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Roadmap!
• informal motivation

• functional causal models

• causal graphical models;

d-separation, Markov conditions, faithfulness

• formalizing interventions

• causal inference...

– using time order

– using conditional independences

– using restricted function classes

– using “independence” of mechanisms

– not using statistics



Dominik Janzing & Bernhard Schölkopf,  August 30, 2013 

Dependence vs. Causation 
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Thanks to P. Laskov. 
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•  Better to talk of dependence than correlation 
•  Most statisticians would agree that causality does tell us 

something about dependence 
•  But dependence does tell us something about causality 

too: 

“Correlation does not tell us anything about causality” 
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Z 

Y X 

special cases: 

Y X 

Y X 

Statistical Implications of Causality 

Reichenbach’s

Common Cause Principle

links causality and probability:

(i) if X and Y are statistically

dependent, then there is a Z
causally influencing both;

(ii) Z screens X and Y from each

other (given Z, the observables

X and Y become independent)
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Notation 

• A,B event

• X, Y, Z random variable

• x value of a random variable

• Pr probability measure

• PX probability distribution of X

• p density

• pX or p(X) density of PX

• p(x) density of PX evaluated at the point x

• always assume the existence of a joint density, w.r.t. a product

measure
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Independence 

Two events A and B are called independent if

Pr(A \ B) = Pr(A) · Pr(B).

A1, . . . , An are called independent if for every subset S ⇢ {1, . . . , n}
we have

Pr

 
\

i2S

Ai

!
=

Y

i2S

Pr(Ai).

Note: for n � 3, pairwise independence Pr(Ai\Aj) = Pr(Ai)·Pr(Aj)

for all i, j does not imply independence.



Dominik Janzing & Bernhard Schölkopf,  August 30, 2013 

Independence of random variables 
Two real-valued random variables X and Y are called independent,

X ?? Y,

if for every a, b 2 R, the events {X  a} and {Y  b} are indepen-

dent.

Equivalently, in terms of densities: for all x, y,

p(x, y) = p(x)p(y)

Note:

If X ?? Y , then E[XY ] = E[X]E[Y ], and cov[X,Y ] = E[XY ]�E[X]E[Y ] = 0.

The converse is not true: cov[X,Y ] = 0 6) X ?? Y .

However, we have, for large F : (8f, g 2 F : cov[f(X), g(Y )] = 0) ) X ?? Y
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Conditional Independence of random variables 
Two real-valued random variables X and Y are called conditionally

independent given Z,

(X ?? Y ) |Z or X ?? Y |Z or (X ?? Y |Z)p

if

p(x, y|z) = p(x|z)p(y|z)
for all x, y, and for all z s.t. p(z) > 0.

Note: conditional independence neither implies nor is implied by

independence.

I.e., there are X, Y, Z such that we have only independence or only

conditional independence.
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Functional Causal Model (Pearl et al.) 

X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• Set of observables X1, . . . , Xn

• directed acyclic graph G with vertices X1, . . . , Xn

• Semantics: parents = direct causes

• Xi = fi(ParentsOfi,Noisei), with independent Noise1, . . . ,Noisen.

• “Noise” means “unexplained” (or “exogenous”), we use Ui

• Can add requirement that f1, . . . , fn,Noise1, . . . ,Noisen “independent”
(cf. Lemeire & Dirkx 2006, Janzing & Schölkopf 2010 — more below)
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Functional Causal Model, ctd. 

• this model can be shown to satisfy Reichenbach’s principle:

1. functions of independent variables are independent, hence dependence

can only arise in two vertices that depend (partly) on the same noise

term(s).

2. if we condition on these noise terms, the variables become independent

Z 

Y X 

fX fY

fZ
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Functional Causal Model, ctd. 

Z 

Y X 

fX fY

fZ

• Independence of noises is a form of ”causal su�ciency:” if the noises were

dependent, then Reichenbach’s principle would tell us the causal graph is

incomplete

• Interventions are realized by replacing functions by values

• the model entails a joint distribution p(X1, . . . , Xn). Questions:

(1) What can we say about it?

(2) Can we recover G from p?
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Functional Model and Markov conditions 
(Lauritzen 1996, Pearl 2000) 
Theorem: the following are equivalent:

– Existence of a functional causal model
– Local Causal Markov condition: Xj statistically independent of non-

descendants, given parents (i.e.: every information exchange with its non-

descendants involves its parents)

– Global Causal Markov condition: d-separation (characterizes the set of

independences implied by local Markov condition)

– Factorization p(X1, . . . , Xn) =
�

j p (Xj | Parentsj) (conditionals as

causal mechanisms generating statistical dependence)

(subject to technical conditions)
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Counterfactuals and Interventions 
• David Hume (1711–76): “... we may define a cause to be an object, fol-

lowed by another, and where all the objects similar to the first are followed
by objects similar to the second. Or in other words where, if the first object
had not been, the second never had existed.”

• Jerzy Neyman (1923): consider m plots of land and ⌫ varieties of crop.

Denote Uij the crop yield that would be observed if variety i = 1, . . . , ⌫
were planted in plot j = 1, . . . ,m

For each plot j, we can only experimentally determine one Uij in each
growing season.

The others are called “counterfactuals”.

• this leads to the view of causal inference as a missing data problem — the
“potential outcomes” framework (Rubin, 1974)

• in Xi = fi(ParentsOfi,Noisei), the equality sign is interpreted as an as-
signment “:=” — interventions can only take place on the right hand side
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UAI 2013 
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Pearl’s do-calculus

• Motivation: goal of causality is to infer the e↵ect of

interventions

• distribution of Y given that X is set to x:

p(Y |doX = x) or p(Y |do x)

• don’t confuse it with P (Y |x)

• can be computed from p and G
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Computing p(X1, . . . , Xn

|do x
i

)

from p(X1, . . . , Xn

) and G

• Start with causal factorization

p(X1, . . . , Xn

) =

nY

j=1

p(X

j

|PA

j

)

• Replace p(X

i

|PA

i

) with �

Xixi

p(X1, . . . , Xn

|do x
i

) :=

Y

j 6=i

p(X

j

|PA

j

)�

Xixi
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Computing p(X
k

|do x
i

)

summation over xi yields

p(X1, . . . , Xi�1, Xi+1, . . . , Xn|do xi) =

Y

j 6=i

p(Xj |PAj(xi)) .

• distribution of Xj with j 6= i is given by dropping p(Xi|PAi) and substi-

tuting xi into PAj to get PAj(xi).

• obtain p(Xk|do xi) by marginalization
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Examples for p(.|do x) = p(.|x)
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Examples for p(.|do x) ⇥= p(.|x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)

• p(Y |do x) = P (Y ) ⇥= P (Y |x)
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Example: controlling for confounding

X 6?? Y partly due to the confounder Z and partly due to X ! Y

• causal factorization

p(X,Y, Z) = p(Z)p(X|Z)p(Y |X,Z)

• replace P (X|Z) with �

Xx

p(Y, Z|do x) = p(Z) �

Xx

p(Y |X,Z)

• marginalize

p(Y |do x) =
X

z

p(z)p(Y |x, z) 6=
X

z

p(z|x)p(Y |x, z) = p(Y |x) .
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Identifiability problem

e.g. Tian & Pearl (2002)

• given the causal DAG G and two nodes Xi, Xj

• which nodes need to be observed to compute p(Xi|do xj) ?
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Inferring the DAG

• Key postulate: Causal Markov condition

• Essential mathematical concept: d-separation
(describes the conditional independences required by a causal DAG)
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d-separation (Pearl 1988)

Path = sequence of pairwise distinct nodes where consecutive ones are adjacent

A path q is said to be blocked by the set Z if

• q contains a chain i⇤ m⇤ j or a fork i⇥ m⇤ j such
that the middle node is in Z, or

• q contains a collider i⇤ m⇥ j such that the middle node
is not in Z and such that no descendant of m is in Z.

Z is said to d-separate X and Y in the DAG G, formally

(X ⌅⌅ Y |Z)G

if Z blocks every path from a node in X to a node in Y .



Dominik Janzing & Bernhard Schölkopf,  August 30, 2013 

� �� �

Example (blocking of paths)

path from X to Y is blocked by conditioning on U or Z or both
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Example (unblocking of paths)

• path from X to Y is blocked by �

• unblocked by conditioning on Z or W or both
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X Y

Z = X or Y

Unblocking by conditioning on common e↵ects

Berkson’s paradox (1946)

Example: X,Y, Z binary

X ?? Y but X 6?? Y |Z

• assume: for politicians there is no correlation between being a good speaker

and being intelligent

• politician is successful if (s)he is a good speaker or intelligent

• among the successful politicians, being intelligent is negatively correlated

with being a good speaker



Dominik Janzing & Bernhard Schölkopf,  August 30, 2013 

Asymmetry under inverting arrows

(Reichenbach 1956)

X ⇥⇥ Y X �⇥⇥ Y

X �⇥⇥ Y |Z X ⇥⇥ Y |Z
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� �� �

� �

Examples (d-separation)

(X ⇥⇥ Y |ZW )G

(X ⇥⇥ Y |ZUW )G

(X ⇥⇥ Y |V ZUW )G

(X �⇥⇥ Y |V ZU)G
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Z 

Y X 
Y X 

Causal inference for time-ordered variables

assume X ⇥⇤⇤ Y and X earlier. Then X � Y excluded, but still two options:

Example (Fukumizu 2007): barometer falls before it rains, but it does not
cause the rain

Conclusion: time order makes causal problem (slightly?) easier but does not
solve it
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X1 X2

X3 X4

Causal inference for time-ordered variables

assume X1, . . . , Xn are time-ordered and causally su�cient

• start with complete DAG

• remove as many parents as possible:

p 2 PAj can be removed if

Xj ?? p |PAj \ p

(going from potential arrows to true arrows “only” requires

statistical testing)
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

...
? ? ?

Time series and Granger causality

Does X cause Y and/or Y cause X?

exclude instantaeous e↵ects and common causes

• if

Ypresent 6?? Xpast |Ypast

there must be arrows from X to Y (otherwise d-separation)

• Granger (1969): the past of X helps when predicting Yt from its past

• strength of causal influence often measured by transfer entropy

I(Ypresent;Xpast |Ypast)
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Zt-2 Zt-1 Zt Zt+1

v v v

Confounded Granger

Hidden common cause Z relates X and Y

due to di↵erent time delays we have

Ypresent 6?? Xpast |Ypast

but
Xpresent ?? Ypast |Xpast

Granger infers X ! Y
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Xt-2

Yt-2

Xt-1 Xt Xt+1

Yt-1 Yt Yt+1

Why transfer entropy does not

quantify causal strength (Ay & Polani, 2008)

deterministic mutual influence between X and Y

• although the influence is strong

I(Ypresent;Xpast |Ypast) = 0 ,

because the past of Y already determines its present

• quantitatively still wrong for non-deterministic relation

• recent paper on definitions of causal strength: Janzing, Balduzzi, Grosse-

Wentrup, Schölkopf, Annals of Statistics 2013
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Given:
causally su�cient set of variables X1, . . . , Xn with

• known causal DAG G

• known joint distribution P (X1, . . . , Xn)

X
2

X
1

X
3

Quantifying causal influence for general DAGs

Goal:

construct a measure that quantifies the strength of Xi!Xj

with the following properties:
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X Y

Postulate 1: (mutual information)

For this simple DAG we postulate

cX!Y = I(X;Y )

(no other path from X to Y , hence the dependence is caused by the arrow

X ! Y )
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Postulate 2: (localility)

causes of causes and e↵ects of e↵ects don’t matter

X Y

here we also postulate cX!Y = I(X;Y )
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X

Z

Y

Postulate 3: (strength majorizes conditional dependence,

given the other parents)

cX!Y � I(X;Y |Z)

(without X ! Y the Markov condition would imply I(X;Y |Z) = 0)
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X

Z

Y

Why cX!Y = I(X;Y |Z) is a bad idea

X

Z

Y

contains as a limiting case
(weak influence Z ! Y ),

where we postulated cX!Y = I(X;Y ) instead of I(X;Y |Z)
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Our approach: “edge deletion”

X

Z

Y              X'  ~ P(X)

• define a new distribution

P

X!Y

(x, y, z) = P (z)P (x|z)
X

x

0

P (y|x0
, z)P (x

0
)

• define causal strength by the ’impact of edge deletion’

c

X!Y

:= D(PkP
X!Y

)

• intuition of edge deletion:

cut the wire between devices and feed the open end with an iid copy of

the original signal

related work:

Ay & Krakauer (2007)
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• strength also defined for set of edges

• satisfies all our postulates

• also applicable to time series

• conceptually more reasonable than Granger causality and transfer entropy

Properties of our measure
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Inferring the causal DAG without time information

• Setting: given observed n-tuples drawn from p(X1, . . . , Xn), infer G

• Key postulates: Causal Markov condition and causal faithfulness
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Causal faithfulness
Spirtes, Glymour, Scheines

p is called faithful relative to G if only those independences hold
true that are implied by the Markov condition, i.e.,

(X ⇤⇤ Y |Z)G � (X ⇤⇤ Y |Z)p

Recall: Markov condition reads

(X ⇤⇤ Y |Z)G ⇥ (X ⇤⇤ Y |Z)p
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Y

X

Z

�

�

�

Examples of unfaithful distributions (1)

Cancellation of direct and indirect influence in linear models

X = UX

Y = ↵X + UY

Z = �X + �Z + UZ

with independent noise terms UX , UY , UZ

� + ↵� = 0 ) X ?? Z
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Y

X

Z =X�Y

(fair coins)

Examples of unfaithful distributions (2)

binary causes with XOR as e↵ect

• for p(X), p(Y ) uniform: X ?? Z, Y ?? Z .
i.e., unfaithful (since X,Z and Y, Z are connected in the graph).

• for p(X), p(Y ) non-uniform: X 6?? Z, Y 6?? Z .
i.e., faithful

unfaithfulness considered unlikely because it only occurs for
non-generic parameter values
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Conditional-independence based causal inference

Spirtes, Glymour, Scheines and Pearl

Causal Markov condition + Causal faithfulness:

• accept only those DAGs G as causal hypotheses for which

(X ?? Y |Z)G , (X ?? Y |Z)p .

• identifies causal DAG up to Markov equivalence class

(DAGs that imply the same conditional independences)
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Markov equivalence class

Theorem (Verma and Pearl, 1990): two DAGs are Markov

equivalent i↵ they have the same skeleton and the same

v-structures.

skeleton: corresponding undirected graph

v-structure: substructure X ! Y  Z with no edge between

X and Z
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X Y Z

X Y Z

X Y Z

Markov equivalent DAGs

same skeleton, no v-structure

X �� Z |Y
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Markov equivalent DAGs

same skeleton, same v-structure at W

X Y

Z

W

X Y

Z

W
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Algorithmic construction of causal hypotheses

IC algorithm by Verma & Pearl (1990) to reconstruct DAG from p

idea:

1. Construct skeleton

2. Find v-structures

3. direct further edges that follow from

• graph is acyclic

• all v-structures have been found in 2)
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X ?? Y |{Z,W}

. . . but not by conditioning on all other variables!

Construct skeleton

Theorem: X and Y are linked by an edge i↵ there is no set SXY

such that

(X ?? Y |SXY .

(assuming Markov condition and Faithfulness)

Explanation: dependence mediated by other variables can be screened o↵ by

conditioning on an appropriate set

SXY is called a Sepset for (X,Y )
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E�cient construction of skeleton

PC algorithm by Spirtes & Glymour (1991)

iteration over size of Sepset

1. remove all edges X � Y with X ⇤⇤ Y

2. remove all edges X � Y for which there is a neighbor Z ⇥= Y
of X with X ⇤⇤ Y |Z

3. remove all edges X � Y for which there are two neighbors

Z1, Z2 ⇥= Y of X with X ⇤⇤ Y |Z1, Z2

4. ...
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Advantages

• many edges can be removed already for small sets

• testing all sets SXY containing the adjacencies

of X is su�cient

• depending on sparseness, algorithm only requires

independence tests with small conditioning tests

• polynomial for graphs of bounded degree
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Find v-structures

• given X � Y � Z with X and Y non-adjacent

• given SXY with X ?? Y |SXY

a priori, there are 4 possible orientations:

X ! Z ! Y
X  Z ! Y
X  Z  Y

9
=

; Z 2 SXY

X ! Z  Y Z 62 SXY

Orientation rule: create v-structure if Z 62 SXY
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Direct further edges (Rule 1)

(otherwise we get a new v-structure)
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�

�

�

�

�

�

Direct further edges (Rule 2)

(otherwise one gets a cycle)
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Direct further edges (Rule 3)

could not be completed

without creating a cycle

or a new v-structure
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Direct further edges (Rule 4)

could not be completed
without creating a cycle
or a new v-structure
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X Y Z W

U

X Y Z W

U

Examples

(taken from Spirtes et al, 2010)

true DAG

start with fully connected undirected graph
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X Y Z W

U

X Y Z W

U

remove all edges X � Y with X ?? Y |;

X ?? W Y ?? W

remove all edges having Sepset of size 1

X ?? Z |Y X ?? U |Y Y ?? U |Z W ?? U |Z
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X Y Z W

U

X Y Z W

U

find v-structure

Z 62 SYW

orient further edges (no further v-structure)

edge X � Y remains undirected
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Conditional independence tests

• discrete case: contingency tables

• multi-variate gaussian case:

covariance matrix

non-Gaussian continuous case: challenging, recent progress
via reproducing kernel Hilbert spaces (Fukumizu...Zhang...)
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Improvements

• CPC (conservative PC) by Ramsey, Zhang, Spirtes (1995)
uses weaker form of faithfulness

• FCI (fast causal inference) by Spirtes, Glymour, Scheines
(1993) and Spirtes, Meek, Richardson (1999) infers causal
links in the presence of latent common causes

• for implementations of the algorithms see homepage of the
TETRAD project at Carnegie Mellon University Pittsburgh
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Large scale evaluation of PC-related approach

Maathuis, Colombo, Kalisch & Bühlmann (2007)

Given

• Observational data: expression profiles of 5,361 genes of yeast (wild
type)

• Interventional data: expression profiles of 5,361 genes for interventions
on 234 genes

Evaluation:

• use observational data to select the genes that are most influenced by the
interventions
(new method: compute lower bound on the e�ect over all equivalent
DAGs)

• compare with those selected from interventional data

success rates clearly significant: e.g. 33 true positive instead of 5
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Equivalence of Markov conditions 

Theorem: the following are equivalent:

– Existence of a functional causal model

– Local Causal Markov condition: Xj statistically independent of non-
descendants, given parents

– Global Causal Markov condition: d-separation

– Factorization p(X1, . . . , Xn) =
Q

j p (Xj | PAj)

(subject to technical conditions)
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• Assume Xn is a terminal node, i.e., it has no descendants, then NDn =
{X1, . . . , Xn�1}. Thus the local Markov condition implies

Xn ?? {X1, . . . , Xn�1} |PAn .

• Hence the general decomposition

p(x1, . . . , xn) = p(xn|x1, . . . , xn�1)p(x1, . . . , xn�1)

becomes
p(x1, . . . , xn) = p(xn|pan)p(x1, . . . , xn�1) .

• Induction over n yields

p(x1, . . . , xn) =
nY

j=1

p(xj |paj) .

Local Markov ) factorization (Lauritzen 1996)
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Factorization ) global Markov

(Lauritzen 1996)

Need to prove (X ?? Y |Z)G ) (X ?? Y |Z)p.

Assume (X ?? Y |Z)G

• define the smallest subgraph G0
containing X,Y, Z

and all their ancestors

• consider moral graph G0m
(undirected graph containing

the edges of G0
and links between all parents)

• use results that relate factorization of probabilities with

separation in undirected graphs
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Global Markov ) local Markov

Know that if Z d-separates X,Y , then X ?? Y |Z.
Need to show that Xj ?? NDj |PAj .

Simply need to show that the parents PAj d-separateXj from its non-descendants
NDj :

All paths connecting Xj and NDj include a P 2 PAj , but never as a collider

·! P  Xj

Hence all paths are chains
·! P ! Xj

or forks
· P ! Xj

Therefore, the parents block every path between Xj and NDj .
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X1
X2

X3

X4

X1
X2

X3

X4

G G'

functional model ) local Markov condition

(Pearl 2000)

• augmented DAG G0
contains unobserved noise

• local Markov-condition holds for G0
:

(i): the unexplained noise terms Uj are jointly independent, and thus

(unconditionally) independent of their non-descendants

(ii): for the Xj , we have

Xj ?? ND0
j |PA0

j

because Xj is a (deterministic) function of PA0
j .

• local Markov in G0
implies global Markov in G0

• global Markov in G0
implies local Markov in G (proof as last slide)
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factorization ) functional model

generate each p(Xj |PAj) in

p(X1, . . . , Xn) =

nY

j=1

p(Xj |PAj)

by a deterministic function:

• define a vector valued noise variable Uj

• each component Uj [paj ] corresponds to a possible value

paj of PAj

• define structural equation

xj = fj(paj , uj) := uj [paj ] .

• let component Uj [paj ] be distributed according to p(Xj |paj).

Note: joint distribution of all Uj [paj ] is irrelevant, only

marginals matter
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Y

X

=g(X),        U  chooses g ∈ G   
                  

U

di↵erent point of view

• G denotes set of deterministic mechanisms

• U randomly chooses a mechanism
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Y

X

U

= g(X), U chooses g � {ID, NOT, 1, 0}

Example: X, Y binary

the same p(X,Y ) can be induced by di↵erent distributions on G:

• model 1 (no causal link from X to Y )

P (g = 0) = 1/2, P (g = 1) = 1/2

• model 2 (random switching between ID and NOT )

P (g = ID) = 1/2, P (g = NOT ) = 1/2

both induce the uniform distribution for Y , independent of X
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INTERVAL 
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Recap: Functional Causal Model 

X
j

parents of X
j
   (PA

j
) 

 

= fj (PAj , Uj)

• Xi = fi(ParentsOfi,Noisei), with jointly independent Noise1, . . . ,Noisen.

• entails p(X1, . . . , Xn) with particular conditional independence structure

Under certain assumptions, given p, can recover an equivalence class con-
taining the correct graph using conditional independence testing.

Problems:

1. does not work for graphs with only 2 vertices (even with infinite data)

2. if we don’t have infinite data, conditional independence testing can be
arbitrarily hard

Hypothesis:

Both issues can be resolved by making assumptions on function classes.
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[. . . ]

X Y ? 
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Restricting the Functional Model 

X Y 

N 

• consider the graph X ! Y

• general functional model

Y = f(X,N)

Note: if N can take d di↵erent values, it could switch randomly

between mechanisms f 1
(X), . . . , fd

(X)

• additive noise model

Y = f(X) +N

X ?? N
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X Y ? 

Causal Inference with Additive Noise, 2-Variable Case 

Hoyer et al.: Nonlinear causal discovery with additive noise models. NIPS 21, 2009
Peters et al.: Detecting the Direction of Causal Time Series. ICML 2009

Forward model:

y := f(x) + n, with x ?? n

Identifiability: when is there a

backward model of the same form?
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Identifiability Result (Hoyer, Janzing, Mooij, Peters, Schölkopf, 2008) 

Theorem 1 Let the joint probability density of x and y be given by

p(x, y) = p

n

(y � f(x))p

x

(x) , (1)

where p

n

, p

x

are positive probability densities on R. If there is a backward model

p(x, y) = p

ñ

(x� g(y))p

y

(y) , (2)

then, denoting ⌫ := log p

n

and ⇠ := log p

x

and assuming su�cient di↵erentia-

bility, the triple (f, p

x

, p

n

) must satisfy the following di↵erential equation for all

x, y with ⌫

00
(y � f(x))f

0
(x) 6= 0:

⇠

000
= ⇠

00
✓
�⌫

000
f

0

⌫

00 +

f

00

f

0

◆
� 2⌫

00
f

00
f

0
+ ⌫

0
f

000
+

⌫

0
⌫

000
f

00
f

0

⌫

00 � ⌫

0
(f

00
)

2

f

0 , (3)

where we have skipped the arguments y�f(x), x, and x for ⌫, ⇠, and f and their

derivatives, respectively. Moreover, if for a fixed pair (f, ⌫) there exists y 2 R
such that ⌫

00
(y � f(x))f

0
(x) 6= 0 for all but a countable set of points x 2 R, the

set of all p

x

for which p has a backward model is contained in a 3-dimensional

a�ne space.

Corollary 1 Assume that ⌫

000
= ⇠

000
= 0 everywhere. If a backward model

exists, then f is linear.
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Alternative View (cf. Zhang & Hyvärinen, 2009) 

H di↵erential entropy

I mutual information

n
y

= y � f(x), n
x

= x� g(y) residual noises

Lemma: For arbitrary joint distribution of x, y and functions f ,
g : R ! R, we have:

H(x, y) = H(x) +H(n
y

)� I(n
y

, x) = H(y) +H(n
x

)� I(n
x

, y).

If x causes y, we can find f such that n
y

?? x, while “almost all” g
lead to n

x

6?? y, i.e.:

I(n
y

, x) = 0 and I(n
x

, y) > 0

Thus

H(x, y) = H(x) +H(n
y

)  H(y) +H(n
x

).
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Causal Inference Method 

Prefer the causal direction that can better be fit

with an additive noise model.

Implementation:

• Compute a function f as non-linear regression of X on Y

• Compute the residual

E := Y � f (X)

• check whether E and X are statistically independent (un-

correlated is not enough)
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Experiments 

Relation between altitude (cause) and average temperature (effect) 
of places in Germany 
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• Generalization to post-nonlinear additive noise models: Zhang
& Hyvärinen: On the Identifiability of the Post-Nonlinear Causal
Model, UAI 2009

• Generalization to graphs with more than two vertices:
Peters, Mooij, Janzing, Schölkopf: Identifiability of Causal Graphs
using Functional Models, UAI 2011

• Generalization to two-vertex-graphs with loops:
Mooij, Janzing, Heskes, Schölkopf: Causal discovery with Cyclic
additive noise models, NIPS 2011
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Independence-based Regression (Mooij et al., 2009) 

• Problem: many regression methods assume a particular noise
distribution; if this is incorrect, the residuals may become de-
pendent

• Solution: minimize dependence of residuals rather than maxi-
mizing likelihood of data in regression objective

• Use RKHS distance between kernel mean embeddings/Hilbert-
Schmidt-norm of cross-covariance operator between two RKHSes
as a dependence measure

Mooij, Janzing, Peters, Schölkopf: Regression by dependence minimization and its application

to causal inference. ICML 2009.

Yamada & Sugiyama: Dependence Minimizing Regression with Model Selection for Non-

Linear Causal Inference under Non-Gaussian Noise. AAAI 2010.
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Kernel Independence Testing (Gretton et al., 2007) 

k bounded p.d. kernel; P Borel probability measure

Define the kernel mean map

µ : P 7! E

x⇠P

[k(x, .)].

Theorem: If k is universal, µ is injective.

Discussion: a measure can be represented as an element of the
RKHS associated with k without loss of information.

Let’s represent p(X, Y ) and p(X)p(Y ) — they will only map to the
same element if they are equal, i.e., if X ?? Y .
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Kernel Independence Testing: HSIC  

Corollary: x ?? y () � := kµ(p
xy

)� µ(p
x

⇥ p

y

)k = 0.

• For k((x, y), (x0
, y

0)) = k

x

(x, x0)k
y

(y, y0):

�2 = HS-norm of cross-covariance operator between the two RKHSes
(HSIC, Gretton et al., 2005)

• empirical estimator 1
n

2 tr[K
x

K

y

] (ignoring centering)

• Why does this characterize independence: x ?? y i↵

sup
f,g 2 RHKS unit balls

cov(f(x), g(y)) = 0

(cf. Kernel ICA, Bach & Jordan, 2002)
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Hilbert-Schmidt Normalized Independence Criterion
(Fukumizu et al., 2007)

• normalize out variance of X and Y to get HSNIC; can be shown to equal
the mean squared contingency

Z ✓
p(x, y)

p(x)p(y)
� 1

◆
dp(x, y)

independent of the (characteristic/universal) kernel

• can be shown to be upper bounded by the mutual information,

HSNIC(X,Y )  MI(X,Y ) =

Z
log

✓
p(x, y)

p(x)p(y)

◆
dp(x, y)
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Approximating the null distribution  

• to construct a test, need to compute the null distribution of our test
statistic (HSIC): how is the empirical HSIC distributed if X ?? Y ?

• can use a (complicated) asymptotic expression for HSIC (Gretton et al.,
2008), but there’s an easy practical method to generate samples consis-
tent with the null hypothesis (independence), and the original marginals
p(X), p(Y ):

• given a permutation �, turn (x1, y1), . . . , (xn, yn) into (x1, y�(1)), . . . , (xn, y�(n))

• the case of conditional independence is harder: given (x1, y1, z1), . . . , (xn, yn, zn),
need to generate samples consistent withX ?? Y |Z, and original p(X|Z), p(Y |Z).

• if z only takes few values, can permute within groups having the same
value of z (Fukumizu et al., 2007)

• general case is an open problem, but see e.g. Zhang et al., UAI 2011
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?

Y X

Detection of Confounders 

*
*
*
*
***

*
*

*
*

**
****

*
*

*
* *

******
* *

*

**
*
* * *

*
*
*

* *

*
*

*

*
y

x

Given p (X,Y ), infer whether

I X ! Y

I Y ! X

I X  T ! Y for some (possibly) unobserved variable

T

• Confounded additive noise (CAN) models

X = fX (T ) + UX

Y = fY (T ) + UY

with functions fX , fY and UX , UY , T jointly independent

Note: includes the case

Y = f (X) + U
by setting fX = id and UX = 0.

• Estimate (fX (T ), fY (T )) using dimensionality reduction

• If UX or UY is close to zero, output ’no confounder’

• Identifiability result for small noise

Janzing, Peters, Mooij, Schölkopf: Identifying latent confounders using additive noise models.

UAI 2009
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Identifying discrete confounders by independence-based 
clustering 
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However, employing properties of the noise is not the only way of inferring cause
and e↵ect.

What about the noiseless case?
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Independence of input and mechanism 

Causal structure:

C cause

E e↵ect

N noise

' mechanism

Assumption:

p(C) and p(E|C) are “independent”

Janzing & Schölkopf, IEEE Trans. Inf. Theory, 2010; cf. also Lemeire & Dirkx, 2007
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Inferring deterministic causal relations 

Daniusis, Janzing, Mooij, Zscheischler, Steudel, Zhang, Schölkopf:  
Inferring deterministic causal relations, UAI 2010 

? 

Y X 

 
•  Does not require noise 
•  Assumption: y = f(x) with invertible f 
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Causal independence implies anticausal dependence 
Assume that f is a monotonously increasing bijection of [0, 1].

View p

x

and log f

0
as RVs on the prob. space [0, 1] w. Lebesgue measure.

Postulate (independence of mechanism and input):

Cov (log f

0
, p

x

) = 0

Note: this is equivalent to

Z 1

0
log f

0
(x)p(x)dx =

Z 1

0
log f

0
(x)dx,

since

Cov (log f

0
, p

x

) = E [ log f

0·p
x

]�E [ log f

0
]E [ p

x

] = E [ log f

0·p
x

]�E [ log f

0
].

Proposition:

Cov (log f

�10
, p

y

) � 0

with equality i↵ f = Id.
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u

x

, u

y

uniform densities for x, y

v

x

, v

y

densities for x, y induced by transforming u

y

, u

x

via f

�1
and f

Equivalent formulations of the postulate:

Additivity of Entropy:

S (p

y

)� S (p

x

) = S (v

y

)� S (u

x

)

Orthogonality (information geometric):

D (p

x

k v
x

) = D (p

x

ku
x

) +D (u

x

k v
x

)

which can be rewritten as

D (p

y

ku
y

) = D (p

x

ku
x

) +D (v

y

ku
y

)

Interpretation:

irregularity of p

y

= irregularity of p

x

+ irregularity introduced by f
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Slope-Based Estimator 
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80 Cause-Effect Pairs 
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80 Cause-Effect Pairs − Examples 
!"# $ !"# % &"'"()' *#+,-& '#,'.
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IGCI: 
Deterministic 
Method 
 
LINGAM: 
Shimizu et al., 
2006 
 
AN: 
Additive Noise 
Model (nonlinear) 
 
PNL: 
AN with post- 
nonlinearity 
 
GPI: 
Mooij et al., 
2010 
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Causal Learning and Anticausal Learning 
Schölkopf, Janzing, Peters, Sgouritsa, Zhang, Mooij, ICML 2012 

X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Source: http://commons.wikimedia.org/wiki/File:Peptide_syn.png causal mechanism '

• example 1: predict gene from mRNA sequence

• example 2: predict class membership from handwritten digit
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X Y

NX NY

φ
id

prediction

X Y

NX NY

φ
id

prediction

Covariate Shift and Semi-Supervised Learning 

causal mechanism '

(cf. Storkey, 2009) 

• covariate shift (i.e., p(X) changes): mechanism

p(Y |X) is una↵ected by assumption

• semi-supervised learning: impossible, since

p(X) contains no information about p(Y |X)

• transfer learning (NX , NY change, ' not): could be

done by additive noise model with conditionally inde-

pendent noise

• p(X) changes: need to decide if change is

due to mechanism p(X|Y ) or cause distribu-

tion p(Y ) (sometimes: by deconvolution)

• semi-supervised learning: possible, since

p(X) contains information about p(Y |X) —

e.g., cluster assumption.

• transfer learning: as above

Assumption: p(C) and mechanism p(E|C) are “independent”

Goal: learn X 7! Y , i.e., estimate (properties of) p(Y |X)
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Semi-Supervised Learning (Schölkopf et al., ICML 2012) 

•  Known SSL assumptions link p(X) to p(Y|X): 
•  Cluster assumption: points in same cluster of p(X) have 

the same Y 
•  Low density separation assumption: p(Y|X) should cross 

0.5 in an area where p(X) is small 
•  Semi-supervised smoothness assumption: E(Y|X) should be 

smooth where p(X) is large 

•  Next slides: experimental analysis 
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SSL Book Benchmark Datasets – Chapelle et al. (2006) 
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Supplementary Material for: On Causal and Anticausal Learning

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset

A
n

t
i
c
a

u
s
a

l
/
C

o
n

f
o

u
n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).
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UCI Datasets used in SSL benchmark – Guo et al., 2010 
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Supplementary Material for: On Causal and Anticausal Learning

Table 1. Categorization of eight benchmark datasets as Anticausal/Confounded, Causal or Unclear

Category Dataset

Anticausal/

Confounded

g241c: the class causes the 241 features.
g241d: the class (binary) and the features are confounded by a variable with 4 states.
Digit1: the positive or negative angle and the features are confounded by the variable of continuous angle.
USPS: the class and the features are confounded by the 10-state variable of all digits.
COIL: the six-state class and the features are confounded by the 24-state variable of all objects.

Causal SecStr: the amino acid is the cause of the secondary structure.
Unclear BCI, Text: Unclear which is the cause and which the effect.

Table 2. Categorization of 26 UCI datasets as Anticausal/Confounded, Causal or Unclear

Categ. Dataset
A

n
t
i
c
a

u
s
a

l
/
C

o
n

f
o

u
n

d
e
d

Breast Cancer Wisconsin: the class of the tumor (benign or malignant) causes some of the features of the tumor (e.g.,
thickness, size, shape etc.).
Diabetes: whether or not a person has diabetes affects some of the features (e.g., glucose concentration, blood pres-
sure), but also is an effect of some others (e.g. age, number of times pregnant).
Hepatitis: the class (die or survive) and many of the features (e.g., fatigue, anorexia, liver big) are confounded by the
presence or absence of hepatitis. Some of the features, however, may also cause death.
Iris: the size of the plant is an effect of the category it belongs to.
Labor: cyclic causal relationships: good or bad labor relations can cause or be caused by many features (e.g., wage
increase, number of working hours per week, number of paid vacation days, employer’s help during employee ’s long
term disability). Moreover, the features and the class may be confounded by elements of the character of the employer
and the employee (e.g., ability to cooperate).
Letter: the class (letter) is a cause of the produced image of the letter.
Mushroom: the attributes of the mushroom (shape, size) and the class (edible or poisonous) are confounded by the
taxonomy of the mushroom (23 species).
Image Segmentation: the class of the image is the cause of the features of the image.
Sonar, Mines vs. Rocks: the class (Mine or Rock) causes the sonar signals.
Vehicle: the class of the vehicle causes the features of its silhouette.
Vote: this dataset may contain causal, anticausal, confounded and cyclic causal relations. E.g., having handicapped
infants or being part of religious groups in school can cause one’s vote, being democrat or republican can causally
influence whether one supports Nicaraguan contras, immigration may have a cyclic causal relation with the class.
Crime and the class may be confounded, e.g., by the environment in which one grew up.
Vowel: the class (vowel) causes the features.
Wave: the class of the wave causes its attributes.

Causal

Balance Scale: the features (weight and distance) cause the class.
Chess (King-Rook vs. King-Pawn): the board-description causally influences whether white will win.
Splice: the DNA sequence causes the splice sites.

Unclear Breast-C, Colic, Sick, Ionosphere, Heart, Credit Approval were unclear to us. In some of the datasets, it is unclear
whether the class label may have been generated or defined based on the features (e.g., Ionoshpere, Credit Approval,
Sick).
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Datasets, co-regularized LS regression – Brefeld et al., 2006 
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Table 3. Categorization of 31 datasets (described in the paragraph “Semi-supervised regression”) as Anticausal/Confounded, Causal or
Unclear

Categ. Dataset Target variable Remark

A
n

t
i
c
a

u
s
a
l
/
C

o
n

f
o

u
n

d
e
d

breastTumor tumor size causing predictors such as inv-nodes and deg-malig
cholesterol cholesterol causing predictors such as resting blood pressure and fasting blood

sugar
cleveland presence of heart disease in the pa-

tient
causing predictors such as chest pain type, resting blood pressure,
and fasting blood sugar

lowbwt birth weight causing the predictor indicating low birth weight
pbc histologic stage of disease causing predictors such as Serum bilirubin, Prothrombin time, and

Albumin
pollution age-adjusted mortality rate per

100,000
causing the predictor number of 1960 SMSA population aged 65
or older

wisconsin time to recur of breast cancer causing predictors such as perimeter, smoothness, and concavity

C
a

u
s
a
l

autoMpg city-cycle fuel consumption in
miles per gallon

caused by predictors such as horsepower and weight

cpu cpu relative performance caused by predictors such as machine cycle time, maximum main
memory, and cache memory

fishcatch fish weight caused by predictors such as fish length and fish width
housing housing values in suburbs of

Boston
caused by predictors such as pupil-teacher ratio and nitric oxides
concentration

machine cpu cpu relative performance see remark on “cpu”
meta normalized prediction error caused by predictors such as number of examples, number of at-

tributes, and entropy of classes
pwLinear value of piecewise linear function caused by all 10 involved predictors
sensory wine quality caused by predictors such as trellis
servo rise time of a servomechanism caused by predictors such as gain settings and choices of mechan-

ical linkages

U
n

c
l
e
a

r

auto93 (target: midrange price of cars); bodyfat (target: percentage of body fat); autoHorse (target: price of cars);
autoPrice (target: price of cars); baskball (target: points scored per minute);
cloud (target: period rainfalls in the east target); echoMonths (target: number of months patient survived);
fruitfly (target: longevity of mail fruitflies); pharynx (target: patient survival);
pyrim (quantitative structure activity relationships); sleep (target: total sleep in hours per day);
stock (target: price of one particular stock); strike (target: strike volume);
triazines (target: activity); veteran (survival in days)
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Benchmark Datasets of Chapelle et al. (2006)  

Asterisk = 1-NN, SVM 
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Localizing distribution change Given
data points sampled from P (C,E) and additional points
from P

0(E) 6= P (E), we wish to decide whether P (C) or
P (E|C) has changed. To show that appropriate assump-
tions render this problem solvable, we sketch some rough
ideas. Let E = �(C) + NE , with the same � for both
distributions P (E,C) and P

0(E,C), but the distribution
of the noise NE or the distribution of C changes. Let
P (�(C)) denote the distribution of �(C).4 Then the
distributions of the effect are given by

P (E) = P (�(C)) ⇤ P (NE),

P

0(E) = P

0(�(C)) ⇤ P 0(NE) ,

where either P 0(�(C)) = P (�(C)) or P 0(NE) = P (NE).
In the following situations, for instance, we can decide
which of the cases is true:

1) If the Fourier transform of P (E) contains zeros, then
some of them correspond to zeros in the spectrum of
P (�(C)), the others to zeros of the spectrum of P (NE).
Then we may check which zeros still appear in P

0(E).

2) Suppose P (�(C)) and P

0(�(C)) are indecomposable
and P (NE) and P

0(NE) are zero mean Gaussian; then the
distribution P (E) = P (�(C)) ⇤ P (NE) uniquely deter-
mines P (�(C)) by deconvolving P (E) with the Gaussian
of maximal possible width that still yields a density.

Estimating causal conditionals Given
P

0(E), estimate P

0(E|C) under the assumption that
P (C) remains constant. Assume that P (E,C) and
P

0(E,C) have been generated by the additive noise model
E = �(C) + NE , with the same P (C) and �, while the
distribution of NE has changed. We have

P (E) = P (�(C)) ⇤ P (NE) ,

P

0(E) = P (�(C)) ⇤ P 0(NE) .

Hence, P

0(NE) can be obtained by the deconvolution
P

0(NE) = P (�(C)) ⇤�1
P

0(E) . This way, we can com-
pute the new conditional P 0(E|C).

Conditional ANM Given two data sets generated
by E = �(C) + NE and E

0 = �(C 0) + N

0
E , respec-

tively. We modify the algorithm of Mooij et al. (2009) to
obtain the shared function �, enforcing separate indepen-
dence C ?? NE and C

0 ?? N

0
E .

This can be interpreted as a generalized ANM model, en-
forcing conditional independence in E|i = �(C|i)+NE |i,
where i 2 {1, 2} is an index, and C ?? NE | i.

4Explicitly, it is derived from the distribution of C by
P (�(C) 2 A) = P (C 2 ��1(A)).
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Figure 5. Accuracy of base classifiers (star shape) and different
SSL methods on eight benchmark datasets.

5. Empirical Results
An evaluation of all methods described is beyond the scope
of this paper. We focus on assaying our main prediction
regarding the difficulty of SSL, and provide a toy example
applying Conditional ANM in transfer learning.

Semi-supervised classification We compare the perfor-
mance of SSL algorithms with that of base classifiers using
only labeled data. For many examples X is vector-valued.
We assign each dataset to one of three categories:
1. Anticausal/Confounded: (a) datasets in which at least
one feature Xi is an effect of the class Y to be predicted
(Anticausal) (includes also cyclic causal relations between
Xi and Y ) and (b) datasets in which at least one feature Xi

has an unobserved common cause with the class Y to be
predicted (Confounded). In both (a) and (b) the mechanism
P (Y |Xi) can be dependent on P (Xi). For these datasets,
additional data from P (X) may thus improve prediction.
2. Causal: datasets in which some features are causes of
the class, and there is no feature which (a) is an effect of the
class or (b) has a common cause with the class. If our as-
sumption on independence of cause and mechanism holds,
then SSL should be futile on these datasets.
3. Unclear: datasets which were difficult to be categorized
to one of the aforementioned categories. Some of the rea-
sons for that are incomplete documentation or lack of do-
main knowledge.

In practice, we count a dataset already as causal when we
believe that the dependence between X and Y is mainly

due to X causing Y , although additional confounding ef-
fects may be possible.

We first analyze the results in the benchmark chapter of a
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Self-training does not help for causal problems (cf. Guo et al., 2010)  

Relative error decrease = (error(base) –error(self-train)) / error(base) 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.

ba−sc br−c br−w col col.O cr−a cr−g diab he−c he−h he−s hep ion iris kr−kp lab lett mush seg sick son splic vehi vote vow wave
−100

−80

−60

−40

−20

0

20

40

60

 

 

Anticausal/Confounded
Causal
Unclear

Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Co-regularization helps for the anticausal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Co-regularizarion hardly helps for the causal problems of Brefeld et al., 2006 
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book on SSL (Tables 21.11 and 21.13 of Chapelle et al.
(2006)), for the case of 100 labeled training points. The
chapter compares 11 SSL methods to the base classifiers
1-NN and SVM. In the supplement, we give details on our
categorization of the eight datasets used in the chapter.

In view of our hypothesis, it is encouraging to see (Fig-
ure 5) that SSL does not significantly improve the accuracy
in the one causal dataset, but it helps in most of the anti-
causal/confounded datasets. However, it is difficult to draw
conclusions from this small collection of datasets; more-
over, two additional issues may confound things: (1) the
experiments were carried out in a transductive setting. In-
ductive methods use unlabeled data to arrive at a classifier
which is subsequently applied to an unknown test set; in
contrast, transductive methods use the test inputs to make
predictions. This could potentially allow performance im-
provements independent of whether a dataset is causal or
anticausal; (2) the SSL methods used cover a broad range,
and were not extensions of the base classifiers; moreover,
the results for the SecStr dataset are based on a different set
of methods than the rest of the benchmarks.
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Figure 6. Plot of the relative decrease of error when using self-
training, for six base classifiers on 26 UCI datasets. Here, rel-
ative decrease is defined as (error(base) � error(self-train)) / er-
ror(base). Self-training, a method for SSL, overall does not help
for the causal datasets, but it does help for several of the anti-
causal/confounded datasets.

We next consider 26 UCI datasets and six different base
classifiers. The original results are from Tables III and IV
in (Guo et al., 2010), and are presently re-analyzed in terms
of the above dataset categories. The comprehensive results
of Guo et al. (2010) allow us the luxury of (1) consider-
ing only self-training, which is an extension of supervised
learning to unlabeled data in the sense that if the set of un-
labeled data is empty, we recover the results of the base
method (in this case, self-training would stop at the first
iteration). This lets us compare an SSL method to its corre-
sponding base algorithm. Moreover, (2) we included only
the inductive methods considered in (Guo et al., 2010), and
not the transductive ones (cf. our discussion above).

The supplement describes our categorization of the 26 UCI
datasets into Anticausal/Confounded, Causal, or Unclear.
In Figure 6, we observe that SSL does not significantly
decrease the error rate in the three causal datasets, but
it does increase the performance in several of the anti-
causal/confounded datasets. This is again consistent with
our hypothesis that if mechanism and input are indepen-
dent, SSL will not help for causal datasets.
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Figure 7. RMSE for Anticausal/Confounded datasets.
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Figure 8. RMSE for Causal datasets.

Semi-supervised regression (SSR) Classification prob-
lems are often inherently asymmetric in that the inputs are
continuous and the outputs categorical. It is worth reassur-
ing that we obtain similar results in the case of regression.
To this end, we consider the co-regularized least squares re-
gression (co-RLSR) algorithm, compared to regular RLSR
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Causal Inference for Individual Objects (Janzing & Schölkopf, 2010) 
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Causal Markov Conditions 

• Recall the (Local) Causal Markov condition:

An observable is statistically independent of its non-descendants, given

parents

• Reformulation:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it
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Causal Markov Conditions 

• Generalization:

Given all direct causes of an observable, its non-e↵ects provide no addi-

tional statistical information on it

• Algorithmic Causal Markov Condition:

Given all direct causes of an object, its non-e↵ects provide no additional

algorithmic information on it
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Kolmogorov complexity 
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Conditional Kolmogorov complexity 

• K(y | x⇤
): length of the shortest program that generates y

from the shortest description of the input x. For simplicity, we

write K(y | x).
• number of bits required for describing y if the shortest descrip-

tion of x is given

• note: x can be generated from its shortest description but not

vice versa because there is no algorithmic way to

find the shortest compression
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Algorithmic mutual information (Chaitin, Gacs) 

Information of x about y

• I (x : y) := K(x) + K(y)�K(x, y)

= K(x)�K(x | y) = K(y)�K(y |x)

• Interpretation: number of bits saved when compressing x, y
jointly rather than independently

• Algorithmic independence x ⇧⇧ y : ⇤⌅ I (x : y) = 0



Dominik Janzing & Bernhard Schölkopf,  August 30, 2013 

 Conditional algorithmic mutual information 

Information that x has on y (and vice versa) when z is given

• I (x : y | z) := K (x | z) +K (y | z)�K (x, y | z)

• Analogy to statistical mutual information:

I (X : Y |Z) = S (X |Z) + S (Y |Z)� S (X, Y |Z)

• Conditional algor. independence x ?? y | z :() I (x : y | z) = 0
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Algorithmic mutual information: example 
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Postulate: Local Algorithmic Markov Condition 

Let x1, . . . , xn be observations (formalized as strings). Given its di-

rect causes paj, every xj is conditionally algorithmically independent

of its non-e↵ects ndj

xj ?? ndj | paj
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Equivalence of Algorithmic Markov Conditions 
For n strings x1, . . . , xn the following conditions are equivalent

• Local Markov condition

I (xj : ndj | paj ) = 0

• Global Markov condition:

If R d-separates S and T then I (S : T |R) = 0

• Recursion formula for joint complexity

K(x1, . . . , xn) =

nX

j=1

K(xj | paj)

Janzing & Schölkopf, IEEE Trans. Information Theory, 2010
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Algorithmic model of causality 

xj#

uj#

xj#

paj#

=T(paj,uj)#

• for every node xj there exists a program uj that computes xj

from its parents paj

• all uj are jointly independent

• the program uj represents the causal mechanism that generates

the e↵ect from its causes

• uj are the analog of the unobserved noise terms in the statistical

functional model

Theorem: this model implies the algorithmic Markov condition
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“Independent”= algorithmically independent?

Postulate (Janzing & Schölkopf, 2010, inspired by Lemeire & Dirkx, 2006):

The causal conditionals p(Xj |PAj) are algorithmically independent

• special case: p(X) and p(Y |X) are alg. independent for X ! Y

• can be used as justification for novel inference rules (e.g., for additive noise

models: Steudel & Janzing 2010)

• excludes many, but not all violations of faithfulness (Lemeire & Janzing,

2012)
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Generalized independences Steudel, Janzing, Schölkopf (2010)

Given n objects O := {x1, . . . , xn}

Observation: if a function R : 2

O ! R+
0 is submodular, i.e.,

R(S) +R(T ) � R(S [ T ) +R(S \ T ) 8S, T ⇢ O

then

I(A;B |C) := R(A [ C) +R(B [ C)�R(A [B [ C)�R(C) � 0

for all disjoint sets A,B,C ⇢ O

Interpretation: I measures conditional dependence

(replace R with Shannon entropy to obtain usual mutual information)
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Generalized Markov condition

Theorem: the following conditions are equivalent for a DAG G

• local Markov condition

xj ?? ndj |paj

• global Markov condition: d-separation implies independence

• sum rule

R(A) =

X

j2A

R(xj |paj) ,

for every ancestral set A of nodes.

–but can we postulate that the conditions hold w.r.t. to the true DAG?
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xj# uj#

paj#

Generalized functional model

Theorem:

• assume there are unobserved objects u1, . . . , un

• assume
R(xj , paj , uj) = R(paj , uj)

(xj contains only information that is already contained in its parents +
noise object)

then x1, . . . , xn satisfy the Markov conditions

⇥ causal Markov condition is justified provided that mechanisms fit to infor-
mation measure
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Generalized PC

PC algorithm also works with generalized conditional independence

Examples:

1. R := number of di�erent words in a text

2. R := compression length (e.g. Lempel Ziv is approximately submodular)

3. R := logarithm of period length of a periodic function

example 2 yielded reasonable results on simple real texts (di�erent versions of
a paper abstract)
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Summary

• conventional causal inference algorithms use conditional statistical depen-
dences

• more recent approaches also use other properties of the joint distribution

• non-statistical dependences also tell us something about causal directions
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Selection within Markov equivalence classes

di�erent approaches

• some “independence” condition between p(Xj |PAj)
Information-geometric method, Trace Method

• restricting conditionals/functional models to subsets
Additive-noise models, post-nonlinear model

• define priors on p(Xj |PAj) that can yield di�erent posteriors for equiva-
lent DAGs
Gaussian process based prior by Mooij, Stegle, Janzing, Schölkopf (2010)

• ?
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