \& Hyvärinen, 2009)

H differential entropy
I mutual information
$n_{y}=y-f(x), n_{x}=x-g(y)$ residual noises
Lemma: For arbitrary joint distribution of x, y and functions f, $g: \mathbf{R} \rightarrow \mathbf{R}$, we have:

$$
H(x, y)=H(x)+H\left(n_{y}\right)-I\left(n_{y}, x\right)=H(y)+H\left(n_{x}\right)-I\left(n_{x}, y\right)
$$

If x causes y, we can find f such that $n_{y} \Perp x$, while "almost all" g lead to $n_{x} \not \Perp y$, i.e.:

$$
I\left(n_{y}, x\right)=0 \text { and } I\left(n_{x}, y\right)>0
$$

Thus

$$
H(x, y)=H(x)+H\left(n_{y}\right) \leq H(y)+H\left(n_{x}\right)
$$

Causal Inference Method

Prefer the causal direction that can better be fit with an additive noise model.

Implementation:

- Compute a function f as non-linear regression of X on Y
- Compute the residual

$$
E:=Y-f(X)
$$

- check whether E and X are statistically independent (uncorrelated is not enough)

Experiments

Relation between altitude (cause) and average temperature (effect) of places in Germany

Our independence tests detect strong dependence.
Hence the method prefers the correct direction
altitude \rightarrow temperature

- Generalization to post-nonlinear additive noise models: Zhang \& Hyvärinen: On the Identifiability of the Post-Nonlinear Causal Model, UAI 2009
- Generalization to graphs with more than two vertices: Peters, Mooij, Janzing, Schölkopf: Identifiability of Causal Graphs using Functional Models, UAI 2011
- Generalization to two-vertex-graphs with loops: Mooij, Janzing, Heskes, Schölkopf: Causal discovery with Cyclic additive noise models, NIPS 2011

Independence-based Regression (Mooij et al., 2009)

- Problem: many regression methods assume a particular noise distribution; if this is incorrect, the residuals may become dependent
- Solution: minimize dependence of residuals rather than maximizing likelihood of data in regression objective
- Use RKHS distance between kernel mean embeddings/Hilbert-Schmidt-norm of cross-covariance operator between two RKHSes as a dependence measure

Mooij, Janzing, Peters, Schölkopf: Regression by dependence minimization and its application to causal inference. ICML 2009.
Yamada \mathcal{E}^{3} Sugiyama: Dependence Minimizing Regression with Model Selection for NonLinear Causal Inference under Non-Gaussian Noise. AAAI 2010.

Kernel Independence Testing (Gretton et al., 2007)

k bounded p.d. kernel; $\quad P$ Borel probability measure
Define the kernel mean map

$$
\mu: P \mapsto \mathbf{E}_{x \sim P}[k(x, .)] .
$$

Theorem: If k is universal, μ is injective.
Discussion: a measure can be represented as an element of the RKHS associated with k without loss of information.

Let's represent $p(X, Y)$ and $p(X) p(Y)$ - they will only map to the same element if they are equal, i.e., if $X \Perp Y$.

Proposition 1 Assume that k is strictly $p d$, and for all i, j, $x_{i} \neq x_{j}$, and $y_{i} \neq y_{j}$. If for some $\alpha_{i}, \beta_{j} \in \mathbb{R}-\{0\}$, we have

$$
\begin{equation*}
\sum_{i=1}^{m} \alpha_{i} k\left(x_{i}, .\right)=\sum_{j=1}^{n} \beta_{j} k\left(y_{j}, .\right), \tag{1}
\end{equation*}
$$

then $X=Y$.
Proof (by contradiction); W.Lo.g, assume that $x_{1} \notin Y$. Subtract $\sum_{j=1}^{n} \beta_{j} k\left(y_{j},.\right)$ from (1), and make it a sum over distinct points, to get

$$
0=\sum_{i} \gamma_{i} k\left(z_{i},\right)_{1}
$$

where $z_{1}=x_{1}, \gamma_{1}=\alpha_{1} \neq 0$, and $z_{2}, \cdots \in X \cup Y-\left\{x_{1}\right\}, \gamma_{2}, \cdots \in \mathbb{R}$.
Take the dot product with $\sum_{j} \gamma_{j} k\left(z_{j}\right.$, ,, using $\left\langle k\left(z_{i},\right), k\left(z_{j,},\right)\right\rangle=k\left(z_{i}, z_{j}\right)$, to get

$$
0=\sum_{i j} \gamma_{0 j} k\left(z_{i}, z_{j}\right),
$$

with $\gamma \neq 0$, hence k cannot be strictly pd.

Kernel Independence Testing: HSIC

Corollary: $x \Perp y \Longleftrightarrow \Delta:=\left\|\mu\left(p_{x y}\right)-\mu\left(p_{x} \times p_{y}\right)\right\|=0$.

- For $k\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=k_{x}\left(x, x^{\prime}\right) k_{y}\left(y, y^{\prime}\right)$:
$\Delta^{2}=$ HS-norm of cross-covariance operator between the two RKHSes (HSIC, Gretton et al., 2005)
- empirical estimator $\frac{1}{n^{2}} \operatorname{tr}\left[K_{x} K_{y}\right]$ (ignoring centering)
- Why does this characterize independence: $x \Perp y$ iff

$$
\sup _{f, g \in \text { RHKS unit balls }} \operatorname{cov}(f(x), g(y))=0
$$

(cf. Kernel ICA, Bach E Jordan, 2002)

Hilbert-Schmidt Normalized Independence Criterion

 (Fukumizu et al., 2007)- normalize out variance of X and Y to get HSNIC; can be shown to equal the mean squared contingency

$$
\int\left(\frac{p(x, y)}{p(x) p(y)}-1\right) d p(x, y)
$$

independent of the (characteristic/universal) kernel

- can be shown to be upper bounded by the mutual information,

$$
\operatorname{HSNIC}(X, Y) \leq \operatorname{MI}(X, Y)=\int \log \left(\frac{p(x, y)}{p(x) p(y)}\right) d p(x, y)
$$

Approximating the null distribution

- to construct a test, need to compute the null distribution of our test statistic (HSIC): how is the empirical HSIC distributed if $X \Perp Y$?
- can use a (complicated) asymptotic expression for HSIC (Gretton et al., 2008), but there's an easy practical method to generate samples consistent with the null hypothesis (independence), and the original marginals $p(X), p(Y)$:
- given a permutation $\sigma, \operatorname{turn}\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ into $\left(x_{1}, y_{\sigma(1)}\right), \ldots,\left(x_{n}, y_{\sigma(n)}\right)$
- the case of conditional independence is harder: given $\left(x_{1}, y_{1}, z_{1}\right), \ldots,\left(x_{n}, y_{n}, z_{n}\right)$, need to generate samples consistent with $X \Perp Y \mid Z$, and original $p(X \mid Z), p(Y \mid Z)$.
- if z only takes few values, can permute within groups having the same value of z (Fukumizu et al., 2007)
- general case is an open problem, but see e.g. Zhang et al., UAI 2011

Detection of Confounders

Given $p(X, Y)$, infer whether

- $X \rightarrow Y$
- $Y \rightarrow X$

- $X \leftarrow T \rightarrow Y \quad$ for some (possibly) unobserved variable T
- Confounded additive noise (CAN) models

$$
\begin{aligned}
& X=f_{X}(T)+U_{X} \\
& Y=f_{Y}(T)+U_{Y}
\end{aligned}
$$

with functions f_{X}, f_{Y} and U_{X}, U_{Y}, T jointly independent Note: includes the case

$$
Y=f(X)+U
$$

by setting $f_{X}=i d$ and $U_{X}=0$.

- Estimate ($\left.f_{X}(T), f_{Y}(T)\right)$ using dimensionality reduction
- If U_{X} or U_{Y} is close to zero, output 'no confounder'
- Identifiability result for small noise

Janzing, Peters, Mooij, Schölkopf: Identifying latent confounders using additive noise models.

Identifying discrete confounders by independence-based clustering

Identifying Finite Mixtures of Nonparametric Product Distributions and Causal Inference of Confounders

Eleni Sgouritsa ${ }^{1}$, Dominik Janzing ${ }^{1}$, Jonas Peters ${ }^{1,2}$, Bernhard Schölkopf ${ }^{\text { }}$
${ }^{1}$ Max Planck Institute for Intelligent Systems, Tübingen, Germany
${ }^{2}$ Department of Mathematics, ETH, Zurich
\{sgouritsa, janzing, peters, bs\} 0 tuebingen.mpg.de

$$
P\left(X_{1}, \ldots, X_{d}\right)=\sum_{i=1}^{m} P\left(z^{(i)}\right) \prod_{j=1}^{d} P\left(X_{j} \mid z^{(i)}\right)
$$

However, employing properties of the noise is not the only way of inferring cause and effect.

What about the noiseless case?

Independence of input and mechanism

Causal structure:
C cause
E effect
N noise
φ mechanism

Assumption:

$p(C)$ and $p(E \mid C)$ are "independent"

Janzing \mathfrak{G} Schölkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire 6 Dirkx, 2007

Inferring deterministic causal relations

- Does not require noise
- Assumption: $y=f(x)$ with invertible f

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf: Inferring deterministic causal relations, UAI 2010

Causal independence implies anticausal dependence

Assume that f is a monotonously increasing bijection of $[0,1]$.
View p_{x} and $\log f^{\prime}$ as RVs on the prob. space $[0,1]$ w. Lebesgue measure.
Postulate (independence of mechanism and input):

$$
\operatorname{Cov}\left(\log f^{\prime}, p_{x}\right)=0
$$

Note: this is equivalent to

$$
\int_{0}^{1} \log f^{\prime}(x) p(x) d x=\int_{0}^{1} \log f^{\prime}(x) d x
$$

since
$\operatorname{Cov}\left(\log f^{\prime}, p_{x}\right)=E\left[\log f^{\prime} \cdot p_{x}\right]-E\left[\log f^{\prime}\right] E\left[p_{x}\right]=E\left[\log f^{\prime} \cdot p_{x}\right]-E\left[\log f^{\prime}\right]$.

Proposition:

$$
\operatorname{Cov}\left(\log f^{-1^{\prime}}, p_{y}\right) \geq 0
$$

with equality iff $f=I d$.
u_{x}, u_{y} uniform densities for x, y
v_{x}, v_{y} densities for x, y induced by transforming u_{y}, u_{x} via f^{-1} and f
Equivalent formulations of the postulate:

Additivity of Entropy:
$S\left(p_{y}\right)-S\left(p_{x}\right)=S\left(v_{y}\right)-S\left(u_{x}\right)$
Orthogonality (information geometric):
$D\left(p_{x} \| v_{x}\right)=D\left(p_{x} \| u_{x}\right)+D\left(u_{x} \| v_{x}\right)$
which can be rewritten as
$D\left(p_{y} \| u_{y}\right)=D\left(p_{x} \| u_{x}\right)+D\left(v_{y} \| u_{y}\right)$
Interpretation:
irregularity of $p_{y}=$ irregularity of $p_{x}+$ irregularity introduced by f

Slope-Based Estimator

Slope-based IGCI: infer $X \rightarrow Y$ whenever

$$
\int_{0}^{1} \log \left|f^{\prime}(x)\right| P(x) d x<\int_{0}^{1} \log \left|g^{\prime}(y)\right| P(y) d x .
$$

We introduce the following estimator:

$$
\hat{C}_{X \rightarrow Y}:=\int \log \left|f^{\prime}(x)\right| P(x) d x \approx \frac{1}{m-1} \sum_{i=1}^{m-1} \log \left|\frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}\right|
$$

where the x_{i} values are ordered.

- infer $X \rightarrow Y$ whenever

$$
\hat{c}_{X \rightarrow Y}<\hat{C}_{Y \rightarrow X} .
$$

80 Cause-Effect Pairs

80 Cause-Effect Pairs - Examples

	var 1	var 2	dataset	ground truth
pair0001	Altitude	Temperature	DWD	\rightarrow
pair0005	Age (Rings)	Length	Abalone	\rightarrow
pair0012	Age	Wage per hour	census income	\rightarrow
pair0025	cement	compressive strength	concrete_data	\rightarrow
pair0033	daily alcohol consumption	mcr mean corpuscular volume	liver disorders	\rightarrow
pair0040	Age	diastolic blood pressure	pima indian	\rightarrow
pair0042	day	temperature	B. Janzing	\rightarrow
pair0047	\#cars/24h	specific days	traffic	\leftarrow
pair0064	drinking water access	infant mortality rate	UNdata	\rightarrow
pair0068	bytes sent	open http connections	P. Daniusis	\leftarrow
pair0069	inside room temperature	outside temperature	J. M. Mooij	\leftarrow
pair0070	parameter	sex	Bülthoff	\rightarrow
pair0072	sunspot area	global mean temperature	sunspot data	\rightarrow
pair0074	GNI per capita	life expectancy at birth	UNdata	\rightarrow
pair0078	PPFD (Photosynth. Photon Flux)	NEP (Net Ecosystem Productivity)	Moffat A. M.	\rightarrow

http://webdav.tuebingen.mpg.de/cause-effect/

Causal Learning and Anticausal Learning

Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012

- example 1: predict gene from mRNA sequence

Source: http://commons.wikimedia.org/wiki/File:Peptide_syn.png

- example 2: predict class membership from handwritten digit

Covariate Shift and Semi-Supervised Learning

Assumption: $p(C)$ and mechanism $p(E \mid C)$ are "independent" Goal: learn $X \mapsto Y$, i.e., estimate (properties of) $p(Y \mid X)$

- covariate shift (i.e., $p(X)$ changes): mechanism $p(Y \mid X)$ is unaffected by assumption
- semi-supervised learning: impossible, since $p(X)$ contains no information about $p(Y \mid X)$
- transfer learning $\left(N_{X}, N_{Y}\right.$ change, φ not): could be done by additive noise model with conditionally independent noise
- $p(X)$ changes: need to decide if change is due to mechanism $p(X \mid Y)$ or cause distribution $p(Y)$ (sometimes: by deconvolution)
- semi-supervised learning: possible, since $p(X)$ contains information about $p(Y \mid X)$ e.g., cluster assumption.
- transfer learning: as above

Semi-Supervised Learning (Schölkopf et al., ICML 2012)

- Known SSL assumptions link $p(X)$ to $p(Y \mid X)$:
- Cluster assumption: points in same cluster of $p(X)$ have the same Y
- Low density separation assumption: $p(Y \mid X)$ should cross 0.5 in an area where $p(X)$ is small
- Semi-supervised smoothness assumption: $\mathrm{E}(Y \mid X)$ should be smooth where $p(X)$ is large
- Next slides: experimental analysis

SSL Book Benchmark Datasets - Chapelle et al. (2006)

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category	Dataset
Anticausal/ Confounded	g241c: the class causes the 241 features.
	g241d: the class (binary) and the features are confounded by a variable with 4 states.
	Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
	USPS: the class and the features are confounded by the 10-state variable of all digits.
	COIL: the six-state class and the features are confounded by the 24-state variable of all objects.
Causal	SecStr: the amino acid is the cause of the secondary structure.
Unclear	BCI, Text: Unclear which is the cause and which the effect.

UCI Datasets used in SSL benchmark - Guo et al., 2010

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ.	Dataset
	Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g., thickness, size, shape etc.).
	Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pressure), but also is an effect of some others (e.g. age, number of times pregnant).
	Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the presence or absence of hepatitis. Some of the features, however, may also cause death.
	Iris: the size of the plant is an effect of the category it belongs to.
	Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage increase, number of working hours per week, number of paid vacation days, employer's help during employee 's long term disability). Moreover, the features and the class may be confounded by elements of the character of the employer and the employee (e.g., ability to cooperate).
	Letter: the class (letter) is a cause of the produced image of the letter.
	Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the taxonomy of the mushroom (23 species).
	Image Segmentation: the class of the image is the cause of the features of the image.
	Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
	Vehicle: the class of the vehicle causes the features of its silhouette.
	Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped infants or being part of religious groups in school can cause one's vote, being democrat or republican can causally influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class. Crime and the class may be confounded, e.g., by the environment in which one grew up.
	Vowel: the class (vowel) causes the features.
	Wave: the class of the wave causes its attributes.
Causal	Balance Scale: the features (weight and distance) cause the class.
	Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
	Splice: the DNA sequence causes the splice sites.
Unclear	Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval, Sick).

Datasets, co-regularized LS regression - Brefeld et al., 2006

Table 3. Categorization of 31 datasets (described in the paragraph "Semi-supervised regression") as Anticausal/Confounded, Causal or Unclear

Categ.	Dataset	Target variable	Remark
	breastTumor	tumor size	causing predictors such as inv-nodes and deg-malig
	cholesterol	cholesterol	causing predictors such as resting blood pressure and fasting blood sugar
	cleveland	presence of heart disease in the patient	causing predictors such as chest pain type, resting blood pressure, and fasting blood sugar
	lowbwt	birth weight	causing the predictor indicating low birth weight
	pbc	histologic stage of disease	causing predictors such as Serum bilirubin, Prothrombin time, and Albumin
	pollution	age-adjusted mortality rate per 100,000	causing the predictor number of 1960 SMSA population aged 65 or older
	wisconsin	time to recur of breast cancer	causing predictors such as perimeter, smoothness, and concavity
	autoMpg	city-cycle fuel consumption in miles per gallon	caused by predictors such as horsepower and weight
	cpu	cpu relative performance	caused by predictors such as machine cycle time, maximum main memory, and cache memory
	fishcatch	fish weight	caused by predictors such as fish length and fish width
	housing	housing values in suburbs of Boston	caused by predictors such as pupil-teacher ratio and nitric oxides concentration
	machine_cpu	cpu relative performance	see remark on "cpu"
	meta	normalized prediction error	caused by predictors such as number of examples, number of attributes, and entropy of classes
	pwLinear	value of piecewise linear function	caused by all 10 involved predictors
	sensory	wine quality	caused by predictors such as trellis
	servo	rise time of a servomechanism	caused by predictors such as gain settings and choices of mechanical linkages
[auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars); autoPrice (target: price of cars); baskball (target: points scored per minute); cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived); fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival); pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day); stock (target: price of one particular stock); strike (target: strike volume); triazines (target: activity); veteran (survival in days)		

Benchmark Datasets of Chapelle et al. (2006)

Self-training does not help for causal problems (cf. Guo et al., 2010)

Relative error decrease $=(\operatorname{error}($ base $)-$ error(self-train) $) / \operatorname{error}($ base $)$

Co-regularization helps for the anticausal problems of Brefeld et al., 2006

Co-regularizarion hardly helps for the causal problems of Brefeld et al., 2006

Causal Inference for Individual Objects (Janzing \& Schölkopf, 2010)

Similarities between single objects also indicate causal relations:

However, if similarities are too simple there need not be a common cause:

Causal Markov Conditions

- Recall the (Local) Causal Markov condition: An observable is statistically independent of its non-descendants, given parents
- Reformulation:

Given all direct causes of an observable, its non-effects provide no additional statistical information on it

Causal Markov Conditions

- Generalization:

Given all direct causes of an observable, its non-effects provide no additional statistical information on it

- Algorithmic Causal Markov Condition:

Given all direct causes of an object, its non-effects provide no additional algorithmic information on it

Kolmogorov complexity

(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)
of a binary string x

- $K(x):=$ length of the shortest program with output x (on a Turing machine)
- interpretation: number of bits required to describe the rule that generates x
- equality $"="$ is always understood up to string-independent additive constants (often denoted by $\stackrel{+}{=}$, but we drop the " + ")
- $K(x)$ is uncomputable
- probability-free definition of information content

Conditional Kolmogorov complexity

- $K\left(y \mid x^{*}\right)$: length of the shortest program that generates y from the shortest description of the input x. For simplicity, we write $K(y \mid x)$.
- number of bits required for describing y if the shortest description of x is given
- note: x can be generated from its shortest description but not vice versa because there is no algorithmic way to find the shortest compression

Algorithmic mutual information (Chaitin, Gacs)

Information of x about y

- $I(x: y):=K(x)+K(y)-K(x, y)$

$$
=K(x)-K(x \mid y)=K(y)-K(y \mid x)
$$

- Interpretation: number of bits saved when compressing x, y jointly rather than independently
- Algorithmic independence $x \Perp y: \Longleftrightarrow I(x: y)=0$

Conditional algorithmic mutual information

Information that x has on y (and vice versa) when z is given

- $I(x: y \mid z):=K(x \mid z)+K(y \mid z)-K(x, y \mid z)$
- Analogy to statistical mutual information:

$$
I(X: Y \mid Z)=S(X \mid Z)+S(Y \mid Z)-S(X, Y \mid Z)
$$

- Conditional algor. independence $x \Perp y \mid z: \Longleftrightarrow I(x: y \mid z)=0$

Algorithmic mutual information: example

Postulate: Local Algorithmic Markov Condition

Let x_{1}, \ldots, x_{n} be observations (formalized as strings). Given its direct causes $p a_{j}$, every x_{j} is conditionally algorithmically independent of its non-effects $n d_{j}$

$$
x_{j} \Perp n d_{j} \mid p a_{j}
$$

Equivalence of Algorithmic Markov Conditions

For n strings x_{1}, \ldots, x_{n} the following conditions are equivalent

- Local Markov condition

$$
I\left(x_{j}: n d_{j} \mid p a_{j}\right)=0
$$

- Global Markov condition:

If R d-separates S and T then $I(S: T \mid R)=0$

- Recursion formula for joint complexity

$$
K\left(x_{1}, \ldots, x_{n}\right)=\sum_{j=1}^{n} K\left(x_{j} \mid p a_{j}\right)
$$

Algorithmic model of causality

- for every node x_{j} there exists a program u_{j} that computes x_{j} from its parents $p a_{j}$
pa_{j}
- all u_{j} are jointly independent

- the program u_{j} represents the causal mechanism that generates the effect from its causes
- u_{j} are the analog of the unobserved noise terms in the statistical functional model

Theorem: this model implies the algorithmic Markov condition

"Independent" = algorithmically independent?

Postulate (Janzing \& Schölkopf, 2010, inspired by Lemeire \& Dirkx, 2006):
The causal conditionals $p\left(X_{j} \mid P A_{j}\right)$ are algorithmically independent

- special case: $p(X)$ and $p(Y \mid X)$ are alg. independent for $X \rightarrow Y$
- can be used as justification for novel inference rules (e.g., for additive noise models: Steudel \& Janzing 2010)
- excludes many, but not all violations of faithfulness (Lemeire \& Janzing, 2012)

Generalized independences Steudel, Janzing, Schölkopf (2010)

Given n objects $\mathcal{O}:=\left\{x_{1}, \ldots, x_{n}\right\}$
Observation: if a function $R: 2^{\mathcal{O}} \rightarrow \mathbb{R}_{0}^{+}$is submodular, i.e.,

$$
R(S)+R(T) \geq R(S \cup T)+R(S \cap T) \quad \forall S, T \subset \mathcal{O}
$$

then

$$
I(A ; B \mid C):=R(A \cup C)+R(B \cup C)-R(A \cup B \cup C)-R(C) \geq 0
$$

for all disjoint sets $A, B, C \subset \mathcal{O}$

Interpretation: I measures conditional dependence (replace R with Shannon entropy to obtain usual mutual information)

Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

- local Markov condition

$$
x_{j} \Perp n d_{j} \mid p a_{j}
$$

- global Markov condition: d-separation implies independence
- sum rule

$$
R(A)=\sum_{j \in A} R\left(x_{j} \mid p a_{j}\right)
$$

for every ancestral set A of nodes.
-but can we postulate that the conditions hold w.r.t. to the true DAG?

Generalized functional model

Theorem:

- assume there are unobserved objects u_{1}, \ldots, u_{n}

- assume

$$
R\left(x_{j}, p a_{j}, u_{j}\right)=R\left(p a_{j}, u_{j}\right)
$$

(x_{j} contains only information that is already contained in its parents + noise object)
then x_{1}, \ldots, x_{n} satisfy the Markov conditions
\Rightarrow causal Markov condition is justified provided that mechanisms fit to information measure

Generalized PC

PC algorithm also works with generalized conditional independence

Examples:

1. $R:=$ number of different words in a text
2. $R:=$ compression length (e.g. Lempel Ziv is approximately submodular)
3. $R:=$ logarithm of period length of a periodic function
example 2 yielded reasonable results on simple real texts (different versions of a paper abstract)

Summary

- conventional causal inference algorithms use conditional statistical dependences
- more recent approaches also use other properties of the joint distribution
- non-statistical dependences also tell us something about causal directions

Selection within Markov equivalence classes

different approaches

- some "independence" condition between $p\left(X_{j} \mid P A_{j}\right)$ Information-geometric method, Trace Method
- restricting conditionals/functional models to subsets

Additive-noise models, post-nonlinear model

- define priors on $p\left(X_{j} \mid P A_{j}\right)$ that can yield different posteriors for equivalent DAGs

Gaussian process based prior by Mooij, Stegle, Janzing, Schölkopf (2010)

- ?

Thank you for your attention

Jonas Peters, Kun Zhang, Joris Mooij, Oliver Stegle, Eleni Sgouritsa, Jakob Zscheischler, Philipp Geiger, David Balduzzi

