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• Instead of focussing on a single topic (RL), I’ll try to emphasize the
common underlying problem in these topics.

• There are excellent text books and lectures on the individual topics, but
I think students rarely know or learn about the connections.

ICML 2011 tutorial on ML in Robotics: http://ipvs.informatik.uni-stuttgart.de/
mlr/marc/teaching/11-ICML-MachineLearningAndRobotics-Tutorial/index.html

• The perspective taken in this tutorial is simple. All of these problems
are eventually Markovian processes in belief space.

Disclaimer: Whenever I say “optimal” I mean “Bayes optimal” (we
always assume having priors P (θ))
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Outline

• Problems covered:
– Bandits
– Global optimization
– Active learning
– Bayesian RL

(POMDPs)

• Methods covered (interweaved with the above):
– Belief planning
– Upper Confidence Bound (UCB)
– Expected Improvement, probability of improvement
– Predictive error
– Bayesian exploration bonus, Rmax
– “greedy heuristics vs. belief planning”
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Bandits
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Bandits

• There are n machines.

• Each machine i returns a reward y ∼ P (y; θi)
The machine’s parameter θi is unknown
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Bandits

• Let at ∈ {1, .., n} be the choice of machine at time t
Let yt ∈ R be the outcome with mean 〈yat〉

• A policy or strategy maps all the history to a new choice:

π : [(a1, y1), (a2, y2), ..., (at-1, yt-1)] 7→ at

• Problem: Find a policy π that

max
〈∑T

t=1 yt

〉
or

max 〈yT 〉

or other objectives like discounted infinite horizon max
〈∑∞

t=1 γ
tyt
〉
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Exploration, Exploitation

• “Two effects” of choosing a machine:
– You collect more data about the machine→ knowledge
– You collect reward

• Exploration: Choose the next action at to min 〈H(bt)〉
• Exploitation: Choose the next action at to max 〈yt〉
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The belief state

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(a1, y1), (a2, y2), ..., (at-1, yt-1)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the bandit case:
– The belief factorizes bt(θ) = P (θ|ht) =

∏
i bt(θi|ht)

e.g. for Gaussian bandits with contant noise, θi = µi

bt(µi|ht) = N(µi|ŷi, ŝi)

e.g. for binary bandits, θi = pi, with prior Beta(pi|α, β):

bt(pi|ht) = Beta(pi|α+ ai,t, β + bi,t)

ai,t =
∑t−1
s=1[as= i][ys=0] , bi,t =

∑t−1
s=1[as= i][ys=1]
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Optimal policies via belief planning

• The process can be modelled as
a1 a2 a3y1 y2 y3

θ θ θ θ

or as Belief MDP
a1 a2 a3y1 y2 y3

b0 b1 b2 b3

P (b′|y, a, b) =

1 if b′ = b[a, y]

0 otherwise
, P (y|a, b) =

∫
θa
b(θa) P (y|θa)

• Belief planning: Dynamic Programming on the value function

Vt-1(bt-1) = max
π

〈∑T
t=t yt

〉
= max

at

∫
yt
P (yt|at, bt-1)

[
yt + Vt(bt-1[at, yt])

]
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Optimal policies

• The value function assigns a value (maximal achievable return) to a
state of knowledge

• The optimal policy is greedy w.r.t. the value function (in the sense of
the maxat above)

• Computationally heavy: bt is a probability distribution, Vt a function
over probability distributions

• The term
∫
yt
P (yt|at, bt-1)

[
yt + Vt(bt-1[at, yt])

]
is related to the Gittins Index: it can be

computed for each bandit separately.
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Example exercise

• Consider 3 binary bandits for T = 10.
– The belief is 3 Beta distributions Beta(pi|α+ ai, β + bi) → 6 integers
– T = 10 → each integer ≤ 10

– Vt(bt) is a function over {0, .., 10}6

• Given a prior α = β = 1,
a) compute the optimal value function and policy for the final reward
and the average reward problems,
b) compare with the UCB policy.
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Greedy heuristic: Upper Confidence Bound (UCB)

1: Initializaiton: Play each machine once
2: repeat
3: Play the machine i that maximizes ŷi +

√
2 lnn
ni

4: until

ŷi is the average reward of machine i so far
ni is how often machine i has been played so far
n =

∑
i ni is the number of rounds so far

See Finite-time analysis of the multiarmed bandit problem, Auer, Cesa-Bianchi & Fischer,
Machine learning, 2002.
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UCB algorithms

• UCB algorithms determine a confidence interval such that

ŷi − σi < 〈yi〉 < ŷi + σi

with high probability.
UCB chooses the upper bound of this confidence interval

• Optimism in the face of uncertainty

• Strong bounds on the regret (sub-optimality) of UCB (e.g. Auer et al.)
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Further reading

• ICML 2011 Tutorial Introduction to Bandits: Algorithms and Theory,
Jean-Yves Audibert, Rémi Munos

• Finite-time analysis of the multiarmed bandit problem, Auer,
Cesa-Bianchi & Fischer, Machine learning, 2002.

• On the Gittins Index for Multiarmed Bandits, Richard Weber, Annals of
Applied Probability, 1992.
Optimal Value function is submodular.
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Conclusions

• The bandit problem is an archetype for
– Sequential decision making
– Decisions that influence knowledge as well as rewards/states
– Exploration/exploitation

• The same aspects are inherent also in global optimization, active
learning & RL

• Belief Planning in principle gives the optimal solution

• Greedy Heuristics (UCB) are computationally much more efficient and
guarantee bounded regret
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Global Optimization
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Global Optimization

• Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

(I neglect constraints g(x) ≤ 0 and h(x) = 0 here – but could be included.)

• Blackbox optimization: find optimium by sampling values yt = f(xt)

No access to ∇f or ∇2f
Observations may be noisy y ∼ N(y | f(xt), σ)

17/48



Global Optimization = infinite bandits

• In global optimization f(x) defines a reward for every x ∈ Rn

– Instead of a finite number of actions at we now have xt

• Optimal Optimization could be defined as: find π : ht 7→ xt that

min
〈∑T

t=1 f(xt)
〉

or
min 〈f(xT )〉
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Gaussian Processes as belief

• The unknown “world property” is the function θ = f

• Given a Gaussian Process prior GP (f |µ,C) over f and a history

Dt = [(x1, y1), (x2, y2), ..., (xt-1, yt-1)]

the belief is

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)

Mean(f(x)) = f̂(x) = κ(x)(K + σ2I)-1y response surface

Var(f(x)) = σ̂(x) = k(x, x)− κ(x)(K + σ2In)
-1κ(x) confidence interval

• Side notes:
– Don’t forget that Var(y∗|x∗, D) = σ2 + Var(f(x∗)|D)

– We can also handle discrete-valued functions f using GP classification
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Optimal optimization via belief planning

• As for bandits it holds

Vt-1(bt-1) = max
π

〈∑T
t=t yt

〉
= max

xt

∫
yt
P (yt|xt, bt-1)

[
yt + Vt(bt-1[xt, yt])

]
Vt-1(bt-1) is a function over the GP-belief!
If we could compute Vt-1(bt-1) we “optimally optimize”

• I don’t know of a minimalistic case where this might be feasible
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Greedy 1-step heuristics

• Maximize Probability of Improvement (MPI)

from Jones (2001)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x))

• Maximize Expected Improvement (EI)

xt = argmax
x

∫ y∗
−∞N(y|f̂(x), σ̂(x)) (y∗ − y)

• Maximize UCB
xt = argmax

x
f̂(x) + βtσ̂(x)

(Often, βt = 1 is chosen. UCB theory allows for better choices. See Srinivas et al.
citation below.) 21/48



From Srinivas et al., 2012:
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Further reading

• Classically, such methods are known as Kriging

• Information-theoretic regret bounds for gaussian process optimization
in the bandit setting Srinivas, Krause, Kakade & Seeger, Information
Theory, 2012.

• Efficient global optimization of expensive black-box functions. Jones,
Schonlau, & Welch, Journal of Global Optimization, 1998.

• A taxonomy of global optimization methods based on response
surfaces Jones, Journal of Global Optimization, 2001.

• Explicit local models: Towards optimal optimization algorithms, Poland,
Technical Report No. IDSIA-09-04, 2004.
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Active Learning
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Example
Active learning with gaussian processes for object categorization.
Kapoor, Grauman, Urtasun & Darrell, ICCV 2007.
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Active Learning
• In standard ML, a data set Dt = {(xs, ys)}t-1s=1 is given

In active learning, the learning agent sequencially decides on each xt
– where to collect data

• Generally, the aim of the learner should be to learn as fast as possible,
e.g. minimize predictive error

• Finite horizon T predictive error problem:
Find a policy π : Dt 7→ xt that

min 〈− logP (y∗|x∗, DT )〉y∗,x∗,DT ;π

This can be expressed as the entropy of the predictor:

〈− logP (y∗|x∗, DT )〉y∗,x∗ =
〈
−
∫
y∗
P (y∗|x∗, DT ) logP (y∗|x∗, DT )

〉
x∗

= 〈H(y∗|x∗, DT )〉x∗ =: H(f |DT )

• Find a policy that min 〈H(f |DT )〉DT ;π 27/48



Gaussian Processes as belief

• Again, the unknown “world property” is the function θ = f

• We can use a Gaussian Process to represent the belief

bt(f) = P (f |Dt) = GP(f |Dt, µ, C)
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Optimal Active Learning via belief planning

• The only difference to global optimization is the reward
In active learning it is the predictive error: −H(f |DT )

• Dynamic Programming:

VT (bT ) = −H(bT ) , H(b) := 〈H(y∗|x∗, b)〉x∗
Vt-1(bt-1) = max

xt

∫
yt
P (yt|xt, bt-1) Vt(bt-1[xt, yt])

• Computationally intractable
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Greedy 1-step heuristics

• The simplest greedy policy is 1-step Dynamic Programming:
Directly maximize immediate expected reward, i.e., minimizes H(bt+1).

π : bt(f) 7→ argmin
xt

∫
yt
P (yt|xt, bt) H(bt[xt, yt])

• For GPs, you reduce the entropy most if you choose xt where the
current predictive variance is highest:

Var(f(x)) = k(x, x)− κ(x)(K + σ2In)
-1κ(x)

• Note:
– The reduction in entropy is independent of the observations yt, only the

set Dt matters!
– The order of data points also does not matter
– You can pre-optimize a set of “grid-points” for the kernel – and play them

in any order
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Further reading

• Active learning literature survey. Settles, Computer Sciences Technical
Report 1648, University of Wisconsin-Madison, 2009.

• Active learning with statistical models. Cohn, Ghahramani & Jordan,
JAIR 1996.

• ICML 2009 Tutorial on Active Learning, Sanjoy Dasgupta and John
Langford http://hunch.net/~active_learning/
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Bayesian Reinforcement Learning
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Markov Decision Process

• Other than the previous cases, actions now influence a world state

s0 s1 s2 s3

a1 a2

r0 r1 r2

a0

– initial state distribution P (s0)
– transition probabilities P (s′|s, a)
– reward probabilities P (r|s, a)
– agent’s policy P (a|s;π)

• Planning in MDPs: Given knowledge of P (s′|s, a), P (r|s, a) and
P (y|s, a), find a policy π : st 7→ at that maximizes the discounted
infinite horizon return 〈

∑∞
t=0 γ

trt〉:

V (s) = max
a

[
E(r|s, a) + γ

∑
s′ P (s

′ | s, a) V (s′)
]
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Model-based Reinforcement Learning

• In Reinforcement Learning we do not know the world
Unknown MDP parameters θ = (θs, θs′sa, θrsa)
(for P (s0), P (s′|s, a), P (r|s, a))

• In model-free RL, there is no attempt to learn/estimate θ
– Instead: directly estimate V (s) or Q(s, a)

– TD, Q-learning
– Policy gradients, blackbox policy search, etc

• Basic model-based RL computes estimates θ̂:
– Exploit: Dynamic Programming with current θ̂ to decide on next action
– Explore: e.g., sometimes choose random actions (more on this later)
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Bayesian RL: The belief state

• “Knowledge” can be represented in two ways:
– as the full history

ht = [(s0, a0, r0), ..., (st-1, at-1, rt-1), (st)]

– as the belief
bt(θ) = P (θ|ht)

where θ are the unknown parameters θ = (θ1, .., θn) of all machines

• In the case of discrete MDPs
– θ are CPTs (conditional probability tables)
– Assuming Dirichlet priors over CPTs, the exact posterior is a Dirichlet
– Amounts to counting transitions
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Optimal policies
• The process can be modelled as (omitting rewards)

a0 a1 a2

θ θ θ θ

s0 s1 s2 s3

or as Belief MDP

s0 s1 s2 s3

b0 b1 b2 b3

a0 a1 a2

P (b′|s′, s, a, b) =

1 if b′ = b[s′, s, a]

0 otherwise
, P (s′|s, a, b) =

∫
θ
b(θ) P (s′|s, a, θ)

V (b, s) = max
a

[
E(r|s, a, b) +

∑
s′ P (s

′|a, s, b) V (s′, b′)
]

• Dynamic programming can be approximated (Poupart et al.) 36/48



Heuristics
• As with UCB, choose estimators for R∗, P ∗ that are

optimistic/over-confident

Vt(s) = max
a

[
R∗ +

∑
s′ P

∗(s′|s, a) Vt+1(s
′)
]

• Rmax:

– Choose R∗(s, a) =

{
Rmax if #s,a < n

θ̂rsa otherwise

– Choose P ∗(s′|s, a) =

{
δs′s∗ if #s,a < n

θ̂s′sa otherwise

– Guarantees over-estimation of values, polynomial PAC results!
– Read about “KWIK-Rmax”! (Li, Littman, Walsh, Strehl, 2011)

• Bayesian Exploration Bonus (BEB), Kolter & Ng (ICML 2009)
– Choose P ∗(s′|s, a) = P (s′|s, a, b) integrating over the current belief b(θ)

(non-over-confident)
– But choose R∗(s, a) = θ̂rsa +

β
1+α0(s,a)

with a hyperparameter α0(s, a),
over-estimating return

• Confidence intervals for V -/Q-function (Kealbling ’93, Dearden et al.
’99) 37/48



Further reading

• ICML-07 Tutorial on Bayesian Methods for Reinforcement Learning
https://cs.uwaterloo.ca/~ppoupart/ICML-07-tutorial-Bayes-RL.html

Esp. part 3: Model-based Bayesian RL (Pascal Poupart); and the
methods cited on slide 22

• Optimal learning: Computational procedures for Bayes-adaptive
Markov decision processes. Duff, Doctoral dissertation, University of
Massassachusetts Amherst, 2002.

• An analytic solution to discrete Bayesian reinforcement learning.
Poupart, Vlassis, Hoey, & Regan (ICML 2006)

• KWIK-Rmax: Knows what it knows: a framework for self-aware
learning. Li, Littman, Walsh & Strehl, Machine learning, 2011.

• Bayesian Exploration Bonus: Near-Bayesian exploration in polynomial
time. Kolter & Ng, ICML 2009.

• The “interval exploration method” described in Reinforcement learning:
A survey. Kaelbling, Littman & Moore, arXiv preprint cs/9605103, 1996.
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POMDPs
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POMDPs

• A belief MDP is a special case of a POMDP
a0

s0 s1 s2 s3

a1 a2y1 y2 y3y0

r0 r1 r2

– initial state distribution P (s0)
– transition probabilities P (s′|s, a)
– observation probabilities P (y|s)
– reward probabilities P (r|s, a)

• Embedding a Belief MDP in a POMDP:
sPOMDP ← (θ, s)BeliefMDP

yPOMDP ← sBeliefMDP
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Optimal policies

• Again, the value function is a function over the belief

V (b) = max
a

[
R(b, s) + γ

∑
b′ P (b

′|a, b) V (b′)
]

• Sondik 1971: V is piece-wise linear and convex: Can be described by
m vectors (α1, .., αm), each αi = αi(s) is a function over discrete s

V (b) = max
i

∑
s αi(s)b(s)

Exact dynamic programming possible, see Pineau et al., 2003
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Approximations & Heuristics

• Point-based Value Iteration (Pineal et al., 2003)
– Compute V (b) only for a finite set of belief points

• Discard the idea of using belief to “aggregate” history
– Policy directly maps history (window) to actions
– Optimize finite state controllers (Meuleau et al. 1999, Toussaint et al.
2008)
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Further reading

• Point-based value iteration: An anytime algorithm for POMDPs.
Pineau, Gordon & Thrun, IJCAI 2003.

• The standard references on the “POMDP page”
http://www.cassandra.org/pomdp/

• Bounded finite state controllers. Poupart & Boutilier, NIPS 2003.

• Hierarchical POMDP Controller Optimization by Likelihood
Maximization. Toussaint, Charlin & Poupart, UAI 2008.
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Discussion
3 points to make
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Point 1: Common ground

What bandits, global optimization, active learning, Bayesian RL &
POMDPs share

– Sequential decisions
– Markovian w.r.t. belief
– Decisions influence the knowledge as well as rewards/states
– Sometimes described as “exploration/exploitation problems”
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Point 2: Optimality

• In all cases, belief planning would yield optimal solutions
→ Optimal Optimization, Optimal Active Learning, etc...

• Even if it may be computationally infeasible, it is important to know
conceptually

• Optimal policies “navigate through belief space”
– This automatically implies/combines “exploration” and “exploitation”
– There is no need to explicitly address “exploration vs. exploitation” or

decide for one against the other. Policies that maximize the single
objective of future returns will automatically do this.

46/48



Point 3: Greedy (1-step) heuristics

• Also the optimal policy is greedy – w.r.t. the value function!

• “Greedy heuristics” replace the value function by something simpler
and more direct to compute, typically 1-step criteria

– UCB
– Probability of Improvement
– Expected Improvement
– Expected immediate reward, expected predictive error

• Typically they reflect optimism in the face of uncertainty

• Regret bounds for UCB on bandits and optimization (Auer et al.;
Srinivas et al.)

• Theory on submodularity very stongly motivates greedy heuristics

• In RL: Optimism w.r.t. θ, but planning w.r.t. s
– Bayesian Exploration Bonus (BEB), Rmax, interval exploration method
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Thanks
for your attention!
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