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The Need for Machine Learning in Computational Biology

High-throughput technologies:
» Genome and RNA sequencing
» Compound screening
» Genotyping chips
» Bioimaging

BGI Hong Kong, Tai Po Industrial Estate, Hong Kong

Molecular databases are growing much faster than our knowledge of
biological processes.
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Classic Bioinformatics: Focus on Molecules

» Large collections of molecular data
» Gene and protein sequences
» Genome sequence
> Protein structures
» Chemical compounds
» Focus: Inferring properties of molecules
> Predict the function of a gene given its sequence
» Predict the structure of a protein given its sequence
» Predict the boundaries of a gene given a genome segment

» Predict the function of a chemical compound given its molecular
structure
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Predicting Function from Structure

» Structure-Activity Relationship
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Measuring the Similarity of Graphs

» How similar are two graphs?

» How similar is their structure?
» How similar are their node labels and edge labels?
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Graph Comparison

1. Graph isomorphism and subgraph isomorphism checking
» Exact match
» Exponential runtime

2. Graph edit distances
> Involves definition of a cost function
» Typically subgraph isomorphism as intermediate step

3. Topological descriptors
> Lose some of the structural information represented by the graph or
» Exponential runtime effort

4. Graph kernels (Gartner et al, 2003; Kashima et al. 2003)
» Goal 1: Polynomial runtime in the number of nodes

» Goal 2: Applicable to large graphs
» Goal 3: Applicable to graphs with attributes
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Graph Kernels |

» Kernels

» Key concept: Move problem to feature space H.
» Naive explicit approach:

» Map objects x and x’ via mapping ¢ to H.

> Measure their similarity in H as (¢(x), p(x)).

» Kernel Trick: Compute inner product in #H as kernel in input space

k(x,x') = (p(x), $(x)).

R2 = H
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Graph Kernels Il

» Graph kernels
» Kernels on pairs of graphs
(not pairs of nodes)
» Instance of R-Convolution kernels (Haussler, 1999):
» Decompose objects x and x’ into substructures.
» Pairwise comparison of substructures via kernels to compare x and x’.
» A graph kernel makes the whole family of kernel methods applicable to
graphs.

®

G G’ ®

o
)

I

I

!

S

- 2
?)

Karsten Borgwardt Computational Biology September 4, 2013




Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)

Ist iteration
Result of steps 1 and 2: multiset-label determination and sorting
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Given labeled graphs G and G
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End of the Ist iteration
WLsubtree
(1)

Weisfeiler-Lehman Kernel (Shervashidze and Borgwardt, NIPS 2009)

Feature vector representations of G and G’
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Subtree-like Patterns
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Weisfeiler-Lehman Kernel: Theoretical Runtime Properties

» Fast Weisfeiler-Lehman kernel (NIPS 2009 and JMLR 2011)
» Algorithm: Repeat the following steps h times
1. Sort: Represent each node v as sorted list L, of its neighbors (O(m))
2. Compress: Compress this list into a hash value h(L,) (O(m))
3. Relabel: Relabel v by the hash value h(L,) (O(n))
» Runtime analysis
» per graph pair: Runtime O(m h)
» for N graphs: Runtime O(N m h+ N? n h) (naively O(N? m h))
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Weisfeiler-Lehman Kernel: Empirical Runtime Properties
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Weisfeiler-Lehman Kernel: Runtime and Accuracy

1000 days
100 days
10 days

1 day

1 hour

1 minute
10 sec

85 %
80 %
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65 %
60 %
55 %
50 %
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Modern Bioinformatics: Focus on Individuals

» High-throughput technologies now enable the collection of molecular
information on individuals

» Microarrays to measure gene expression levels
» Chips to determine the genotype of an individual
» Sequencing to determine the genome sequence of an individual

Moore's Law

National Human Genome
arch Institute

$1K
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Phenotype Prediction

» Goal: Predict breast cancer outcome from gene expression levels

» Current results are not satisfying in terms of stability and prediction
performance

OPEN @ ACCESS Freely available online PLOS compurarionaL BioLoGY

Most Random Gene Expression Signatures Are
Significantly Associated with Breast Cancer Outcome

David Venet’, Jacques E. Dumeont?, Vincent Detours®3*

1IRIDIA-CoDE, Université Libre de Bruxelles (U.LB), Brussels, Belgium, 2IRIBHM, Université Libre de Bruxelles (U.L.B), Campus Erasme, Brussels, Belgium, 3 WELBIO,
Université Libre de Bruxelles (ULB), Campus Erasme, Brussels, Belgium
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Phenotype Prediction

Nature News, March 2009

> ‘Genetic test predicts eye color
in Dutch men with 90%
accuracy’ (Liu et al., Current
Biology 2009)

» Special setting: Candidate
genes were already known
beforehand

» Other phenotypes: Large
genetics consortia try to
detect candidate genes (e.g.
diabetes, autism, depression,
drug response, plant growth)
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Genetics: Association Studies

» Genome-Wide Association Studies (GWAS)
v 9 v
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» One considers genome positions that differ between individuals, that
is Single Nucleotide Polymorphisms (SNPs) (more general: genetic
locus or genomic variant).
» Problem size: 10°-107 SNPs per genome, 102Dto ]595 individuals =~
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Genetics: Manhattan Plots

» The standard statistical analysis in Genetics: Generating a Manhattan
plot of association signals

Manhattan-plot for chromosome Chr2
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Phenotype: Flower color-related trait of Arabidopsis thaliana

» A plot of genome positions versus p-values of association/correlation.
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Genetics: Missing Heritability

» More than 1200 new disease loci were detected over the last decade.

» The phenotypic variance explained by these loci is disappointingly low:

Karsten Borgwardt

Vol 4618 Octaber 2009|d0i:10.1038/nature08494. nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio!, Francis S. Collins?, Nancy J. Cox®, David B. Goldstein®, Lucia A. Hindorff*, David J. Hunter®,
Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti®, Judy H. Cho'°, Alan E. Guttmacher',
Augustine Kong'’, Leonid Kruglyak'?, Elaine Mardis'®, Charles N. Rotimi'*, Montgomery Slatkin'?, David Valle®,
Alice S. Whittemore'®, Michael Boehnke'”, Andrew G. Clark'®, Evan E. Eichler'®, Greg Gibson®, Jonathan L. Haines?!,
Trudy F. C. Mackay™, Steven A. McCarroll*® & Peter M. Visscher™*

Genome-wide association studies have identified hundreds of genetic variants i ith lex human di: nd

traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively

Manolio et al., Nature 2009
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Genetics: Potential Reasons for Missing Heritability

Polygenic architectures

» Most current analyses neglect additive or multiplicative effects
between loci — need for systems biology perspective

Small effect sizes

» Not detectable with small sample sizes

Phenotypic effect of other genetic, epigenetic or non-genetic factors

» Genetic properties ignored so far, e.g. rare SNPs
» Chemical modifications of the genome

» Environmental effect on phenotype

Karsten Borgwardt Computational Biology September 4, 2013 21



Machine Learning in Genetics |
Moving to a Systems Biology Perspective
» Multi-locus models:

> Algorithms to discover trait-related systems of genetic loci
> Increasing sample size:
> Deciding whether additional information is required:

» Algorithms that support large-scale genotyping and phenotyping

Karsten Borgwardt

» Tests that quantify the impact of additional (epi)genetic factors
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Machine Learning in Genetics |l

Moving to a Systems Biology Perspective

» Multi-locus models:

» Efficient algorithms for discovering trait-related SNP pairs (xop 2011, Human

Heredity 2012)

» Efficient algorithms for discovering trait-related SNP networks (1sms 2013)
> Increasing sample size:

> Large-scale genotyping in A. thaliana (Nature Genetics 2011)

» Automated image phenotyping of guppy fish (Bicinformatics 2012)

» Automated image phenotyping of human lungs (pmi 2013)
» Deciding whether additional information is required:

> Assessing the stability of methylation across generations of Arabidopsis
lab strains (nature 2011)
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Multi-Locus Models: Discovering Trait-Related Interactions

ANy
Problem statement
» Find the pair of SNPs most correlated with a binary phenotype
argmax [r(x; © Xj,y)|
i,j
» x; and x; represent one SNP each and y is the phenotype; x;,x;,y
are all n-dimensional vectors, given n individuals.

» There can be up to n = 107 SNPs, and order 10** SNP pairs.

» Existing approaches: Greedy selection, Branch-and-bound strategies
or index structures — low recall or worst-case O(n?) time
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Difference in Correlation for Epistasis Detection

» We phrase epistasis detection as a difference in correlation problem:
0.
controls

argmax |pcases (Xi; Xj) — Pcontrols (Xia Xj) ’ .
» Different degree of linkage disequilibrium of two loci in cases and

[m] = = =
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The Lightbulb Algorithm (Paturi et al., COLT 1989)

Maximum correlation

» The lightbulb algorithm tackles the maximum correlation problem on
an m X n matrix A with binary entries:

argma |pa (xi, ;)| )
7/7‘7
Quadratic runtime algorithm

> As in epistasis detection, the problem can be solved by naive
enumeration of all n? possible solutions.
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The Lightbulb Approach

Lightbulb algorithm

1. Given a binary matrix A with m rows and n columns.
2. Repeat [ times:

» Sample & rows
> Increase a counter for all pairs of columns that match on these k rows.

3. The counters divided by [ give an estimate of the correlation
P(Xz' = Xj).
Subquadratic runtime

» With probability near 1, the lightbulb algorithm retrieves the most

Inc
. 14mer .
correlated pair in O(n e Ip2 n), where ¢; and ¢y are the highest
and second highest correlation score.
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Discrepancies

Difference Between the Epistasis and Lightbulb Problem Setting

» Difference in correlation

» SNPs are non-binary in general

» Pearson’s correlation coefficient

[m] = = =
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Step 1: Difference in Correlation

Theorem
» Given a matrix of cases A and a matrix of controls B of identical size.
» Finding the maximally correlated pair on
A A
(5 1%5) ®
» and on
A 1-A
(5 5% @)
> is identical to
argmax |pa (X, X;) — pB (i, X;)|- (5)

2y
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Step 2: Locality Sensitive Hashing (Charikar, 2002)

Given a collection of vectors in R we choose a random vector r from the
m-~dimensional Gaussian distribution. Corresponding to this vector r, we
define a hash function h, as follows:

e (35) = {1 ifr'x; >0

6
0 ifr'x; <0 (©)
Theorem
For vectors x;,%xj, Prihe(x;) = he(x;)] =1 — @ where 0 is the

angle between the two vectors.

=] (=) = E = YAl
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Step 3: Pearson’s Correlation Coefficient

Link between correlation and cosine

Karl Pearson defined the correlation of 2 vectors x;,x; in R™ as

B cov (X, X;) @)

- )
O'xiO'xj

that is the covariance of the two vectors divided by their standard
deviations. An equivalent geometric way to define it is:

p = cos(x; — X;,Xj — X;), (8)

where X; and X; are the mean value of x; and x;, respectively.
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The Lightbulb Epistasis Algorithm (Achlioptas et al., KDD 2011)

Algorithm

1. Binarize original matrices Ay and B into A and B by locality
sensitive hashing.

2. Compute maximally correlated pair on L L via
: P y pair p1 B 1-B
lightbulb.

. : A 1-A .
3. Compute maximally correlated pair p2 on B B via
lightbulb.

4. Report the maximum of p; and ps.
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Experiments: Arabidopsis SNP dataset

Results on Arabidopsis SNP dataset

# SNPs | Measurements Pairs Exponent | Speedup | Top 10 | Top 100 | Top 500 | Top 1K

100,000 8,255,645 8,186,657 1.38 611 1.00 0.86 0.82 0.80

100,000 52,762,001 51,732,700 1.54 97 1.00 1.00 0.99 0.98
Runtime

» Runtime is empirically O(n'?).

> Epistasis detection on the human genome would require 1 day of
computation on a typical desktop PC.
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Experiments: Runtime versus Recall

16 T T

- - - dbgap Schizophrenia dataset
= Hapsample simulated dataset et -
‘11111 Arabidopsis thaliana dataset emmm T

1.55 |

Exponent of runtime (base n)
IS

1 1 1 1 1 1 1
R 093 094 095 096 097 0.98
Recall among top 1000 SNP pairs (in %)
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Multi-Locus Models: Discovering Trait-Related Interactions

Alternative: Engineering approach

» Use parallel computing power of Graphical Processing Units for
interaction discovery (Kam-Thong et al., ISMB 2011 & Human Heredity 2012)

» Similar speed-up as with Lightbulb algorithm

Road ahead

» We got the approval to perform the official SNP-SNP interaction
discovery analysis for:

» The international lung disease genetics consortium COPDGene
» The international headache genetics consortium (Clinical Migraine)

» Our methods will be used in further consortia:
» Psychiatric diseases such as autism, schizophrenia, depression
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Multi-Locus Models: Discovering Trait-Related Networks

Network information

» What about models with more than 2 SNPs?

» Additive models are hard to interpret, multiplicative models are hard
to compute.

» Can the growing knowledge about gene and protein networks be
exploited to improve multi-locus mapping?

o = = = = var
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Multi-Locus Models: Discovering Trait-Related Networks

- T

» Edges between SNPs near the same gene or SNPs in interacting genes
> ¢; is the association score of SNP ¢, f; = 1 if SNP i is selected,
fi = 0if not.
» Find a set of SNPs with maximum total score:
argmax ¢ f
fe{o,1}n

such that
> the selected SNPs form a connected subgraph and
> f is sparse.
» NP-complete problem: Maximum Weight Connected Subgraph
Problem (Lee and Dooly, 1993) o
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Multi-Locus Models: Discovering Trait-Related Networks

Karsten Borgwardt
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Multi-Locus Models: Discovering Trait-Related Networks

Our formulation (Azencott et al., ISMB 2013)

» Networks are incomplete — Connectedness needs not be strictly
enforced, but merely rewarded by a Graph Laplacian regularizer
FILF=> (fi—f;)* where L=D — W.

i~

» The SNP subnetwork selection problem is then:

argmax ¢'f —AfILf —n [[fll
N—— N——

fefoiyr ~~ —
association  connectivity sparsity

» This is a min-cut problem, for which efficient algorithms exist (we use
Boykov and Kolmogorov, IEEE TPAMI 2004).

» Much faster and recovers four times more phenotype-related genes in
A. thaliana than network-constrained Lasso models
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Multi-Locus Models: Current Work

Other important aspects

> Including prior knowledge on relevance of SNPs (timin Li et al., 1sMB 2011)
» Accounting for relatedness of individuals (Rakitsch et al., Bioinformatics 2012)
» Measuring statistical significance

» Predicting multiple correlated phenotypes jointly

Karsten Borgwardt
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Increasing Sample Size: Genotyping (Cao et al., Nat. Gen. 2011)

Setup

» 80 fully sequences genomes
from A. thaliana (3 million
SNPs)

» 4 strains with 250.000 SNPs

» Can we predict the remaining

Prediction accuracy (%)

97.5 /
97.0

SNPs?
//
= Result
— » Employed BEAGLE to predict
— oo missing SNPs in 4 strains
e > Missing sites can be accurately

Karsten Borgwardt

20 40 60 80 100 120 140 16.0

predicted (>96% accuracy)
Missing genotypes (%)

Computational Biology September 4, 2013 41



Increasing Sample Size: Phenotyping (Karaletsos et al., Bioinf. 2012)

Setup

» Guppy image collections

> Re-occurring color patterns
are phenotypes

» How to phenotype the guppies
automatically?

BT

13

Result

> Proposed Markov Random
Field for pattern discovery

» Recovers color patterns found
by manual annotation

‘/
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Karsten Borgwardt

Setup

» Collections of CT-scans of
human lungs

» Structural differences may be
linked to disease (COPD)

» How to measure differences in
lung structure?
Result

» Proposed novel, efficient
similarity measure on
geometric trees (tree kernel)

September 4, 2013
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Additional Factors: Epigenetic Influences (Becker et al.,

Founder plant

Generation 0 \W
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Generation 31

Generation 32

29 39 49 59 69 79 89 99 109 119

Karsten Borgwardt

Computational Biology

Setup

» 33 generations of lab strains
of A. thaliana

» How stable is the methylation
state of genome positions
across generations?

Result

» Position-specific methylation
varies greatly

» Region-wide methylation is
more stable

September 4, 2013
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An Online Resource for Machine Learning on Complex Traits

» We published easyGWAS (https://easygwas.tuebingen.mpg.de/), a
machine learning platform for analysing complex traits (Grimm et al.,
arXiv 2012):

[5 moromn-vecrin il

easyGWA - View results
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CREATE EXPERIMENTS
A Overviow

+ Create new GWAS.
@ Tutorial

E—
B My experiments
(@ Shared experiments.
& Public experiments

Brief summary
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AtPoYyDB (call method 75, Horton
otal)
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Width 22
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GWA result options

Manhattan-plot for chromosome 1
I -1o¢10-ve) B Bnfern sveshold 0.5]

o s000000 10000000 15200000 20000000 25000000 20000000
chromosomal positon (bp]

-log10p-value)

Manhattan-plot for chromosome 2.
[ T ——]

10(p-value)

o

o x

Karsten Borgwardt

W zotero

Computational Biology September 4, 2013 45


https://easygwas.tuebingen.mpg.de/

Summary and Outlook

How can Machine Learning contribute to Personalized Medicine?

» By discovering relationships between groups of molecular components
and functions of a system

» By allowing to efficiently collect and annotate large sample sizes of
observations

» By measuring the ‘added value’ of further molecular factors

Outlook: Phenotype Prediction

» Scaling tests, models, algorithms to large, high-dimensional datasets,
e.g. from Imaging, Epigenomics, Transcriptomics

» Learning across different data sources
» Analysing structured phenotypes (images, time series)

» More challenges for and applications of machine learning
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The Road Ahead: Personalized Medicine

» Example: DREAM 8 NIEHS-NCATS-UNC DREAM Toxicogenetics
Challenge

» Goal: Predict a reaction of a genotyped cell line to a chemical
compound

» Joins molecule- and individual-centered bioinformatics

Toxicogenetics Chemical
Challenge Data descriptors.
10K attributes
ot Cytotoxicity
available dah (Ecm) Gl
Genotypes | RNASeq Training Set | o §
4 N E
= =1
=] S E
B 3 3]z
” 106 chemicals g
46K transeripts
Test Set
Ma Subchallenge 1
1.3M SNPs available

156 chemicals

Source: https://www.synapse.org
o & = E = v
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The Road Ahead: Marie Curie Initial Training Network

» Goal: Enable medical treatment tailored to patients’ molecular
properties

» Plan: Help to build a research community at the interface of Machine
Learning and data-driven Medicine

» First step: Marie Curie Initial Training Network (ITN)

Topic: Machine Learning for Personalized Medicine (MLPM)

Duration: 4 years, started January 2013

14 early-stage researchers in 12 labs at 10 nodes in 6 countries

3.75 million EUR funding for PhD students and training events
Research programmes:

>

>
>
>
>

>

>
>
>

Biomarker Discovery

Data Integration

Causal Mechanisms of Disease
Gene-Environment Interactions

» Follow us on mlpm.eu

Karsten Borgwardt
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ITN on "Machine Learning for Personalized Medicine” (MLPM)

» Pharmatics, Edinburgh

» University of Sheffield

» University of Liege

» INSERM and ARMINES, Paris
» MPIs Tiibingen

> MPI for Psychiatry, Munich

» Siemens Munich

» Universidad Carlos Ill de
Madrid

> Prince Felipe Research Centre
(CIPF) in Valencia

» MSKCC New York
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Thank You

Postdocs and PhD students:
» Aasa Feragen
» Barbara Rakitsch
» Carl-Johann Simon-Gabriel
» Chloé-Agathe Azencott
» Damian Roqueiro
» Dominik Grimm
> Felipe Llinares Lopez g
» Mahito Sugiyama :

> Niklas Kasenburg

v

v

Karsten Borgwardt
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Sponsors:

Krupp-Stiftung
A.-v.-Humboldt-Stiftung

DFG

Det Frie Forskningsrad Denmark
Marie-Curie-FP 7
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Thank You
“ keep updated with MLN

like our page on Faceboa

https://www.facebook.com/MLCBResearch

Karsten Borgwardt Computational Biology September 4, 2013 51



Main References

C.-A. Azencott, D. Grimm, M. Sugiyama, Y. Kawahara, K. M.
Borgwardt, ISMB (2013).

P. Achlioptas, B. Scholkopf, K. Borgwardt, ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD) (2011), pp.
726-734.

J. Cao, et al., Nature Genetics 43, 956 (2011). PMID: 21874002.

T. Karaletsos, O. Stegle, C. Dreyer, J. Winn, K. M. Borgwardt,
Bioinformatics 28, 1001 (2012).

C. Becker, et al., Nature 480, 245 (2011).
D. Grimm, et al., arXiv:1212.4788 (2012).

N. Shervashidze, K. M. Borgwardt, Neural Information Processing
Systems (NIPS) pp. 1660-1668 (2009). NIPS Outstanding Student
Paper Award Winner. L

Karsten Borgwardt Computational Biology September 4, 2013 52



