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Roadmap

e informal motivation
e functional causal models

e causal graphical models;
d-separation, Markov conditions, faithfulness

e formalizing interventions
e causal inference...

— using time order

— using conditional independences

— using restricted function classes

— using “independence” of mechanisms

— not using statistics
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BECOME AWESOME IN EXCEL

Amazon’s recommendation system - is it crazy?

Posted on January 12th, 2008 in business , Mumor , technology , wonder why - & comments

We have a saying in Telugu that goes like this, “thaadu vundhi kada ani eddu kontama?"” which means, “just because
you have a rope you dont buy a bullock to tie”. Amazon’s recommendation system must have been coded by someone
with a skewed view of reality. How else can you explain this?

Thanks to P. Laskov.
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Association of Coffee Drinking with Total and Cause-Specific

Mortality
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BACKGROUND

Cofeo is one of the most widely corsumed bevorages, but e
association betwoen coffee consumption and e rsk of doath
TS Unclewr

Folb Toxt of Background

METHODS

We sxamined the association of coffee denking with subsoguent tols
and cause-spacific moralty among 229,199 men and 173,141
women i the National institutes of Meadth-AARP Diet and Moakh
Stucy who wern 50 5o 71 years of age ot baselne. Particioants with
cancer, heart Gisnaas, and siroke wern excluded. Cofles
cormumption wims sssessed once a baselne

We present risk estimates separately for men and . Multivariat dels were adj d for
mo IolloMng bnellne factors: aoe body—mus index (BMI); race or ethnic group; level of education;

i cor ), the of ked per day, use or nonuse of pipes or cigars,
wlimodsmokmc“nbm(dyw 1 to <5 years, 5 to <10 years, or 210 years before
baseline); health status; presence or absence of diabetes; marital status; level of physical activity;
total energy intake; cor ion of fruits, vegetables, red meat, white meat, and saturated fat; and
use of any vitamin supplement (yes vs. no). In addition, risk estimates for death from cancer were
adjusted for history of cancer (other than nonmelmoma skln meﬂnaﬁm-degrae relative (yes
vs. no). For status with respect to th y was also included in
multivariate models. Lusvms%dthocohonlxkodanysm covnﬂdoc for each covariate, we

SANFLANCR-GESELISCIART

RESULTS

During 5,148,760 person-years of follow-up between 1995 and 2008, a
total of 33,731 men and 18,784 women died. In age-adjusted models,
the risk of death was increased among coffee drinkers. However,
coffee drinkers were also more likely to smoke, and, after adjustment
for tobacco-smoking status and other potential confounders, there
was a significant inverse association between coffee consumption
and mortality. Adjusted hazard ratios for death among men who drank

CONCLUSIONS

In this large prospective study, coffee consumption was inversely
associated with total and cause-specific mortality. Whether this was
a causal or associational finding cannot be determined from our data.
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12.12.2007

Deutsches Kinderkrebsregister untersucht
Haufigkeit von Krebserkrankungen bei
Kindern in der Ndhe von Kernkraftwerken

Neue Studie verdffentlicht

Immer wieder wird der Verdacht gedulert, dass Kinger in der Nahe von
Kernkraftwerven Daufiger an Kreds eriranken. Eine frinere Studie des
Kindorkrebsrogaters me Kindorn urter 15 Johran schien darauf hingudeuten,
gass speziell in den ersten Lebensjahren das Levkdmee-R sk in den
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“Correlation does not tell us anything about causality”

» Better to talk of dependence than correlation

* Most statisticians would agree that causality does tell us
something about dependence

* But dependence does tell us something about causality
too:

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Statistical Implications of Causality

Reichenbach’s

Common Cause Principle
links causality and probability:

(i) if X and Y are statistically
dependent, then there is a Z
causally influencing both; special cases:

(ii) Z screens X and Y from each ®(_@
other (given Z, the observables

X and Y become independent)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Notation

o A B event

e X.Y Z random variable

e 1 value of a random variable

e Pr probability measure

e Py probability distribution of X

e p density

e px or p(X) density of Py

e p(x) density of Px evaluated at the point z

e always assume the existence of a joint density, w.r.t. a product
measure

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Independence
Two events A and B are called independent if
Pr(AN B) = Pr(A) - Pr(B).

A1, ..., A, are called independent if for every subset S C {1,...,n}
we have

Pr (ﬂ AZ-) = [ Pr(4).

€5 €S

Note: for n > 3, pairwise independence Pr(A;NA,) = Pr(A;)-Pr(A,)
for all ¢, 7 does not imply independence.

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Independence of random variables

Two real-valued random variables X and Y are called independent,

X LY,

if for every a,b € R, the events {X < a} and {Y < b} are indepen-
dent.

Equivalently, in terms of densities: for all x,,

p(z,y) = p(z)p(y)

Note:
If X I Y, then F|XY] = FE[X]|E|Y], and cov|X,Y] = F[XY]| - E|X|E|Y] =0.

The converse is not true: cov[X,Y]=0% X 1L Y.

However, we have, for large F: (Vf,g € F :cov[f(X),9(Y)]=0)=X 1LY

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Conditional Independence of random variables

Two real-valued random variables X and Y are called conditionally
independent given /£,

(X LY)|Z or X LY|Z or (X LY|Z),
if
p(z,y|z) = p(z|z)p(y|2)
for all x,y, and for all z s.t. p(z) > 0.

Note: conditional independence neither implies nor is implied by
independence.

I.e., there are X, Y, Z such that we have only independence or only
conditional independence.

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Functional Causal Model (Pear! et al.) \

COMMUNICATIONS
““ACM

Judea Pearl

ACM's A.M. Turing
Award Winner

Set of observables X1,...,X,

directed acyclic graph GG with vertices Xq,..., X,
Semantics: parents = direct causes

X; = f;(ParentsOf;, Noise, ), with independent Noisey, ..., Noise,.
“Noise” means “unexplained” (or “exogenous”), we use U;

Can add requirement that fi,..., f,,Noiseq,...,Noise, “independent”
(cf. Lemeire € Dirkz 2006, Janzing € Schélkopf 2010 — more below)

‘ ‘ parents of X (PAJ,)
O\ N/
o— =f (PA, U)

™0

f, August 30, 2013



Functional Causal Model, ctd.

e this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence
can only arise in two vertices that depend (partly) on the same noise
term(s).

2. if we condition on these noise terms, the variables become independent

fz
Q\fX fy

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Functional Causal Model, ctd.

e Independence of noises is a form of ”causal sufficiency:” if the noises were
dependent, then Reichenbach’s principle would tell us the causal graph is
incomplete

e Interventions are realized by replacing functions by values

Iz
Q\fX fy

e the model entails a joint distribution p(Xi,...,X,). Questions:

(1) What can we say about it?

(2) Can we recover G from p?

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Functional Model and Markov conditions
(Lauritzen 1996, Pearl 2000)

Theorem: the following are equivalent:

— Existence of a functional causal model

— Local Causal Markov condition: X; statistically independent of non-
descendants, given parents (i.e.: every information exchange with its non-

descendants involves its parents)

— Global Causal Markov condition: d-separation (characterizes the set of
independences implied by local Markov condition)
— Factorization p(Xi,...,X,) = Hj p(Xj | Parentsj) (conditionals as

causal mechanisms generating statistical dependence)

(subject to technical conditions)

N
0

descendants

Dominik Janzing & Bernhard Scholkopy, August 3U, 2013



Counterfactuals and Interventions

e David Hume (1711-76): “.. we may define a cause to be an object, fol-
lowed by another, and where all the objects stmilar to the first are followed
by objects stmilar to the second. Or in other words where, if the first object
had not been, the second never had existed.”

e Jerzy Neyman (1923): consider m plots of land and v varieties of crop.

Denote U;; the crop yield that would be observed if variety ¢ = 1,...,v
were planted in plot 7 =1,...,m

For each plot j, we can only experimentally determine one U;; in each
growing season.

The others are called “counterfactuals”.

e this leads to the view of causal inference as a missing data problem — the
“potential outcomes” framework (Rubin, 1974)

e in X; = f;(ParentsOf;, Noise;), the equality sign is interpreted as an as-
signment “:=” — interventions can only take place on the right hand side

Dominik Janzing & Bernhard Schélkopf, August 30, 2013
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From Ordinary Differential Equations to Structural Causal Models:
the deterministic case

Joris M. Mooij Dominik Janzing Bernhard Schilkopf
Institute for Computing and Max Planck Institute Max Planck Institute
Information Sciences for Intelligent Systems for Intelligent Systems
Radboud University Nijmegen Tubingen, Germany Tibingen, Germany
The Netherlands
Abstract algorithms (starting from different assumptions) have

We show how, and under which conditions,
the equilibrium states of a first-order Ordi-
nary Differential Equation (ODE) system can
be described with a deterministic Structural
Causal Model (SCM). Our exposition sheds
more light on the concept of causality as ex-
pressed within the framework of Structural
Causal Models, especially for cyclic models.

been proposed for inferring cydlic causal models from
observational data (Richardson, 1996; Lacerda et al,,
2008; Schmidt and Murphy, 2008; Itani ct al., 2010;
Mooij et al., 2011).

The most straightforward extension to the cyclic case
seemns to be offered by the structural causal model
framework. Indeed, the formalism stays intact when
one simply drops the acyclicity constraint, However,
the question then arises how to interpret cyclic struc-
tural equations. One option is to assume an under-

UAI 2013

Dominik Janzing & Bernhard Scholkopf, August 30, 2013



Pearl’s do-calculus

e Motivation: goal of causality is to infer the effect of
interventions

e distribution of Y given that X is set to x:

p(Y|ldoX =x) or p(Y|dox)

e don’t confuse it with P(Y|x)

e can be computed from p and G

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Computing p(Xy,..., X,|dox;)

from p(Xy,...,X,) and G

e Start with causal factorization

p(Xl, c e ,Xn)

||
—
.
s
~
2

e Replace p(X;|PA;) with dx,..

p(X1, ..., Xpldow;) == | | p(X;|PA;)6x,0,
j#i

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Computing p(X;|do x;)

summation over x; yields

p(Xl, e 7Xz'—1aXi—|—17 “. ,Xn‘dOiEz) = Hp(XJ‘PA](CEz)) .
J#i

e distribution of X; with j # ¢ is given by dropping p(X;|PA;) and substi-
tuting x; into PA,; to get PA,(x;).

e obtain p(Xy|doz;) by marginalization

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Examples for p(.|dox) = p(.|z)

X—0

% @\@ ®




Examples for p(.|dox) # p(.|z)

e p(Yldoz) = P(Y) # P(Y|z)

©—

p(Y|dox) = P(Y) # P(Y|x)

x




Example: controlling for confounding

X —- (I

X LY partly due to the confounder Z and partly due to X — Y

e causal factorization

p(X,Y, Z) = p(Z)p(X|Z2)p(Y|X, Z)

e replace P(X|Z) with dx.

p(Y, Zldox) =p(Z) 6x. p(Y|X, Z)

e marginalize

p(Y|dox) = Zp p(Y|x, z %Zp zlx)p(Ylzx, z) = p(Y|x)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Identifiability problem

e.g. Tian & Pearl (2002)

e given the causal DAG G and two nodes X;, X

e which nodes need to be observed to compute p(X;|dox;) ?

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Inferring the DAG

e Key postulate: Causal Markov condition

e Lissential mathematical concept: d-separation

(describes the conditional independences required by a causal DAG)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path ¢ is said to be blocked by the set Z if

e (¢ contains a chain 1 — m — j or a fork i < m — j such
that the middle node is in Z, or

e g contains a collider 1 — m <« j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally
(X LY |Z)q

if Z blocks every path from a node in X to a node in Y.

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Example (unblocking of paths)

W—>i<—U<—W

W

e path from X to Y is blocked by 0

e unblocked by conditioning on Z or W or both

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Unblocking by conditioning on common effects
Berkson’s paradox (1946)
Example: X,Y, Z binary @
@ =XorY

XLY but X ALY|Z

e assume: for politicians there is no correlation between being a good speaker
and being intelligent

e politician is successful if (s)he is a good speaker or intelligent

e among the successful politicians, being intelligent is negatively correlated
with being a good speaker

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Asymmetry under inverting arrows

(Reichenbach 1956)

| X | Y | |
X1y X LY
X ALY|Z X1Y|Z

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Examples (d-separation)

(X LY |ZW)q
(X LY |ZUW)g
(X LY |VZUW)q

(X LY |VZU)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Causal inference for time-ordered variables

assume X [ Y and X earlier. Then X « Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Causal inference for time-ordered variables

assume Xq,...,X,, are time-ordered and causally sufficient

e start with complete DAG

)

)

e remove as many parents as possible:

p € PA; can be removed if

X; Lp|PA;\p

(going from potential arrows to true arrows “only” requires
statistical testing)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Time series and Granger causality

Does X cause Y and/or Y cause X7

exclude instantaeous effects and common causes

o if
Y;Wesent 7M~ Xpast |Y}9ast

there must be arrows from X to Y (otherwise d-separation)
e Granger (1969): the past of X helps when predicting Y; from its past

e strength of causal influence often measured by transfer entropy

I(Ypresent; Xpast |Ypast)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Confounded Granger

Hidden common cause Z relates X and Y

O-0-0-0

PRILES

l l l ‘ '

1 1 1 Zt" |Z
A

N t+1 1

=

due to different time delays we have

Ypresent 7M— Xpast ‘Ypast

but
Xpresent A Ypast ‘Xpast

Granger infers X — Y

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Why transfer entropy does not
quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

ST

e although the influence is strong

I(Ypresent; Xpast ’Ypast) =0,

because the past of Y already determines its present
e quantitatively still wrong for non-deterministic relation

e recent paper on definitions of causal strength: Janzing, Balduzzi, Grosse-
Wentrup, Scholkopf, Annals of Statistics 2013

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Quantifying causal influence for general DAGs

Given:
causally sufficient set of variables X4,...,X,, with

e known causal DAG G

e known joint distribution P(X4,..., X,)

X
<

Goal:

construct a measure that quantifies the strength of X;—X;
with the following properties:

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Postulate 1: (mutual information)

X

For this simple DAG we postulate
cx—y = 1(X;Y)

(no other path from X to Y, hence the dependence is caused by the arrow
X —=Y)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Postulate 2: (localility)

causes of causes and effects of effects don’t matter
N —

here we also postulate cx_y = I(X;Y)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Postulate 3: (strength majorizes conditional dependence,

given the other parents)

/

@\®

cx—y 2 I(X;Y[Z)
(without X — Y the Markov condition would imply I(X;Y |Z) = 0)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Why cx_y =I1(X;Y |Z) is a bad idea

/ \ contains / as a limiting case

®\ @ weak influence 7 — Y

where we postulated cx_,y = I(X;Y) instead of I(X;Y |Z)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Our approach: ‘“edge deletion”

e define a new distribution

Px_y(z,y,2) = P(2)P(x]2) ) Plyla’,2)P(a’)

e define causal strength by the 'impact of edge deletion’
cx—y = D(P||Px—y)

e intuition of edge deletion:

cut the wire between devices and feed the open end with an iid copy of

the original signal @
/ related work:
@ Ay & Krakauer (2007)

/‘L

X' ~P(X)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Properties of our measure

e strength also defined for set of edges
e satisfies all our postulates
e also applicable to time series

e conceptually more reasonable than Granger causality and transfer entropy

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Inferring the causal DAG without time information

e Setting: given observed n-tuples drawn from p(X;,...,X,), infer G

e Key postulates: Causal Markov condition and causal faithfulness

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Causal faithfulness

Spirtes, Glymour, Scheines

p is called faithful relative to GG if only those independences hold
true that are implied by the Markov condition, i.e.,

(X LY |Z)e <« (XL1Y|2),

Recall: Markov condition reads

(X LY|Z)e = (XLYI|Z),

Dominik Janzing & Bernhard Scholkopf, August 30, 2013



Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = Uy
Y = aoaX+Uy
7 = BX +~Z+Uy

with independent noise terms Ux, Uy, Uz

B+ay=0 = XIZ
/ \
O

@
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Examples of unfaithful distributions (2)

binary causes with XOR as effect

e for p(X),p(Y) uniform: X Il Z,Y 1 Z.
i.e., unfaithful (since X, Z and Y, Z are connected in the graph).

e for p(X),p(Y) non-uniform: X £ Z)Y A Z.

i.e., faithful

(fair coins)
O
@) ey

unfaithfulness considered unlikely because it only occurs for
non-generic parameter values

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Conditional-independence based causal inference
Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:
e accept only those DAGs GG as causal hypotheses for which

(X LY|Z)e & (XLY|2),.

e identifies causal DAG up to Markov equivalence class
(DAGs that imply the same conditional independences)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov
equivalent iff they have the same skeleton and the same
v-structures.

skeleton: corresponding undirected graph
v-structure: substructure X — Y <« Z with no edge between
X and Z

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Markov equivalent DAGs

K==z
==z
K=~z

same skeleton, no v-structure

X1 Zy

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Markov equivalent DAGs

W W
/ /
3XS
z z

same skeleton, same v-structure at W




Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea;:
1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

e graph is acyclic

e all v-structures have been found in 2)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Construct skeleton

Theorem: X and Y are linked by an edge iff there is no set Sxy

such that
(X LY |Sxy.

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened off by
conditioning on an appropriate set

®) —-w>»v X LY {2 W)

... but not by conditioning on all other variables!

Sxy is called a Sepset for (X,Y)
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Efficient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X —Y with X 1L Y

2. remove all edges X — Y for which there is a neighbor Z #£ Y
of X with X Il Y |Z

3. remove all edges X — Y for which there are two neighbors
Zl,ZQ 7é Yof X with X 1LY ‘Zl,ZQ

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Advantages

e many edges can be removed already for small sets

e testing all sets Sxy containing the adjacencies
of X is sufficient

e depending on sparseness, algorithm only requires
independence tests with small conditioning tests

e polynomial for graphs of bounded degree

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Find v-structures

o given X — Y — Z with X and Y non-adjacent

e given Sxy with X 1L Y ‘SXY

a priori, there are 4 possible orientations:

X 57 —=>Y )
X+—Z->Y 5 Z € Sxy
X — /Z+Y )
X > Z4+Y ZQSXY

Orientation rule: create v-structure if Z7 € Sxvy
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Direct further edges (Rule 1)
o0 ©
4
-0

(otherwise we get a new v-structure)
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Direct further edges (Rule 2)
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Direct further edges (Rule 3)

could not be completed
without creating a cycle
or a new v-structure
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Direct further edges (Rule 4)

-

or a new v-structure

/ could not be completed
I i without creating a cycle
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Examples

(taken from Spirtes et al, 2010)

true DAG @_»@_»@4_ @
U

start with fully connected undirected graph

A
@Q\%/@
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remove all edges X — Y with X 1 Y |[()

T
®<g§%)3

X1W Y ULIW

remove all edges having Sepset of size 1

=¥ —2—w
v

XLZY XAU|Y YLU|Z WLU|Z




find v-structure
Xy zew
v

Z & Syw
orient further edges (no further v-structure)
v

edge X — Y remains undirected
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Conditional independence tests

e discrete case: contingency tables

e multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)
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Improvements

e CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

e FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

e for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh
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Bayesian approach c.g cooper, Heckerman, Meek (1997),
Stegle, Janzing, Zhang, Scholkopf (2010)

idea:
e define prior over possible DAGs

e the conditionals p(X;|PA;) are free parameters in the
factorization

p(Xyy. X)) = IIP(leij)

=1
e define priors on the parameter space of each DAG

e compute posterior probabilities of DAGs

implicit preference of faithful DAGs

Note: whether Markov equivalent DAGs obtain the same
posterior probability depends on the prior
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Large scale evaluation of PC-related approach

Maathuis, Colombo, Kalisch & Biithlmann (2007)

Given

e Observational data: expression profiles of 5,361 genes of yeast (wild
type)

e Interventional data: expression profiles of 5,361 genes for interventions
on 234 genes

Evaluation:

e use observational data to select the genes that are most influenced by the
interventions

(new method: compute lower bound on the effect over all equivalent

DAGs)

e compare with those selected from interventional data

success rates clearly significant: e.g. 33 true positive instead of 5
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Equivalence of Markov conditions

Theorem: the following are equivalent:

— Existence of a functional causal model

— Local Causal Markov condition: X statistically independent of non-
descendants, given parents

— Global Causal Markov condition: d-separation
— Factorization p(X1,..., X,) =[], p(X; | PAj)

(subject to technical conditions)

P S

descendants
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Local Markov = factorization (rauritzen 1996)

e Assume X, is a terminal node, i.e., it has no descendants, then ND,, =
{X1,...,Xn_1}. Thus the local Markov condition implies

X, AL {X1,...,X,_1}|PA, .

e Hence the general decomposition

(1, ... xn) =p(Tn|ze, . s xp_1)p(T1, . Tp1)

becomes
p(xla SR 7:Cn) — p(xn‘pa’n)p<x17 SRR 7xn—1) .

e Induction over n yields
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Factorization = global Markov
(Lauritzen 1996)
Need to prove (X 1L Y |Z)g = (X 1LY |Z),.

Assume (X 1L Y |Z)¢

e define the smallest subgraph G’ containing X,Y, Z
and all their ancestors

e consider moral graph G (undirected graph containing
the edges of G’ and links between all parents)

e use results that relate factorization of probabilities with
separation in undirected graphs
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Global Markov = local Markov

Know that if Z d-separates X,Y, then X I Y |Z.
Need to show that X; 1L ND;|PA;.

Simply need to show that the parents PA; d-separate X; from its non-descendants
NDjI

All paths connecting X; and ND; include a P € PA;, but never as a collider

- — P« Xj
Hence all paths are chains

- — P — Xj
or forks

Therefore, the parents block every path between X; and ND;.
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functional model = local Markov condition

(Pearl 2000) G G'

@\®/@ ~ @/
|

o

® &S

e augmented DAG G’ contains unobserved noise
e local Markov-condition holds for G':

(i): the unexplained noise terms U; are jointly independent, and thus
(unconditionally) independent of their non-descendants

(ii): for the X;, we have
X; L ND’ |PA’

because X; is a (deterministic) function of PA’.

e local Markov in G’ implies global Markov in G’

e global Markov in G’ implies local Markov in G (proof as last slide)
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factorization = functional model

generate each p(X;|PA;) in
p(X1,.... Xn) =[] p(X;|PA;)

by a deterministic function:

e define a vector valued noise variable U j

e cach component Uj[pa;] corresponds to a possible value
pa; of PA;

e define structural equation
rj = fi(paj, uz) = ujlpa;].
e let component U,|pa,] be distributed according to p(X;|pa;).

Note: joint distribution of all U,[pa,] is irrelevant, only
marginals matter
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different point of view

@ =g(X), U choosesg € G

e (7 denotes set of deterministic mechanisms

e U randomly chooses a mechanism
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Example: X,Y binary

= g(X), U chooses g € {ID,NOT,1,0}

the same p(X,Y) can be induced by different distributions on G:
e model 1 (no causal link from X to Y)

Plg=0)=1/2, Plg=1)=1/2

e model 2 (random switching between I'D and NOT)

P(g=1ID)=1/2, P(g=NOT)=1/2

both induce the uniform distribution for Y, independent of X
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INTERVAL

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Recap: Functional Causal Model

o X, = f;(ParentsOf;, Noise;), with jointly independent Noisey, ..., Noise,.
. parents of X (PAJ,)

Q /
\0~\® = (PA, U)
0

e entails p(X1,...,X,,) with particular conditional independence structure

Under certain assumptions, given p, can recover an equivalence class con-
taining the correct graph using conditional independence testing.

Problems:
1. does not work for graphs with only 2 vertices (even with infinite data)

2. if we don’t have infinite data, conditional independence testing can be
arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.
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Friedrich Nietzsche's

TWILIGHT OF THE IDOLS

or How to Philosophize with a Hammer

Translated, with commentary, by R.J. Hollingdale

]

The Four Great Errors

LEIrITO
Worlag ven 6 6 Saanann
-~

The error of mistaking cause for consequence. - There is no more dangerous error
than that of mistaking the consequence for the cause: | call it reason's intrinsic form
of corruption. Nonetheless, this error is among the most ancient and most recent

O= O
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Restricting the Functional Model

e consider the graph X — Y

e ceneral functional model ~-
Y = f(X,N)

Note: if IV can take d different values, it could switch randomly
between mechanisms f1(X),..., f4(X)

e additive noise model

Y = f(X)+ N
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Causal Inference with Additive Noise, 2-Variable Case

Forward model: s
yizf(af)—l—n,withxln @<——@

Identifiability: = when 1is there a
backward model of the same form?

l v

oyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009

%)
@
o)

ters et al.: Detecting the Direction of Causal Time Series. ICML 2009
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Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schélkopf, 2008)

Theorem 1 Let the joint probability density of x and y be given by

p(2,y) = puly — f(2))pa(2), (1)

where p,,, p. are positive probability densities on R. If there is a backward model

p(z,y) = palz — 9(y))py (y) , (2)

then, denoting v := logp, and & := logp, and assuming sufficient differentia-
bility, the triple (f,pz, pn) must satisfy the following differential equation for all

z,y with V" (y — f(x))f'(x) # 0:

n gt 1" 1,010 g1 gl 1( £11\2
é-///:é-// <_VV/;f _|_]]L;/) _2]///f//f/_|_V/f///_'_VVV/{j f . V(]]:/) 7 (3)

where we have skipped the arguments y— f(x), x, and x forv, &, and f and their
derivatives, respectively. Moreover, if for a fized pair (f,v) there exists y € R
such that V" (y — f(x))f'(z) # 0 for all but a countable set of points x € R, the
set of all p, for which p has a backward model is contained in a 3-dimensional
affine space.

Corollary 1 Assume that v = & = 0 everywhere. If a backward model
exists, then f is linear.
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Idea of the proof

If p(x, y) admits an additive noise model
Y=FfX)+E

we have
plx,y) = q(x)r(y — f(x)).
It then satisfies the differential equation

( & log p(x, y)/0x° ) 0
3 log p(x, y)/Oxdy '

If it also holds with exchanging x and y, only specific cases remain,
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Alternative View ( cf. Zhang & Hyvdrinen, 2009)

H differential entropy
I mutual information

n, =y — f(x),n, = x — g(y) residual noises

Lemma: For arbitrary joint distribution of x,y and functions f,
g : R — R, we have:

H(x,y) = H(z) + H(n,) — I(n,,2) = H(y) + H(n,) — L(n,, ).

If © causes y, we can find f such that n, 1 x, while “almost all” g
lead to n, A vy, i.e.:

I(n,,x)=0and I(ngy) >0

Thus
H(x,y) = H(x) + H(ny) < H(y) + H(ny).
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Causal Inference Method

Prefer the causal direction that can better be fit
with an additive noise model.

Implementation:
e Compute a function f as non-linear regression of X on Y

e Compute the residual
E:=Y — f(X)

e check whether E and X are statistically independent (un-
correlated is not enough)
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Experiments

Relation between altitude (cause) and average temperature (effect)
of places in Germany

15
@ 10
3
(s o
g 5
g 9
-5
0 1000 2000 3000

altitude
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'8 [T} < "}
— = 200 -
o % = 5
o N 0 > )
g ':.. g 0 H;.‘
F: . 3 200 | \\
e e~ g
1000 2000 3000 _4(2(}0 0 10 20
altitude remperature

Our independence tests detect strong dependence.
Hence the method prefers the correct direction

altitude — temperature
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e Generalization to post-nonlinear additive noise models: Zhang
& Hyvarinen: On the Identifiability of the Post-Nonlinear Causal
Model, UAI 2009

e Generalization to graphs with more than two vertices:
Peters, Mooij, Janzing, Scholkopt: Identifiability of Causal Graphs
using Functional Models, UAI 2011

e Generalization to two-vertex-graphs with loops:
Mooij, Janzing, Heskes, Scholkopf: Causal discovery with Cyclic
additive noise models, NIPS 2011
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Independence-based Regression (Mooij et al., 2009)

e Problem: many regression methods assume a particular noise
distribution; if this is incorrect, the residuals may become de-
pendent

e Solution: minimize dependence of residuals rather than maxi-
mizing likelihood of data in regression objective

e Use RKHS distance between kernel mean embeddings/Hilbert-
Schmidt-norm of cross-covariance operator between two RKHSes
as a dependence measure

Moo, Janzing, Peters, Scholkopf: Regression by dependence minimization and its application
to causal inference. ICML 2009.

Yamada €& Sugiyama: Dependence Minimizing Regression with Model Selection for Non-
Linear Causal Inference under Non-Gaussian Noise. AAAT 2010.

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Kernel Independence Testing (Gretton et al., 2007)

k bounded p.d. kernel; P Borel probability measure

Define the kernel mean map

w: P E, plk(zx,.)]

Theorem: If k is universal, i is injective.

Discussion: a measure can be represented as an element of the
RKHS associated with k without loss of information.

Let’s represent p(X,Y) and p(X)p(Y) — they will only map to the
same element if they are equal, i.e., if X 1 Y.
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Proposition 1 Assume that k is strictly pd, and for all i, j,
ri #xj, and y; # y;. If for some a;.3; € R — {0}, we have

Y aik(xi,.) =) _ B3ik{y;..), (1)
fm] j=l

then X =Y.

Proof (bv contradiction): W.log, asume that zy € Y. Subtract
> jm1 Fjkiy;. ) from (1), and make it a sum over distinet points, to get

()= Z k(. . ),

where 2y =r,.my=oy #0 and 2. - € XUY = {x;}. 22.--ER
Take the dot product with 3. 4;k(2;..), using (k{2 .). k(2;..)) = k(2i. 3;), to

get
= Z‘hﬁ)k(zu z))'
i

with % # 0, hence & cannot be stictly pd.
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Kernel Independence Testing: HSIC

Corollary: z I y <= A = ||u(pzy) — p(pz X py)|| = 0.

o For k((z,y), (2", ) = ka(z,2")ky(y, y'):
A? = HS-norm of cross-covariance operator between the two RKHSes
(HSIC, Gretton et al., 2005)

e empirical estimator —5tr[K,K,] (ignoring centering)

e Why does this characterize independence: x I y iff

Sup cov(f(x),g(y)) =0
f,g € RHKS unit balls

(cf. Kernel ICA, Bach & Jordan, 2002)
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Hilbert-Schmidt Normalized Independence Criterion
(Fukumizu et al., 2007)

e normalize out variance of X and Y to get HSNIC; can be shown to equal
the mean squared contingency

/ (pﬁ%@) - 1) dp(z, y)

independent of the (characteristic/universal) kernel

e can be shown to be upper bounded by the mutual information,

HSNIC(X,Y) < MI(X,Y) = / log (pz(?g]’f@)) dp(z,y)
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Approximating the null distribution

e to construct a test, need to compute the null distribution of our test
statistic (HSIC): how is the empirical HSIC distributed if X 1 Y?

e can use a (complicated) asymptotic expression for HSIC (Gretton et al.,
2008), but there’s an easy practical method to generate samples consis-
tent with the null hypothesis (independence), and the original marginals

p(X),p(Y):
e given a permutation o, turn (z1,y1), ..., (Tn, ¥n) i0t0 (1, Yo(1))s - - -+ (Tn, Yo (n))

e the case of conditional independence is harder: given (z1,vy1,21),- -+, (Tn, Yn, 2n),
need to generate samples consistent with X 1L Y |Z, and original p(X|Z),p(Y |Z).

e if 2 only takes few values, can permute within groups having the same
value of z (Fukumizu et al., 2007)

e general case is an open problem, but see e.g. Zhang et al., UAI 2011
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Detection of Confounders
Given p ( X,Y ), infer whether

» X —»Y 0

A
> Y =X ®-0 & ® ®O @ e
» X+ T —Y for some (possibly) unobserved variable

T

-

e Confounded additive noise (CAN) models !
X = fx (T) + Ux
Y = fy (T) + Uy

with functions fx, fy and Ux,Uy,T jointly independent

Note: includes the case
Y = f(X)+U -
by setting fx =1td and Ux = 0.
e Estimate (fx (1), fy (T)) using dimensionality reduction

o If Ux or Uy is close to zero, output 'no confounder’
e Identifiability result for small noise

Janzing, Peters, Mooij, Scholkopf: Identifying latent confounders using additive noise models.

UAI 2009
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Identifying discrete confounders by independence-based
clustering

Identifying Finite Mixtures of Nonparametric Product Distributions
and Causal Inference of Confounders

Eleni Sgouritsa’, Dominik Janzing', Jonas Peters’”, Bernhard Schilkopf
! Max Planck Institute for Intelligent Systems, Tiibingen, Germany

2 Department of Mathematics, ETH, Zurich
{sgouritsa, janzing, peters, bs}@Otuebingen.mpg.de

m d
P(X1,...,Xa) = Y P(=®) [ P(xX;12)
i=1 j=1
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However, employing properties of the noise is not the only way of inferring cause
and effect.

What about the noiseless case?
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Independence of input and mechanism

Causal structure:

C cause (;)@

E effe.ct id T

N noise

¢ mechanism N N,
Assumption:

p(C) and p(E

C') are “independent”

Janzing & Scholkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire &€ Dirkx, 2007

Dominik Janzing & Bernhard Schélkopf, August 30, 2013




Inferring deterministic causal relations

?

* Does not require noise

« Assumption: y = f(x) with invertible f @m

N, |Y
ply) ‘( f(X)
=
)
s X

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schélkopf:

Inferring deterministic causal relations, UAI 2010
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Causal independence implies anticausal dependence

Assume that f is a monotonously increasing bijection of [0, 1].
View p, and log f’ as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):
Cov (log f',pz) =0
Note: this is equivalent to
1 1
| os @playdz = [ 1og (@)
0 0

since

Cov (log f',ps) = E[log f"ps]—E[log f'] E[p,] = E[log f"-pz]—E[log f'].

Proposition: /
Cov (log f =" ,py) >0

Dominik Janzing & Bernhard Schélkopf, August 30, 2013
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U, U, uniform densities for z,y

vy, v, densities for x,y induced by transforming wu,, u, via f ! and f

Equivalent formulations of the postulate:

Additivity of Entropy:
S (py) =S (pz) =S (vy) — S (uz)

Orthogonality (information geometric):
D (pz || ve) = D (pa | uz) + D (ug || vz)

which can be rewritten as
D (py I uy) =D (ps ||ug) +D (Uy | uy)

Interpretation:

irregularity of p, = irregularity of p, + irregularity introduced by f
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Slope-Based Estimator

Slope-based IGCI: infer X — Y whenever
1 1
Jy loglf” @) [P dx < [ loglg’ ()| P (v) dx
We introduce the following estimator:

Yiv1 Vi
Xi+1—X;

Croy = [log |/ (¥) | P(x) dx ~ —L- g

where the x; values are ordered.

» infer X — Y whenever

Cxoy < Cyox.
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80 Cause-Effect Pairs
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80 Cause-Effect Pairs — Examples

pair0001
pair0005
pair0012
pair0025
pair0033
pair0040
pair0042
pair0047
pair0064
pair0068
pair0069
pair0070
pair0072
pair0074
pair0078

var 1

Altitude
Age (Rings)
Age

cement

daily alcohol consumption

Age
day
#cars/24h

drinking water access

bytes sent

inside room temperature

parameter
sunspot area
GNI per capita

PPFD (Photosynth. Photon Flux)

var 2

Temperature

Length

Wage per hour

compressive strength

mcv mean corpuscular volume
diastolic blood pressure
temperature

specific days

infant mortality rate

open http connections
outside temperature

sex

global mean temperature

life expectancy at birth

NEP (Net Ecosystem Productivity)

dataset ground truth

DWD
Abalone
census income
concrete data
liver disorders
pima indian
B. Janzing
traffic
UNdata

P. Daniusis

J. M. Mooij
Biilthoff
sunspot data
UNdata
Moffat A. M.

L I I A I A A A A A

http://webdav.tuebingen.mpg.de/cause-effect/
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Accuracy (%)

IGCI:
Deterministic

Method

LINGAM:
Shimizu et al.,
2006

AN:
Additive Noise
Model (nonlinear)

PNL:
AN with post-
nonlinearity

GPI:
Mooij et al.,
2010
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Causal Learning and Anticausal Learning
Scholkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, I[CML 2012

o example 1: predlct gene from mRNA sequence

rowng pepiice cha

\ |
o = ) (A Incomng ]RNA X
W ound 1o Amino Ack
2! l I ‘gﬁ’“ bour ming Ackd
Ouloiang 2
oemply IRNA G C \
& TRNAHTRNA a2
N 4 || | '
b id
l l'. “ i i\ ’

\
U“ G G“A ALAUG A"uuu l}l c”

: ‘ MessengerRNA
y - X NY
Peptide Synthesis .
Source: http://commons.wikimedia.org/wiki/File: Peptide syn.png caus al mechcmzsm @Y

e example 2: predict class membership from handwritten digit

id
3 0 0
NX NY
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Covariate Shift and Semi-Supervised Learning

Assumption: p(C') and mechanism p(E|C') are “independent”
Goal: learn X — Y, i.e.; estimate (properties of) p(Y|X)

e covariate shift (i.e., p(X) changes): mechanism

p(Y|X) is unaffected by assumption
X >
e semi-supervised learning: impossible, since 0,
p(X) contains no information about p(Y|X) id
Ny N,

® transfer learning (Nx, Ny change, ¢ not): could be
done by additive noise model with conditionally inde-

pendent noise :
causal mechanism

e p(X) changes: need to decide if change is

due to mechanism p(X|Y) or cause distribu-
tion p(Y) (sometimes: by deconvolution) =
4 .
id
N,

e semi-supervised learning: possible, since
p(X) contains information about p(Y|X) —
e.g., cluster assumption. N X

(Cf Storkg)r{lnzg@zoirg)& Bernhard Scholkopf, August 30, 2013

® transfer learning: as above



Semi-Supervised Learning (Schsikops et al., ICML 2012)

* Known SSL assumptions link p(X) to p(Y|X):

* Cluster assumption: points in same cluster of p(X) have
the same Y

* Low density separation assumption: p(Y|X) should cross
0.5 in an area where p(X) 1s small

o Semi-supervised smoothness assumption: E(Y|X) should be
smooth where p(X) 1s large

* Next slides: experimental analysis
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SSL Book Benchmark Datasets — Chapelle et al. (2006)

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

| Category | Dataset

g241c: the class causes the 241 features.
: g241d: the class (binary) and the features are confounded by a variable with 4 states.
Anticausal/ —— — - : .
Confounded Digitl: the positive or negative angle and the features are confoundc?d by the Var}able of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

| Causal | SecStr: the amino acid is the cause of the secondary structure. |

| Unclear | BCI, Text: Unclear which is the cause and which the effect. |
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UCI Datasets used in SSL benchmark — Guo et al., 2010

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

@
o
-
(¢}
()]

Dataset |

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).

Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).

Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.

Iris: the size of the plant is an effect of the category it belongs to.

Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).

Letter: the class (letter) is a cause of the produced image of the letter.

Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).

Image Segmentation: the class of the image is the cause of the features of the image.

Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.

Vehicle: the class of the vehicle causes the features of its silhouette.

Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.

Vowel: the class (vowel) causes the features.

Wave: the class of the wave causes its attributes.

Anticausal/Confounded

Balance Scale: the features (weight and distance) cause the class.
Causal | Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear| Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., lonoshpere, Credit Approval,
Sick).
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Datasets, co-regularized LS regression — Brefeld et al., 2006

Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal o1

Unclear
| Categ.| Dataset | Target variable Remark
breastTumor | tumor size causing predictors such as inv-nodes and deg-malig
S cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood
S sugar
é cleveland presence of heart disease in the pa- | causing predictors such as chest pain type, resting blood pressure,
g tient and fasting blood sugar
g lowbwt birth weight causing the predictor indicating low birth weight
S pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and
§ Albumin
S pollution age-adjusted mortality rate per | causing the predictor number of 1960 SMSA population aged 65
< 100,000 or older
wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity
autoMpg city-cycle fuel consumption in | caused by predictors such as horsepower and weight
miles per gallon
cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
= memory, and cache memory
3 fishcatch fish weight caused by predictors such as fish length and fish width
St : . . . . : — .
O housing housing values in suburbs of | caused by predictors such as pupil-teacher ratio and nitric oxides
Boston concentration
machine_cpu| cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-
tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
Servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-
ical linkages
auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
5 fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
< pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
S stock (target: price of one particular stock); strike (target: strike volume);

triazines (target: activity); veteran (survival in days)
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Benchmark Datasets of Chapelle et al. (2006)
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Self-training does not help for causal problems (cf. Guo et al., 2010)
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Relative error decrease = (error(base) —error(self-train)) / error(base)
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Co-regularization helps for the anticausal problems of Brefeld et al., 2006
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Co-regularizarion hardly helps for the causal problems of Brefeld et al., 2006
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Causal Inference for Individual Objects @anzing & Schiikopf, 2010)

Similarities between single objects also indicate causal relations:
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Causal Markov Conditions

e Recall the (Local) Causal Markov condition:
An observable is statistically independent of its non-descendants, given
parents

e Reformulation:
Given all direct causes of an observable, its non-effects provide no addi-
tional statistical information on it
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Causal Markov Conditions

e (Generalization:
Given all direct causes of an observable, its non-effects provide no addi-
tional staetsstieat information on it

e Algorithmic Causal Markov Condition:
Given all direct causes of an object, its non-effects provide no additional
algorithmic information on it
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Kolmogorov complexity
(Kolmogorov 1965, Chaitin 1966, Solmonoff 1964)

of a binary string z

e K(z) := length of the shortest program with output x (on a
Turing machine)

e interpretation: number of bits required to describe the rule that
generates x

N

e equality "=" is always understood up to string-independent
additive constants (often denoted by =, but we drop the ”+”)

e K(x) is uncomputable

=, ® probability-free definition of information content
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Conditional Kolmogorov complexity

e K(y|x*): length of the shortest program that generates y
from the shortest description of the input x. For simplicity, we
write K(y |x).

e number of bits required for describing y if the shortest descrip-
tion of x is given

e note: x can be generated from its shortest description but not
vice versa because there is no algorithmic way to
find the shortest compression
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Algorithmic mutual information (Chaitin, Gacs)

Information of z about y

e [(x:y) = K(z)+ K(y) — K(z,y)
= K(z)-K(z|y) =K(y) — K(y|x)

e Interpretation: number of bits saved when compressing z,y
jointly rather than independently

e Algorithmic independence x Il y: <= I(z:y)=0
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Conditional algorithmic mutual information

Information that x has on y (and vice versa) when z is given

o [(z:ylz):=K(z|z)+K(y|z) — K(z,y]z)
e Analogy to statistical mutual information:

[(X:Y|2)=S(X|2)+S5(Y|2)-S(X,Y|Z)

e Conditional algor. independence z Il y|z <= [ (x:y|z) =0
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Algorithmic mutual information: example
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Postulate: Local Algorithmic Markov Condition

Let x1,...,x, be observations (formalized as strings). Given its di-
rect causes pa;, every x; is conditionally algorithmically independent
of its non-eftects nd,

z; A nd;|pa;
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Equivalence of Algorithmic Markov Conditions

For n strings x4, ..., z, the following conditions are equivalent

e [Local Markov condition
I(z; : ndj|pa;) =0

e (Global Markov condition:
If R d-separates S and T then I (S:T|R)=0

e Recursion formula for joint complexity

K(Qfl,...,xn) — ZK(QZ'] ‘paj)
j=1

Janzing € Scholkopf, IEEE Trans. Information Theory, 2010

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Algorithmic model of causality

e for every node x, there exists a program u; that computes z;

from its parents pa, Pa j
- Q U;

e all u; are jointly independent @T(paj’ uj)

e the program u; represents the causal mechanism that generates
the effect from its causes

e u; are the analog of the unobserved noise terms in the statistical
functional model

Theorem: this model implies the algorithmic Markov condition
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“Independent” = algorithmically independent?

Postulate (Janzing & Scholkopf, 2010, inspired by Lemeire & Dirkx, 2006):
The causal conditionals p(X;|PA,) are algorithmically independent

e special case: p(X) and p(Y|X) are alg. independent for X — Y

e can be used as justification for novel inference rules (e.g., for additive noise
models: Steudel & Janzing 2010)

e excludes many, but not all violations of faithfulness (Lemeire & Janzing,
2012)

Dominik Janzing & Bernhard Schélkopf, August 30, 2013



Generalized independences Steudel, Janzing, Schélkopf (2010)

Given n objects O := {x1,...,T,}

Observation: if a function R : 2° — RBL is submodular, i.e.,
R(S)+ R(T) > R(SUT)+ R(SNT) vS, T Cc O
then
I(A;B|C) =R(AUC)+ R(BUC)— R(AUBUC)—-R(C) >0

for all disjoint sets A, B,C C O

Interpretation: [ measures conditional dependence
(replace R with Shannon entropy to obtain usual mutual information)
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Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

e local Markov condition
z; AL nd; |pa,

e global Markov condition: d-separation implies independence

e sum rule

R(A) =)  R(zjlpa).

JEA

for every ancestral set A of nodes.

—but can we postulate that the conditions hold w.r.t. to the true DAG?
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Generalized functional model

Theorem:
e assume there are unobserved objects uy,...,uy Pa J
U.
e assume

R(z;,paj,u;) = R(paj,u;)

(x; contains only information that is already contained in its parents +
noise object)

then x1,...,x, satisfy the Markov conditions

= causal Markov condition is justified provided that mechanisms fit to infor-
mation measure
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Generalized PC

PC algorithm also works with generalized conditional independence

Examples:
1. R := number of different words in a text
2. R := compression length (e.g. Lempel Ziv is approximately submodular)
3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (different versions of
a paper abstract)
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Summary

e conventional causal inference algorithms use conditional statistical depen-
dences

e more recent approaches also use other properties of the joint distribution

e non-statistical dependences also tell us something about causal directions
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Selection within Markov equivalence classes

different approaches

e some “independence” condition between p(X;|PA;)

Information-geometric method, Trace Method

e restricting conditionals/functional models to subsets

Additive-noise models, post-nonlinear model

e define priors on p(X;|PA;) that can yield different posteriors for equiva-
lent DAGs

Gaussian process based prior by Mooij, Stegle, Janzing, Scholkopf (2010)
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Thank you for your attention
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