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Perception

Where Did We Stop ...




Outline

« A Bit of Robotics History
 Foundations of Control
 Adaptive Control

* Learning Control
- Model-based Robot Learning

- Reinforcement Learning
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Characteristics of Function
botics

g

* |ncremental Learning

— large amounts of data
— continual learning

— to be approximated
functions of growing and
unknown complexity

e Fast Learning
— data efficient
— computationally efficient
— real-time

 Robust Learning

— minimal interference
— hundreds of inputs




Linear Regression: One of the Simplest
Function Approximation Methods

Recall the simple adaptive control model with:f(x) =0x

- find the line through all
data points

- imagine a spring
attached between the
line and each data point

- all springs have the
same spring constant

- points far away generate
more “force” (danger of
outliers)

- springs are vertical

- solution is the minimum
energy solution achieved >
by the springs




Linear Regression: One of the Simplest
Function Approximation Methods

* The data generating model:  ;_#7g1w +e=w'x+e

~

W

where x = [XT ,I]T W= [ y
0

},E{e}zo
 The Least Squares cost function

7= (t=y) (t-y)= 5 (t-Xw) (£~ Xw)

2 I
l, Xg
where : t = X =
e Minimizing the cost gives o -
the least-square solution 3_12():3_] %(t—XW)T(t—XW))z—(t—Xw)TX
\u4 \u4

=—t"X+(Xw) X=—t"X+w'X'X
thus: t'X=w'X'X or X't=X"Xw
result: w= (XTX)_1 X't




Recursive Least Squares:
% An Incremental Version of Linear Regression

R &@ Action
\) § e

e Based on the matrix inversion theorem:
(A-BC)'=A"+A'B(I+CA'B) CA™

* |Incremental updating of a linear regression model

Initialize: P" = Il where ¥ <<1 (note P = (XTX)_1
Y

For every new data point (x,t)

(note that x includes the bias):

pr _ 1 pr_ P'xx'P” L 1 if no forgetting
A A+x P'x <1 if forgetting

Wn+1 —W" + Pn+1X(t . WnTX)T

- NOTE: RLS gives exactly the same solution as linear regression if no forgetting




Traversing Zoubin’s Diagram
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Making Linear Regression Nonlinear:
Locally Weighted Regression

Fagrt
Sy

= / Region of Validity

Receptive Field —Linear
Activationw  1- Model
0—= —p>

N
}
e

J = Zwi ()’i — XZTB)z

i=1

Note: Using GPs, SVR, Mixture Models, etc., are other ways to nonlinear regression

= et
- Lol I
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predictions from
different linear models

L Few Linear Models _I_ Many linear Models _

(no overlap) (strong overlap)

® Piecewise linear function approximation,
® Fach local model is learned from only local data
® No over-fitting due to too many local models (unlike RBFs, ME)
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y :ﬁxTX-I_ﬁO

Weighting Kernel:

Combined
Prediction:

Locally VWeighted Regression

learned with

B'x where X=[x" 1]T

Recursive weighted least squares:

_ T
(=B wR T x(y -5 )

nosTyn
Pn+1 — l Pn _ Pk XX Pk
k k /’L
AL Ak
w

Gradient descent in penalized leave-one-out

local cross-validation (PRESS) cost function:

aJ
Ml’l+l = Mn _ a
k “ T oM
1 N " 2 C 2
J = N Zwk,i Y. = Y| TV 2 Dk,ij
W, im] i=1,j=1

i=1

add model when jf mkin(wk) <W,,

—

createnew RF at ¢, =X
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Locally Weighted Regression

ASt+—r—r——r—rr

z= max(exp(— 10x7),exp(—50y"),1.25 exp(—S(x2 +y° ))) 45 1 05 0 05 1 15




Locally Weighted Regression

Inserted into Adaptive Control

Action




Locally Weighted Regression

Trial 1

Learn forward model of task dynamics,
then computer controller




A Locally Weighted Regression

Model-based Reinforcement
Learning of Devilsticking

Stefan Schaal & Chris Atkeson

Learn forward model of task dynamics,
then computer controller
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Criticism of Locally Weighted Learning

Breaks down in high-dimensional spaces

Computationally expensive and numerically brittle due
to (incremental) dxd matrix inversion

Not compatible with modern probabilistic statistical
learning algorithms

Too many “manual tuning parameters”




The Curse of Dimensionality

* The power of local learning comes from exploiting the
discriminative power of local neighborhood relations.

e But the notion of a “local” breaks down in high dim.
spaces!




The Curse of Dimensionality
Movement Data is Locally Low Dimensional

T

§ i

cally w ed learning can work
|t§ loge nsionality reduction!

1 11 21 31 41 105
Dimensionality

Derived with Bayesian Factor Analysis

T Tv‘i:ﬁ-
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A Bayesian Approach to
Locally Weighted I,v;earning




Locally Weighted I,v;earning

A Bayesian Approach to

 Inserting a Partial-Least-Squares-like projection as a

set of hidden variables

Bu| | B| | B

B.




A Bayesian Approach to Locally Weighted

* Robust linear regression with automatic relevance
detection (ARD, sparsification)

g g @ Zim = XiB 1,
d
P Yi = zzi,m TE

™ m=1
£~N(O,1//y)

n, ~ N(Oal/jzm)

ot
am

o, ~ Gamma(aa b, ,)

-,
2y
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A Full Bayesian Treatment of Locally
Weighted __w

* The final model for full Bayesian parameter adaptation
for regression and locality




Locally Weighted Learning In High
Dimensional Spaces




Locally Weighted Learning In High
Dimensional Ss

» Learning the “cross” function in 20-dimensional space
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Locally Weighted Learning In High
Dimensiq_pal Spaces

* [earning internal models in 90 dimensional space
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Locally Weighted Learning In High
Dimensional Seaces




Locally Weighted Learning In High
Dimensional Seaces

 SKkill learning




Outline

« A Bit of Robotics History
 Foundations of Control
« Adaptive Control

» |earning Control
- Model-based Robot Learning

- Reinforcement Learning

29



Given: A Parameterized Policy
and a Controller

Task Specific
Parameters Dynamic X

——p Systems
olicy

T T X Motor

System

Perceptual
Coupling

Note: we are now starting to address planning,
i.e,. where do desired trajectories come from!?




A Trial & Error Learning
=“%{ Reinforcement Learning from Trajectories

R

 Problem:

— How can a motor system learn a
novel motor skill?

— Reinforcement learning is a
general approach to this
problem, but little work has been
done to scale to the high-
dimensional continuous state-
action domains of humans

e Approach:

— Teach with imitation learning the
initial skill using a parameterized
control policy

— Provide an objective function for
the skill

— Perform trial-and-error learning
from exploratory trajectories




Reinforcement Learning Terminology

Policies

— perceived state to action
mapping (can be
probabilistic)

Reward functions

— maps the perceived state-
action pair into a a single
number, an immediate reward
(stochastic)

Value functions

— maps the state into the
accumulated expected
reward that would be
received if starting in the state

Models

— predicts the next state given
the current state and action
(can be probabilistic)

® Policy: what to do
® Reward: what is good

¢ Value: what is good because it

predicts reward
® Model: what follows what

Objective: Optimize Reward!

32



Value thions

* The value of a state is the expected return starting from
that state; depends on the agent’s policy:

State - value function for policy 7 :

Vi(x)=E, {Rt | X, = X} =k, {iyk’?+k+1 | X, = X}
k=0

* The value of taking an action in a state under policy Tt
IS the expected return starting from that state, taking
that action, and thereafter following 1 :

Action - value function for policy 7 :

Qﬂ(X,u) - Eﬂ {Rt | Xt = X’ut = ll} — Erc {Eykrﬁkﬂ | Xz = X’ut — ll}

k=0




Bellman Equation for a__!?olicz T

The basic idea:

R t+1+y t+2 7/ r+3 y t+4

t+1+7/( Lo TVt }/ t+4 )
+ YR

t+1 r+1

So: Vix)=E_ {R |X :X}

=Lk {t+1+7V

t+1 X :X}




Bellman Optimality Equation for V*

* The value of a state under an optimal policy must

equal the expected return for the best action from that
state:

V *(x)= max Q" (x,u)

ueA(x)

max E{z;+1 +yV * (Xt+1 X, =x,u, = u)}
ueA(x)

V' is the unique solution of this system of equations. I




Bellman Optimality Equation f”<

* The value of a state/action under an optimal policy

must equal the expected return for this action from that
state, and then following the optimal policy:

QO (x,u)= E{l;+1 +ymaxQ’(x,,,,u)|x, =x,u, = u}

Q' is the unique solution of this system of equations. I




A

( 'Ir.ea'ming )

Example: Learning a Pendulum Swi_n_qgg_-UB

LLLLL

(_Perception |

T

Note: Both policy and value function are
rather complex landscapes with
discontinuities!

Torgque(Nm)

Yalue
B OMmO

. Velocity(r/s)
" “elocity(r/s) o
Position(r) g -10 Position(r)

g -10

Policy Value Function
— e s
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Some More Excitiqs Exameles




 From about 1980-2000, value function-based (i.e., state-based)
reinforcement learning has been dominant (textbook Sutton&Barto)

— Pros:

- well-understood theory
- convergence proofs for discrete state-action systems
- a useful set of algorithms to work with (model-based and model-free)
- ideally a globally optimal solution
— Cons:
- problematic in continuous state-action spaces (max-operator in continuous spaces)
- curse of dimensionality in high-dimensional systems
- hard to combine with function approximation
- greed (= agressive) updating

 Trajectory-based reinforcement learning

— Pros:
- can work in high dimensional continuous state-action spaces
- does not suffer from the curse of dimensionality

— Cons:

- Locally optimal solutions
- classical methods learn very slowly

T Tv‘i:ﬁ-




Trajectory-based Reinforement Learning
with Parameterized PoIicie_i

Feedforward
———®| Controller ug
Tgsk Specific up Y+
arameters Dynamic Xd + Feedback o
Systems B Bttt _’@
— Bolioy Y Controller +
T T u
X Motor
System ‘
Perceptual
Coupling

Example: Dynamic Systems Policies,

initalized by imitation

i w.b.x

ti=a (B.(g—y)-7)+-;

TX=—0 X

X




| _Trajectory-based Reinforcement Learning

e Define a cost function along the trajectory:

J=E, {ir
i=0

* And a parameterized control policy (e.g., a movement
primitive)

o
'

ty = f(y,goal,b)

* Optimize J with respect to parameters b, e.g., by

gradient descent
n+1 n 5’]
b =b"+toa—
db

41




Goal: Hit ball to fly far ~ Note: about 150-200 trials are needed.
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~ Reinforcement Learning from Trajectories

BRl %1

« State-of-the-art of Reinforcement Learning from

Trajectories: )
- Given the cost per trajectory 7 : J=FE, {2’3}

- The motor primitives with parameters b: ty = f(y,goal,b)

— RL with Natural Gradients AJ yac

bnew — bold 4+ o —NAC
db

— Probabilistic RL with Reward-Weighted Regression
b <Y Rb. /Y R,
— Trajectory-based Q-learning (fitted Q-iteration)

- an actor-critic based method based on an action-value function over trajectories

— RL with path-integrals (a probabilistic, model-based/model-free
approach derived from stochastic optimal control)

]
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Reinforcement Learning
Based on Path Integrals

* Pre-requisites
System Dynamics (Control-Affine):
x=f(x,t)+G(x)(u(t)+e(r)) = F(x,u,t)

Cost Function: o
Note: this is a more

rn=q(X,)+ EutTR“t structured approach

T to RL
th = EXI {qT + I l’t.df'}

— @Goal: find commands u that minimize this cost

44



Reinforcement Learning
Based on Path Integrals

« Sketch of the Path-Integral Derivation

Stochastic HIB Equations:

—atV(Xt ,t) = min{rt + BXV(Xt ,t)T F(x,u,t)+ %Tr{ﬂ(x,u,t)aiV(xt ,t)}}

min[%ufRut +q, + axv(xt ,t)T f(x,t)+ 8XV(Xt ,t)T G(x)u(r)+ %TI’{G(X)Z G(X)T BiV(Xt ,t)}} =0

w'R+0.V(x,.t) G(x,)=0

u, =-R'G(x,) 9,V(x,.1)

45



Reinforcement Learning
Based on Path Integrals

« Sketch of the Path-Integral Derivation

—atV(X; ,t) = min[rt + 8XV(XI ,t)T F(x,u,t)+ %Tr{ﬂ(x,u,t)BiV(xt ,t)}}

m

u, =-R7'G(x,) 9,V (x,.1)

X

x = f(x,t)+ G(X)(u(t) + 8(t))

'

L3,V (x,.1) = —%8XV(xt,t)TG(x)R‘lG(X)T 3V (%,,0)+q, +3,V(x,.t) f(x,t)+%Tr{G(x)Z G(x) 92V (x,.1)}




Reinforcement Learning
Based on Path Integrals

« Sketch of the Path-Integral Derivation

3,V (x,.1) = —%8XV(xt,t)T G(X)R'G(x) 3.V (x,.0)+q, +3.V(x,.1) £(x,0)+ %Tr{G(X)Z G(x) 92V (x,.1)}

Simplification: Log-Transformation Trick:
AR =% V(x,,t)=-Alogy(x,.t)

O (x,) =¥ (x,.1)a, 0. (x,) £(x.1) = Tr{G ()2 G(x) Dy (x,.1)]

Chapman Kolmogorov PDE: 2nd Order and Linear




Reinforcement Learning
Based on Path Jl_-ntegrals

« Sketch of the Path-Integral Derivation

0 (5,0) = -y (%,0)g, -2, (1) 1)~ 21 {G (%) G 2y (3,

'

Application of Feynman-Kac Theorem:

A numerical method to solve certain PDEs

48




Reinforcement Learning
Based on Path __!‘ntegrals

« Sketch of the Path-Integral Derivation
‘//(Xt,t):ET {W(XT,T)eXp(—tJT%qt'dtv]}

u, =-R'G(x,) 9,V(x,.1)

; A bit of algebra ..

HRSVE} {WTR_lG(xt Y (6(x)R'G(x) )" G(xt)st}

Optimal Control Law




Path Integral RL Applied to
- Parameterized Policies (Motor Prlmltlves

* Note that a version of motor primitives can be written as
control affine stochastic differential equations

x=f(x)+g (6+¢)
€ is interpreted as intentionally injected exploration noise
the parameters 8 are the control vector
f(x) is the spring-damper of the primitives
g(x) are the basis functions of the function approximator

 |tis also necessary to create a iterative version of path
iIntegral optimal control

- the original path integral optimal control framework explores only based on the
passive dynamics, i.e., u=0

50



Perception

PI? Reinforcement Learning

 For parameterized policies like dynamic motor
primitives, a beautifully simple algorithm results:

1) Create K trajectories of the motor primitive for a given task with noise.

2) We can write the cost to go from every time step t of the trajectory as:

T
RtZQT"i'zri

3) The probability of a trajectory becomes

%)
exXp _E t
P(&)= i —
exp(—RtJ )

j=1 A

4) Update the parameter 6 of the motor primitive as
& (e RE 08 (x)

A6, =Y P(&) e; Note that there a NO open

g"(x,) R'g"(x,) ' .
tuning parameters except for

5) Final parameter update N | : .
o the exploration noise
Onew — eold in Aet P




e The Intuition of Path Integral Reinforcement Learning

velocity

5
4
3
2
1
0

- Generate multiple trials i 1
with some variation, e.g., 0.8
due to noise or exploration /
S 98 /
- For every time t, compute = .
the cost R{ for every trial: &
T
l_ 1 0.2 /
R =g, + J.q(xt) + EufRutd’L't 4
t 10 20 30 40
- Co_nvert the cost into a positive e
weight
wi = exp(—),Rf)

- Update the motor command at every time step to
be the reward weighted average of all experienced
commands in the trial 2 win

new __

t i
2w

u

Surprisingly, this
Intuition turns out
to be the optimal
solution




PI? Reinforcement Learning:
Some Remarks

 Pl2 can be model-based to model-free

Rigid Body Dynamics: § = M(q) " (ll -C(q.9)q+ G(‘l))
Control Law:u=u, +K (q,—q)+K,(q,—q)
Motor Primitives: g, = o, (ﬁz (gi — q;) - q’ﬁi) +y'0

e PI2 can optimize trajectory plans, controllers, or both

e PI2 has only one open parameter, i.e., the level of
exploration noise

* PI2 allows a rather simple derivation of inverse
reinforcement learning




Example: Results on 2D Reaching
Through a\_/_i_ Point

Via-Point
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Example: Results on 20D Reaching
Through a\_/_i_ Point

Perception

Via-Point
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Example: Results on 50D Reaching
Through a\_/_i_ Point

Perception

Via-Point
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Perception

Example: D_o_g |umE

600

This is a 12 DOF motor system, = \
using 50 basis functions per 400
primitive. Learning converges after - \

about 20-30 trial! Performance
improved by |5cm (0.5 body lengths)

\\ﬁ

i /\NV
0- — ——
1 10 100

Number of Roll-Outs




Reinforcement Learning
in Manipulation

-

L @ |ng a P
3 P’re‘é)lse Poo

|md
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- B i

-

Peter Pastor Mrinal Kalakrishnan Sachin Chitta
Research conducted at Willow Garage




Perception

Learning Locomotion over Rough Terrain

Learning Locomotion
with LittleDog

http://www-clmc.usc.edu

Mrinal Kalakrishnan, Jonas Buchli,
Peter Pastor, Michael Mistry, and
Stefan Schaal
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Outline

« A Bit of Robotics History
 Foundations of Control
« Adaptive Control

* Learning Control
- Model-based Robot Learning

- Reinforcement Learning

What Comes Next!?
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Very Little Robots

Very Big Robots
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