
Multilayer
Neural Networks
(are no longer old-fashioned!)

MLSS TUEBINGEN 2013

LEON BOTTOU

Success stories
Record performance
 MNIST (1988, 2003, 2012)

 ImageNet (2012)

 …

Real applications
 Check reading (AT&T Bell Labs, 1995 – 2005)

 Optical character recognition (Microsoft OCR, 2000)

 Cancer detection from medical images (NEC, 2010)

 Object recognition (Google and Baidu’s photo taggers, 2013)

 Speech recognition (Microsoft, Google, IBM switched in 2012)

 Natural Language Processing (NEC 2010)

 …

Lecture 1

Neural information processing
 Origins

 Rumelhart’s propositional network

 Network construction kit

 Convolutional networks

Lecture 2

Training multilayer networks
 Optimization basics

 Initialization

 Stochastic gradient descent

 Improved algorithms

Lecture 3

Deep networks for complex tasks
 Introduction

 Structured problems

 Auxiliary tasks

 Circuit algebra

Neural Information Processing

Origins

The perceptron
 Rosenblatt 1957

The perceptron

 Supervised learning of the weights 𝑤 using the Perceptron algorithm.

Linear threshold unit

The perceptron is a machine

Frank Rosenblatt

The perceptron

The perceptron does things that vintage computers could not match.

Alternative computer architecture? Analog computer?

Cybernetics (1948)

Mature communication technologies, nascent computing technologies

Redefining the man-machine boundary

Norbert Wiener

How to design computers?

 Which model to emulate : brain or mathematical logic ?

 Mathematical logic won.

Computing with symbols

General computing machines
 Turing machine

 von Neumann machine

Engineering
 Programming

(reducing a complex task into
 a collection of simple tasks.)

 Computer language

 Debugging

 Operating systems

 Libraries

Computing with the brain

 An engineering perspective
 Compact

 Energy efficient (20 watts)

 1012 Glial cells (power, cooling, support)

 1011 Neurons (soma + wires)

 1014 Connections (synapses)

 Volume = 50% glial cells + 50% wires.

 General computing machine?
 Slow for mathematical logic, arithmetic, etc.

 Very fast for vision, speech, language, social interactions, etc.

 Evolution: vision - language – logic.

McCulloch & Pitts (1943)

 A simplified neuron model: the Linear Threshold Unit.

 𝑓(∑𝑤𝑖𝑥𝑖)

𝑥1

𝑥2

𝑥3

𝑥𝑖

…

…

Perceptrons (1968)

Linear threshold units as Boolean gates.

Circuit theory is poorly known.

Learning deep circuits means
solving the credit assignment problem.

Linearly separable problems are few.

Elementary problems need complex circuits.
(parity, connexity, invariances.)

But have simple algorithmic solutions.
(programming versus learning.)

 Abandon perceptrons and other analog computers.
 Develop symbolic computers and symbolic AI techniques.

Perceptrons revisited

Linear threshold units as Boolean gates.

Circuit theory is poorly known.

Learning deep circuits means
solving the credit assignment problem.

Linearly separable problems are few.

Elementary problems need complex circuits.
(parity, connexity, invariances.)

But have simple algorithmic solutions.
(programming versus learning.)

Still true.

Easier than expected
but still puzzling.

Low VCdim is good!

Humans do not always
do this well either

Learning is necessary
when specs are not available.

How to reduce complex learning
problems into simple ones?

Neural Information Processing

Rumelhart’s propositional network

(see McClelland and Roger, 2003)

Quillian’s hierarchical
propositional model (1968)

Quillian’s hierarchical
propositional model (1968)

 Accessing specific properties should be
faster than accessing generic properties.

 Experimental results disagree.

Connectionism
Connectionism

From psychological ideas of the XIXth and XXth centuries.

Some see connectionism as a regression (Fodor, Pinker, …)

Parallel Distributed Processing (PDP) Research Group (1980s)

 Neural representations are distributed.

 Neural computation is parallel.

 Processing units, connectivity, propagation rule, learning rule.

 Geoff Hinton “I want to know how the brain works.”

Training the network

 Replace threshold unit by sigmoid unit

 Collect training examples

 … 𝐼𝑡𝑒𝑚(𝑘), 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘), 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 𝑘 …

 Form the mean squared error

𝐸 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 𝑘 − 𝑂𝑢𝑡𝑝𝑢𝑡(𝑘) 2

𝑘

 Initialize with random weights and optimize by gradient descent (!)

𝑠 = 𝑓 𝑥𝑖 𝑤𝑖

Propagation

𝑎•
𝑥•

…

…

𝑥𝑖

…

…

…

𝑤𝑖•

…
 …

𝑥• = 𝑓 𝑎•

𝑎• = 𝑤𝑖• 𝑥𝑖
𝑖∈𝑃𝑟𝑒 •

Back-Propagation

𝑔•

…

𝑔𝑗

…

…

𝑤•𝑗 𝑔• = 𝑓
′ 𝑎• 𝑤•𝑗 𝑔𝑗

𝑗∈𝑃𝑜𝑠𝑡 •

𝜕𝐸

𝜕𝑤•𝑗
 = 𝑥• 𝑔𝑗 …

𝑔𝑖 =
𝜕𝐸

𝜕𝑎𝑖

Chain rule

Training algorithm (batch)
Repeat
 Clear gradient accumulators Δ𝑖𝑗 ← 0

 For each example 𝑘

 Set inputs as implied by 𝐼𝑡𝑒𝑚(𝑘) and 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘)

 Compute all 𝑎𝑖 𝑘 and 𝑥𝑖 𝑘 by propagation

 For all output units 𝑗, compute

𝑔𝑗 𝑘 = 𝑓
′ 𝑎𝑗(𝑘) 𝑥𝑗 𝑘 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑗 𝑘

 Compute all 𝑔𝑗(𝑘) by back-propagation

 Accumulate Δ𝑖𝑗 ← Δ𝑖𝑗 + 𝑥𝑖 𝑘 𝑔𝑗(𝑘)

 Perform a gradient update 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂 Δ𝑖𝑗

Training algorithm (stochastic)
Repeat
 For each example 𝑘

 Set inputs as implied by 𝐼𝑡𝑒𝑚(𝑘) and 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘)

 Compute all 𝑎𝑖 𝑘 and 𝑥𝑖 𝑘 by propagation

 For all output units 𝑗, compute

𝑔𝑗 𝑘 = 𝑓
′ 𝑎𝑗(𝑘) 𝑥𝑗 𝑘 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑗 𝑘

 Compute all 𝑔𝑗(𝑘) by back-propagation

 Set Δ𝑖𝑗 ← 𝑥𝑖 𝑘 𝑔𝑗(𝑘)

 Perform a gradient update 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂 Δ𝑖𝑗

Outputs

Representations

Representations

ISA in representation space

Playing with item frequency

Adding relations

Neural Information Processing

Network construction kit

(B. & Gallinari, 1991)

Linear brick

 Propagation

𝑦 = 𝑊𝑥

 Back-propagation

𝜕𝐸

𝜕𝑥
=
𝜕𝐸

𝜕𝑦
𝑊

𝜕𝐸

𝜕𝑊
= 𝑥
𝜕𝐸

𝜕𝑦

Linear

𝑊

𝑥 𝑦

Transfer function brick

 Propagation

𝑦𝑠 = 𝑓(𝑥𝑠)

 Back-propagation

𝜕𝐸

𝜕𝑥
𝑠

=
𝜕𝐸

𝜕𝑦
𝑠

 𝑓′(𝑥𝑠)

𝑓 𝑥 𝑦

Transfer functions

Propagation Back-propagation

Sigmoid 𝑦𝑠 =
1

1+𝑒−𝑥𝑠

𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠

1

(1+𝑒𝑥𝑠)(1+𝑒−𝑥𝑠)

Tanh 𝑦𝑠 = tanh (𝑥𝑠)
𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠

1

cosh2 𝑥𝑠

ReLu 𝑦𝑠 = max(0, 𝑥𝑠)
𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠
𝕀{𝑥𝑠 > 0}

Ramp 𝑦𝑠 = min −1,max 1, 𝑥𝑠

𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠
𝕀{−1 < 𝑥𝑠< 1}

Square loss brick

 Propagation

𝐸 = 𝑦 =
1

2
𝑥 − 𝑑 2

 Back-propagation

𝜕𝐸

𝜕𝑥
= 𝑥 − 𝑑 𝑇

𝜕𝐸

𝜕𝑦
= 𝑥 − 𝑑 𝑇

SqLoss
𝑥

𝑦
𝑑

Loss bricks

Propagation Back-propagation

Square 𝑦 =
1

2
𝑥 − 𝑑 2

𝜕𝐸

𝜕𝑥
= 𝑥 − 𝑑 𝑇

𝜕𝐸

𝜕𝑦

Log 𝑐 = ±1 𝑦 = log(1 + 𝑒−𝑐𝑥)
𝜕𝐸

𝜕𝑥
=
−𝑐

1+𝑒𝑐𝑥

𝜕𝐸

𝜕𝑦

Hinge 𝑐 = ±1 𝑦 = max(0,𝑚 − 𝑐𝑥)
𝜕𝐸

𝜕𝑥
= −𝑐 𝕀{𝑐𝑥 < 𝑚}

𝜕𝐸

𝜕𝑦

LogSoftMax 𝑐 = 1…𝑘 𝑦 = log ∑ 𝑒𝑥𝑘𝑘 −𝑥𝑐
𝜕𝐸

𝜕𝑥 𝑠
= 𝑒𝑥𝑠 ∑ 𝑒𝑥𝑘𝑘 − 𝛿𝑠𝑐

𝜕𝐸

𝜕𝑦

MaxMargin 𝑐 = 1…𝑘 𝑦 = max
𝑘≠𝑐
𝑥𝑘 +𝑚 − 𝑥𝑐

+

𝜕𝐸

𝜕𝑥 𝑠
= 𝛿𝑠𝑘∗ − 𝛿𝑠𝑐 𝕀{𝐸 > 0}

𝜕𝐸

𝜕𝑦

Sequential brick

Propagation

Apply propagation rule to 𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀 .

Back-propagation

Apply back-propagation rule to 𝐵𝑀 , … , 𝐵3, 𝐵2, 𝐵1.

𝑥 𝑦 𝐵1 𝐵2 𝐵3 𝐵𝑀 …

Benefits

Implementation

 Flexible modular framework

 Many toolkits (Lush, Torch, …)

Testing

 Each brick can be tested separately (finite differences)

Possibilities

 RBF brick, Vector Quantization brick, and more.

Torch code sample
 Defining a network (see http://code.cogbits.com/wiki.)

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki

Torch code sample
 Training the network

Neural Information Processing

Convolutional networks (CNNs)

Vision is fast

(Thorpe et al., 1995-…)

Hubel & Wiesel (1962)

Insights about early image processing in the brain.

Simple cells detect local features

Complex cells pool local features in a retinotopic neighborhood

The Neocognitron

(Fukushima 1974-1982)

Local connections

Convolution
 Shared weights

Multiple convolutions

CNNs in the 1990s
 1989 Isolated handwritten character recognition (AT&T Bell Labs)

 1991 Face recognition. Sonar image analysis. (Neuristique)

 1993 Vehicle recognition. (Onera)

 1994 Zip code recognition (AT&T Bell Labs)

 1996 Check reading (AT&T Bell Labs)

Convnets in the 1990s

Pooling

Name Pooling formula

Average pool
1

𝑠2
∑𝑥𝑖

Max pool max{𝑥𝑖}

L2 pool
1

𝑠2
∑𝑥𝑖
2

Lp pool 1

𝑠2
∑ 𝑥𝑖
𝑝

1
𝑝

Contrast Normalization

Contrast normalization

 Subtracting a low-pass smoothed version of the layer

 Just another convolution in fact (with fixed coefficients)

 Lots of variants (per feature map, across feature maps, …)

 Divisive normalization

CNNs in the 2010s

Convolve
Tanh
ReLu

L2 pool
Max pool

Contrast
normalization

Convolve
Tanh
ReLu

L2 pool
Max pool

Contrast
normalization

…

Linear … Tanh
ReLu Linear

…

…

Categories

Pixels

Torch code sample
 Defining a convolutional network (see http://code.cogbits.com/wiki.)

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki

Convnets in the 2000s

OCR in natural images [2011]. Streetview house numbers (NYU)

Traffic sign recognition [2011]. GTRSB competition (IDSIA, NYU)

Pedestrian detection [2013]. INRIA datasets (NYU)

Volumetric brain segmentation [2009]. Connectomics (MIT)

Human action recognition [2002,2011]. Smartcatch (NEC), Hollywood II (SF)

Object recognition [2004,2012]. Norb (NEC), ImageNet (UofT)

Scene parsing [2010-2012]. Stanford bldg, Barcelona (NEC, NYU)

Medical image analysis [2008]. Cancer detection (NEC)

ImageNet 2012 competition

Object recognition. 1000 categories. 1.2M examples

ImageNet CNN

 Structure (conv-relu-maxpool-norm)3-linear-relu-linear-relu-linear

 Very good implementation, running on two GPUs.

 ReLU transfer function. Dropout trick.

 Also trains on full ImageNet (15M images, 15000 classes)

(Kirzhevsky, Sutskever, Hinton, 2012)

ImageNet CNN

Replicated CNNs

Wrong way Right way

CNNs for speech recognition
Time delay neural networks
 1988: speaker independent phoneme recognition (Hinton&Lang, Waibel)
 1989: speaker independent word recognition (B.)
 1991: continuous speech recognition (Driancourt & B.)

CNN for speech recognition

Dynamic
programming

CNN for speech recognition

In the 1990s

 CNN are competitive with Gaussian Hidden Markov Models.

 But not sufficiently better to justify a switch.

In the 2010s

 More data. More compute power. More results.

 Major speech recognition systems (MS, IBM, Google) have
 switched to neural network acoustic models around 2011-2012.

Training multilayer networks

Optimization basics

Convex

Non-convex

Derivatives

Line search
 Bracketing a minimum

Line search
 Refining the bracket

Line search
 Refining the bracket (2)

Line search
 Refining the bracket (3)

Line search
 Refining the bracket (4)

Line search
 Golden ratio algorithm

Line search
 Parabolic interpolation

Line search
 Parabolic interpolation

Line search
 Brent algorithm

Rescaling weights

Consider the change 𝑓𝑛𝑒𝑤 𝑎 = 𝑓(2𝑎) and 𝑊𝑛𝑒𝑤 = 𝑊/2.

 This leaves 𝑦(𝑥) unchanged.

 What can you say about Δ𝑊𝑛𝑒𝑤 ?

Propagation

 𝑦 = 𝑓(𝑊𝑥)

Back-propagation

 𝑔𝑎 = 𝑓
′ 𝑎 𝑔𝑦

 𝑔𝑥 = 𝑔𝑎 𝑊

 Δ𝑊 = −𝜂 𝑥 𝑔𝑎

𝑊𝑥 𝑓(𝑎)

𝑥

𝑊

𝑎 𝑦

Parabola

Gradient descent

 𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝑑𝐸

𝑑𝑤
(𝑤𝑡)

Questions

 How does 𝜂 affect the convergence?

 What’s the best value of 𝜂 ?

𝑤 ∈ ℝ

𝐸 𝑤 =
𝑐

2
 𝑤2

More dimensions

Two dimensions.

Two different curvatures.

Same questions

 How does 𝜂 affect the convergence?

 What’s the best value of 𝜂 ?

More dimensions

Gradient descent

 𝐸 𝑤 =
1

2
 𝑤𝑇𝐻 𝑤

 𝑤𝑡+1 = 𝑤𝑡 − 𝜂
𝑑𝐸

𝑑𝑤
(𝑤𝑡)

Questions

 How does 𝜂 affect the convergence?

 What’s the best value of 𝜂 ?

Second order rescaling

Rescale 𝑤

 𝑤𝑛𝑒𝑤 ← 𝐻
1

2 𝑤

 𝐸 =
1

2
 𝑤𝑇𝐻 𝑤 =

1

2
 𝑤𝑛𝑒𝑤
𝑇 𝑤𝑛𝑒𝑤

Questions

 Write gradient descent in 𝑤𝑛𝑒𝑤 space.

 Write the equivalent 𝑤 update.

Second order rescaling

Rescale 𝑤

 𝑤𝑛𝑒𝑤 ← 𝐻
1

2 𝑤

 𝐸 =
1

2
 𝑤𝑇𝐻 𝑤 =

1

2
 𝑤𝑛𝑒𝑤
𝑇 𝑤𝑛𝑒𝑤

Gradient descent in 𝑤𝑛𝑒𝑤 space

 Δ𝑤𝑛𝑒𝑤 = −𝜂
𝑑𝐸

𝑑𝑤𝑛𝑒𝑤
= −𝜂 𝐻−

1

2
𝑑𝐸

𝑑𝑤

 Δ𝑤 = −𝜂 𝐻−1
𝑑𝐸

𝑑𝑤

Practical issues

 Objective function is not quadratic.

 Local quadratic approximation is reasonable.

 Hessian 𝐻 changes with 𝑤.

 When objective is non-convex, 𝐻 can have negative eigenvalues

 Estimate the Hessian 𝐻 on the fly.

 The Hessian is often too large to store or invert.

Standard solutions

Idea: estimate a compact approximation of 𝐻−1
 using the observed gradients 𝑔 𝑤𝑡 , 𝑔 𝑤𝑡−1 , … , 𝑔 𝑤𝑡−𝑘 , …

Example: use line search and ensure conjugate search directions.

 Let 𝑑𝑡−1, 𝑑𝑡−2, … , 𝑑𝑡−𝑘 be the last 𝑘 search directions.
 We want to choose 𝑑𝑡 = 𝑔 𝑤𝑡 + ∑𝜆𝑖 𝑑𝑡−𝑖 such that 𝑑𝑡

𝑇 𝐻 𝑑𝑡−𝑖 = 0

Very good algorithm have been developed.

 Conjugate gradient (𝑘 = 1)

 LBFGS (𝑘 > 1)

Attention

Three reasons to remain suspicious.

1. Our cost function is a sum of a large number of similar terms.
This specific form can be used to speedup optimization.

𝐸 𝑤 =
1

𝑁
 ℓ 𝐹 𝑥𝑖 , 𝑑𝑖
𝑖=1…𝑁

2. Our problem is such that a random subset of terms is informative.
Otherwise we cannot expect that our model will generalize!

3. Quickly achieving a good test set performance.
≠ quickly achieving a good training set performance

Simple things we can do

Precondition the inputs

Normalize in similar ranges

Use different 𝜂 in different layers, on the basis of

Average size of the gradient

Average size of the weights

Training multilayer networks

Initialization

Random weight initialization

Why can we optimize such a complex non-convex function?

 We are not really optimizing.

 The problem is simpler than it looks.

Performance with random weights?

 The case of the two layer network with threshold units.

 The case of convolutional networks.

The simplest two-layer net

 Train on examples (
1

2
,
1

2
) and (−

1

2
, −
1

2
) with mean squared loss.

 𝐸 =
1

2
− tanh 𝑤2 tanh

𝑤1

2

2

How does this cost function look like?

𝑥
𝑤1 𝑤2

𝑦 = tanh(𝑤2 tanh(𝑤1𝑥))

The simplest two-layer net

The simplest two layer net

Initialization

The main rule for random weight initialization

Do not pick initial weights that kill the gradient!

The role of the transfer function

The distribution of the inputs to the transfer function

 should target the linear part.

 should have a chance to exploit the nonlinearity.

 Exercises: Tanh, Sigmoid, ReLU.

Training multilayer networks

Stochastic gradient descent

Optimization vs. learning

Offline vs. online

Stochastic Gradient Descent

Stochastic Gradient Descent

Practical illustration

Subtleties
How to quickly achieve a good training set performance?

Initialize super-linear algorithm with SGD!

Question : when does this help the testing set performance?

Training multilayer networks

Improved algorithms

Overview
Lots of improved algorithms in the recent literature

Momentum and acceleration

Mini-batch techniques

Parallel training

Questions to ask ourselves…

Do they quickly achieve good test errors or good training errors?

In most papers, the experiments target the test, and the theory targets the training.

This does not mean that the proposed method is useless.
 It means that the theoretical argument is oversold.

Momentum and acceleration
MOMENTUM

 𝑣𝑡+1 = 𝜇 𝑣𝑡 − 𝜂 grad 𝐸 𝑤𝑡

 𝑤𝑡+1 = 𝑤𝑡 + 𝑣𝑡+1

NESTEROV ACCELERATION

 𝑣𝑡+1 = 𝜇 𝑣𝑡 − 𝜂 grad 𝐸 𝑤𝑡 + 𝜇𝑣𝑡

 𝑤𝑡+1 = 𝑤𝑡 + 𝑣𝑡+1

(Sutskever et al., ICML 2013)

Mini-batches
Stochastic gradient descent

Use noisy gradient based on a single example.

Mini-batch stochastic gradient descent

Use noisy gradient based on a small batch of examples.

Theoretical results are unimpressive for first order gradient descent.

However:

1. Mini-batches are well suited to modern hardware

2. Mini-batches provide an opportunity to use second order info.

Modern hardware
Single example formulas

𝑦 = 𝑊𝑥 (GEMV)

𝑔𝑥 = 𝑔𝑦 𝑊 (GEMV)

Δ𝑊 = 𝑥 𝑔𝑦 (GER)

Multiple example formulas

𝑌 = 𝑊𝑋 (GEMM)

𝐺𝑋 = 𝐺𝑌𝑊 (GEMM)

Δ𝑊 = 𝑋 𝐺𝑌 (GEMM)

Linear

𝑊

𝑥 𝑦

Successive LBFGS

 This does not work with convex models (why?)

 But this works quite well with multilayer networks (why?)

 for t = 1,2,3, …

◦ pick examples for mini-batch 𝑡

◦ initialize net with weights 𝑤𝑡

◦ optimize with LBFGS and obtain 𝑤𝑡+1

Martens HF training

 pick a first mini-batch (mini-batch 0)

 for t = 1,2,3, …

◦ pick examples for mini-batch 𝑡

◦ compute 𝑔𝑡 = 𝑔𝑟𝑎𝑑 𝐸𝑡(𝑤𝑡) on mini-batch t

◦ minimize 𝑑𝑇𝐻𝑑 + 𝜆𝑑2 + 𝑔𝑡𝑑 by CG

 where the product 𝐻𝑑 is evaluated directly
 using gradients measured on mini-batch 0.

◦ update 𝑤𝑡+1 = 𝑤𝑡 + 𝑑

Lots of refinements are necessary to make this work well.

(Martens, 2010, 2012)

Parallel training of neural nets
An active topic of research.

No clear winner yet.

Baseline: lock-free stochastic gradient

Assume shared memory

Each processor access the weights through the shared memory

Each processor runs SGD on different examples

Read and writes to the weight memory are unsynchronized.

Synchronization issues are just another kind noise…

Deep networks for complex tasks

Introduction

How to design computers?

Why do computers emulate mathematical logic?

 Complex tasks are reduced to combinations of simple tasks.

 New ways to solve simple tasks immediately benefit everything.

Remember the perceptron

Reducing complex tasks to combinations of simple tasks

An engineering necessity.

Simple learning tasks
 - classification, regression, clustering, multi-armed bandits.
 (and many other eight-pages papers)

Complex learning tasks
 - reading checks (segmentation, recognition, interpretation)
 - parsing visual scenes (finding objects and their relations)
 - composing personalized web pages (dealing with feedback)
 - natural language understanding (hard to define…)
 - strong AI (let’s dream…)

Bayesian inference

The appeal of Bayesian inference

 A language to describe complex models with simpler ones?

 Generic algorithms

Things that Bayesian inference does not do well

 Computationally costly algorithms lead to dirty approximations

 Causation versus correlation (a different kind of reasoning)

 Perception

Deep networks for complex tasks

Structured problems

Engineering learning systems
Reading check amounts

Input 𝑥 ∈ 𝒳 : scanned check image

Output 𝑦 ∈ 𝒴 : positive number

Direct approach

Collect examples 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … and train from scratch.

Possible (we did not really try)

Requires excessive numbers of labeled examples

Requires excessive computation time.

Engineering learning systems
Identify sub-tasks

Locate amount fields

Segment amount fields into isolated characters

Recognize isolated characters

Translate character string into amount

Define a model for each sub-task

Fairly complex recognition models (e.g. CNN)

Highly engineered location and segmentation models

Collect data and train

Interactions
Locate amount fields

Segment amount fields into isolated characters

Recognize isolated characters

Translate character string into amount

Training strategies

Independent training
- train each sub-model separately.

Sequential training (better)
- pre-train with independent training.
- label outputs of sub-model 𝑛 and train sub-model 𝑛 + 1.

Global training (best)
- pre-train with sequential training.
- simultaneously train all sub-models with examples from 𝒳 ×𝒴.

Problem: tracking multiple hypothesis, backtracking, etc.

Graph transformer networks
MULTILAYER NET

 Intermediate
representations are
fixed size vectors.

 Each vector
represents a
decision made by
upstream modules
and passed to
downstream
modules.

GRAPH TRANSFORMER NET

 Intermediate
representations
are graphs.

 Each path in a
graph represents a
combination of
hypotheses made
by upstream
modules and
passed to
downstream
modules.

A word reader

Normalization and discrimination

GENERATIVE TRAINING

 Estimate 𝑃 𝑥, 𝑦

 - Define model 𝑝𝑤 𝑥, 𝑦

 ∀𝑤 ∑ 𝑝𝑤 𝑥, 𝑦 = 1𝑥,𝑦

 - Optimize likelihood

 max∑ log 𝑝𝑤(𝑥𝑖 , 𝑦𝑖)𝑖

DISCRIMINANT TRAINING

 Estimate 𝑃 𝑦 𝑥

 - Define model 𝑝𝑤 𝑥, 𝑦

 ∀ 𝑤, 𝑥 ∑ 𝑝𝑤 𝑥, 𝑦𝑦 = 1

 - Optimize likelihood

 max∑ log 𝑝𝑤(𝑥𝑖 , 𝑦𝑖)𝑖

Spot the difference!

Probabilistic models
Generative Hidden Markov Model

𝑝𝑤 𝑥, 𝑦 = 𝑃 𝑥, 𝑦 𝑤 = 𝑃 𝑠𝑡 𝑠𝑡−1, 𝑤 𝑃(𝑥𝑡|𝑠𝑡, 𝑤)

𝑡𝑠[𝑡]:𝑦

 Probabilistic construction ensures normalization.

Discriminant Hidden Markov Model

𝑝𝑤 𝑥, 𝑦 = 𝑃 𝑦 𝑥,𝑤 = 𝑃(𝑠𝑡|𝑠𝑡−1, 𝑥𝑡 , 𝑤)

𝑡𝑠 𝑡 :𝑦

 Output of the local classifier must be normalized.

 This is a very bad idea.

Denormalized models
Build models using measures instead of probabilities

Measures add and multiply like probabilities

Measures are positive but not constrained to sum to one.

Train by maximizing ∑ log
𝑝𝑤(𝑥𝑖,𝑦𝑖)

∑ 𝑝𝑤(𝑥𝑖,𝑦)𝑦
𝑖

Same as CRF cost function.

Semi-ring variations : ℝ+, +, × ℝ, ⊕, + (ℝ,max, +) …

Score of a path = product of arc scores

Score of a subgraph = sum of path scores

GTN and CRF

 Graph Transformer Network

CRF cost function

Hierarchical coarse-to-fine model

Cheap inference

Check reader

 AT&T Bell Labs, 1995-1996.

 Industrially deployed in 1996.

 Has processed

15% of all the US checks

for nearly fifteen years.

 (B. et.al., CVPR 1997)

Check reader

Recognizer

Lenet5 (CNN)

Pre-trained on 500K
isolated characters
95 categories (why?)

Global training architecture

Graph transduction brick

Input graph

Output graph

Tr
an

sd
u

ce
r

Deep networks for complex tasks

Auxiliary tasks

Retargeting learned features

ImageNet features for Caltech256

Train CNN on ImageNet

Chop the last layer (ImageNet categories)

Append a new last layer (Caltech 256 categories)

Train network on Caltech256 data.

Question

Should we keep the weights fixed in the ImageNet-trained layers.

(LeCun, Ranzato, 2012)

Retargeting learned features

(LeCun, Ranzato, 2012)

CNN

Auxiliary tasks
The price of labels

Labeled examples for interesting tasks are typically scarce.

Abundant labeled examples exists for uninteresting tasks.

Auxiliary task

In the vicinity of an interesting task (with scarce labels)
 there are uninteresting tasks (with cheap labels)
 that can be put to good use.

Example: face recognition
Interesting task. Recognizing the faces of one million persons.

How many labeled images per person can we obtain?

Auxiliary task. Are two face images representing the same person?

Abundant (but noisy) examples.
 Two faces in the same picture are different persons (with exceptions)

 Two faces in successive frames are often the same person (with exceptions)

(Matt Miller, NEC, 2006)

Example: NLP tagging

Interesting task. Standard NLP tagging tasks.

Labeled data: Treebank, Propbank (1M words)

Auxiliary task. Word compatibility language model

Positive examples: Wikipedia sentences segments. (600M words)

Negative examples built by randomly replacing the central word.

Ranking loss: score of positive > score of negative

(Collobert et.al., 2008-2010)

Example: NLP tagging

Example: NLP tagging

Example: NLP tagging

Tagging speed above 10000 words per second

http://ronan.collobert.com/senna

http://ronan.collobert.com/senna

Example: NLP tagging

Unsupervised auxiliary tasks

Deep learning with unsupervised layer-wise training.

Sequentially pre-train successive layers using unsupervised techniques.
 e.g., noisy auto-encoders (feedforward), RBM (≠)

Fine tune using multilayer supervised training.

Remark

This is less popular than it used to be two years ago.
 (fully supervised technique seem to work as well.)

Unsupervised learning?

Unsupervised learning?

Unsupervised learning?

Deep networks for complex tasks

Circuits algebra

(B., ArXiV, 2011)

Transfer learning by rewiring

Bayesian perspective

Circuit algebra

Enriching the semantics

Recursive Auto-Associative Memory

Infinite depth structures

Universal parser

Training strategies
Supervised

 (Socher, 2010, …)

Unsupervised

 In the spirit of the NLP system of (Collobert, Weston, etal., 2008)

Learned representations

Still lots of problems…
- Does not scale well.
- Does not induce good parse trees. (Etter, 2008)

Conclusion

Exploitation

Lots of neural net applications in the coming years

 - Learning perceptual tasks with neural nets works quite well

 - Data and compute power are here.

Exploration

The statistical machine learning research program

Discussing the models
 e.g., their approximation properties.

Discussing the loss functions
 e.g., asymptotic consistency.

Discussing learning algorithms
 e.g., optimization, large scale.

Discussing generalization
 e.g., capacity control.

Exploration

The statistical machine learning research program

Discussing the models
 e.g., their approximation properties.

Discussing the loss functions
 e.g., asymptotic consistency.

Discussing learning algorithms
 e.g., optimization, large scale.

Discussing generalization
 e.g., capacity control.

Exploration (my two cents)

A new object of study
 A collection of statistical models

 With different input and output spaces

 Endowed with an algebraic structure
connecting the models and their realizations
describing how to transfer knowledge across models.

Unstructured training data
 Each example can pertain to a different model.

 The algebraic structure is the glue.

 The glue is connected to reasoning.

