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Success stories 
Record performance 
 MNIST (1988, 2003, 2012)  

 ImageNet (2012)   

 … 

Real applications 
 Check reading (AT&T Bell Labs, 1995 – 2005) 

 Optical character recognition (Microsoft OCR, 2000) 

 Cancer detection from medical images (NEC, 2010) 

 Object recognition (Google and Baidu’s photo taggers, 2013) 

 Speech recognition (Microsoft, Google, IBM switched in 2012) 

 Natural Language Processing (NEC 2010) 

 … 

 

 



Lecture 1 
  

Neural information processing 
 Origins 

 Rumelhart’s propositional network 

 Network construction kit 

 Convolutional networks 

 



Lecture 2 
  

Training multilayer networks 
 Optimization basics 

 Initialization 

 Stochastic gradient descent 

 Improved algorithms 



Lecture 3 
  

Deep networks for complex tasks 
 Introduction 

 Structured problems 

 Auxiliary tasks 

 Circuit algebra 

 



Neural Information Processing 

Origins 



The perceptron 
 Rosenblatt 1957 



The perceptron 

 Supervised learning of the weights 𝑤 using the Perceptron algorithm. 

Linear threshold unit 



The perceptron is a machine 

Frank Rosenblatt 



The perceptron 

The perceptron does things that vintage computers could not match. 

Alternative computer architecture?  Analog computer? 



Cybernetics (1948) 

Mature communication technologies, nascent computing technologies 

Redefining the man-machine boundary 

Norbert Wiener 



How to design computers? 

 Which model to emulate : brain or mathematical logic ? 

 Mathematical logic won. 



Computing with symbols 
 

General computing machines 
 Turing machine 

 von Neumann machine 

Engineering 
 Programming 

( reducing a complex task into 
  a collection of simple tasks.) 

 Computer language 

 Debugging 

 Operating systems 

 Libraries 

 

 

 



Computing with the brain 

 An engineering perspective 
 Compact 

 Energy efficient (20 watts) 

 1012 Glial cells  (power, cooling, support) 

 1011 Neurons (soma + wires) 

 1014 Connections (synapses) 

 Volume = 50% glial cells + 50% wires. 

 General computing machine? 
 Slow for mathematical logic, arithmetic, etc. 

 Very fast for vision, speech, language, social interactions, etc. 

 Evolution: vision - language – logic. 



McCulloch & Pitts (1943) 

  

 A simplified neuron model: the Linear Threshold Unit. 

  𝑓(∑𝑤𝑖𝑥𝑖) 

𝑥1 

𝑥2 

𝑥3 

𝑥𝑖 

…
 

…
 



Perceptrons (1968) 

Linear threshold units as Boolean gates. 

Circuit theory is poorly known. 

Learning deep circuits means  
solving the credit assignment problem. 

Linearly separable problems are few. 

Elementary problems need complex circuits. 
(parity, connexity, invariances.)  

But have simple algorithmic solutions. 
(programming versus learning.) 

 Abandon perceptrons and other analog computers. 
 Develop symbolic computers and symbolic AI techniques. 



Perceptrons revisited 

Linear threshold units as Boolean gates. 

Circuit theory is poorly known. 

Learning deep circuits means  
solving the credit assignment problem. 

Linearly separable problems are few. 

Elementary problems need complex circuits. 
(parity, connexity, invariances.)  

But have simple algorithmic solutions.  
(programming versus learning.)  

Still true. 

Easier than expected 
but still puzzling. 

Low VCdim is good! 

Humans do not always 
do this well either 

Learning is necessary 
when specs are not available. 

How to reduce complex learning 
problems into simple ones? 



Neural Information Processing 

Rumelhart’s propositional network 

(see McClelland and Roger, 2003) 



Quillian’s hierarchical 
propositional model (1968) 



Quillian’s hierarchical 
propositional model (1968) 

 Accessing specific properties should be 
faster than accessing generic properties. 

 Experimental results disagree. 



Connectionism 
Connectionism 

From psychological ideas of the XIXth and XXth centuries. 

Some see connectionism as a regression (Fodor, Pinker, …) 

 

Parallel Distributed Processing (PDP) Research Group (1980s) 

 Neural representations are distributed. 

 Neural computation is parallel. 

 Processing units, connectivity, propagation rule, learning rule.  

 Geoff Hinton “I want to know how the brain works.” 





Training the network 

 Replace threshold unit by sigmoid unit 

 

 

 Collect training examples 

 … 𝐼𝑡𝑒𝑚(𝑘), 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘), 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 𝑘  …  

 Form the mean squared error 

𝐸 = 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡 𝑘 − 𝑂𝑢𝑡𝑝𝑢𝑡(𝑘) 2

𝑘

 

 Initialize with random weights and optimize by gradient descent (!) 

𝑠 = 𝑓  𝑥𝑖  𝑤𝑖  



Propagation 

𝑎• 
𝑥• 

… 

… 

𝑥𝑖 

… 

…
 

…
 

𝑤𝑖• 

…
 …

 

𝑥• = 𝑓 𝑎•  

𝑎• =  𝑤𝑖• 𝑥𝑖
𝑖∈𝑃𝑟𝑒 •

 



Back-Propagation 

𝑔• 

…
 

𝑔𝑗 

…
 

…
 

𝑤•𝑗 𝑔• = 𝑓
′ 𝑎•  𝑤•𝑗  𝑔𝑗

𝑗∈𝑃𝑜𝑠𝑡 •

 

𝜕𝐸

𝜕𝑤•𝑗
 =  𝑥• 𝑔𝑗  …

 

𝑔𝑖  =
𝜕𝐸

𝜕𝑎𝑖
 

Chain rule 



Training algorithm (batch) 
Repeat  
 Clear gradient accumulators Δ𝑖𝑗 ← 0 

 For each example 𝑘 

 Set inputs as implied by 𝐼𝑡𝑒𝑚(𝑘) and 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘) 

 Compute all 𝑎𝑖 𝑘  and 𝑥𝑖 𝑘  by propagation 

 For all output units 𝑗, compute  

𝑔𝑗 𝑘 = 𝑓
′ 𝑎𝑗(𝑘)  𝑥𝑗 𝑘 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑗 𝑘  

 Compute all 𝑔𝑗(𝑘) by back-propagation 

 Accumulate Δ𝑖𝑗 ← Δ𝑖𝑗 + 𝑥𝑖 𝑘 𝑔𝑗(𝑘) 

 Perform a gradient update 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂 Δ𝑖𝑗 



Training algorithm (stochastic) 
Repeat  
 For each example 𝑘 

 Set inputs as implied by 𝐼𝑡𝑒𝑚(𝑘) and 𝑅𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑘) 

 Compute all 𝑎𝑖 𝑘  and 𝑥𝑖 𝑘  by propagation 

 For all output units 𝑗, compute  

𝑔𝑗 𝑘 = 𝑓
′ 𝑎𝑗(𝑘)  𝑥𝑗 𝑘 − 𝐷𝑒𝑠𝑖𝑟𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑗 𝑘  

 Compute all 𝑔𝑗(𝑘) by back-propagation 

 Set  Δ𝑖𝑗 ← 𝑥𝑖 𝑘 𝑔𝑗(𝑘) 

 Perform a gradient update 𝑤𝑖𝑗 = 𝑤𝑖𝑗 − 𝜂 Δ𝑖𝑗 



Outputs 



Representations 



Representations 



ISA in representation space 



Playing with item frequency 



 
Adding relations 



Neural Information Processing 

Network construction kit 

(B. & Gallinari, 1991) 



Linear brick 
  

 Propagation 

𝑦 = 𝑊𝑥 

 Back-propagation 

𝜕𝐸

𝜕𝑥
=  
𝜕𝐸

𝜕𝑦
𝑊 

𝜕𝐸

𝜕𝑊
= 𝑥 
𝜕𝐸

𝜕𝑦
 

Linear 

𝑊 

𝑥 𝑦 



Transfer function brick 
  

 Propagation 

𝑦𝑠 = 𝑓(𝑥𝑠) 

 Back-propagation 

𝜕𝐸

𝜕𝑥
𝑠

=
𝜕𝐸

𝜕𝑦
𝑠

 𝑓′(𝑥𝑠) 

 

𝑓 𝑥 𝑦 



Transfer functions 

Propagation Back-propagation 

Sigmoid 𝑦𝑠 =
1

1+𝑒−𝑥𝑠
  

𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠

1

(1+𝑒𝑥𝑠)(1+𝑒−𝑥𝑠)
  

Tanh 𝑦𝑠 = tanh (𝑥𝑠)  
𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠

1

cosh2 𝑥𝑠
  

ReLu 𝑦𝑠 = max(0, 𝑥𝑠)  
𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠
𝕀{𝑥𝑠 > 0}  

Ramp 𝑦𝑠 = min −1,max 1, 𝑥𝑠  

𝜕𝐸

𝜕𝑥 𝑠
=
𝜕𝐸

𝜕𝑦 𝑠
𝕀{−1 < 𝑥𝑠< 1}  

 



Square loss brick 
  

 Propagation 

𝐸 = 𝑦 =
1

2
𝑥 − 𝑑 2 

 Back-propagation 

𝜕𝐸

𝜕𝑥
= 𝑥 − 𝑑 𝑇

𝜕𝐸

𝜕𝑦
= 𝑥 − 𝑑 𝑇 

 

SqLoss 
𝑥 

𝑦 
𝑑 



Loss bricks 

Propagation Back-propagation 

Square 𝑦 =
1

2
𝑥 − 𝑑 2  

𝜕𝐸

𝜕𝑥
= 𝑥 − 𝑑 𝑇 

𝜕𝐸

𝜕𝑦
 

Log                            𝑐 = ±1 𝑦 = log(1 + 𝑒−𝑐𝑥)  
𝜕𝐸

𝜕𝑥
=
−𝑐

1+𝑒𝑐𝑥
 
𝜕𝐸

𝜕𝑦
 

Hinge              𝑐 = ±1 𝑦 = max(0,𝑚 − 𝑐𝑥)  
𝜕𝐸

𝜕𝑥
= −𝑐  𝕀{𝑐𝑥 < 𝑚} 

𝜕𝐸

𝜕𝑦
  

LogSoftMax   𝑐 = 1…𝑘 𝑦 = log ∑ 𝑒𝑥𝑘𝑘  −𝑥𝑐  
𝜕𝐸

𝜕𝑥 𝑠
= 𝑒𝑥𝑠 ∑ 𝑒𝑥𝑘𝑘 − 𝛿𝑠𝑐

𝜕𝐸

𝜕𝑦
  

MaxMargin      𝑐 = 1…𝑘 𝑦 = max
𝑘≠𝑐
𝑥𝑘 +𝑚 − 𝑥𝑐

+
  

𝜕𝐸

𝜕𝑥 𝑠
= 𝛿𝑠𝑘∗ − 𝛿𝑠𝑐  𝕀{𝐸 > 0} 

𝜕𝐸

𝜕𝑦
 



Sequential brick 

Propagation 

Apply propagation rule to 𝐵1, 𝐵2, 𝐵3, … , 𝐵𝑀 . 

Back-propagation 

Apply back-propagation rule to 𝐵𝑀 , … , 𝐵3, 𝐵2, 𝐵1. 

 

𝑥 𝑦 𝐵1 𝐵2 𝐵3 𝐵𝑀 … 



Benefits 

Implementation 

 Flexible modular framework 

 Many toolkits (Lush, Torch, …) 

Testing 

 Each brick can be tested separately (finite differences) 

Possibilities 

 RBF brick, Vector Quantization brick, and more. 



Torch code sample 
 Defining a network    (see http://code.cogbits.com/wiki.)  

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki


Torch code sample 
 Training the network 



Neural Information Processing 

Convolutional networks (CNNs) 



Vision is fast 

(Thorpe et al., 1995-…) 



Hubel & Wiesel (1962) 

Insights about early image processing in the brain. 

Simple cells detect local features 

Complex cells pool local features in a retinotopic neighborhood 



The Neocognitron  

(Fukushima 1974-1982) 



Local connections 



Convolution 
 Shared weights 



Multiple convolutions 



CNNs in the 1990s 
 1989 Isolated handwritten character recognition (AT&T Bell Labs) 

 1991 Face recognition. Sonar image analysis. (Neuristique) 

 1993 Vehicle recognition. (Onera) 

 1994 Zip code recognition (AT&T Bell Labs) 

 1996 Check reading (AT&T Bell Labs) 



Convnets in the 1990s 



Pooling 

Name Pooling formula 

Average pool 
1

𝑠2
∑𝑥𝑖 

Max pool max{𝑥𝑖} 

L2 pool 
1

𝑠2
∑𝑥𝑖
2 

Lp pool 1

𝑠2
∑ 𝑥𝑖
𝑝

1
𝑝

 



Contrast Normalization 
 

Contrast normalization 

 Subtracting a low-pass smoothed version of the layer 

 Just another convolution in fact (with fixed coefficients) 

 Lots of variants (per feature map, across feature maps, …) 

 Divisive normalization 



CNNs in the 2010s 

Convolve 
Tanh 
ReLu 

L2 pool 
Max pool 

Contrast 
normalization 

Convolve 
Tanh 
ReLu 

L2 pool 
Max pool 

Contrast 
normalization 

… 

Linear … Tanh 
ReLu Linear 

… 

… 

Categories 

Pixels 



Torch code sample 
 Defining a convolutional network  (see http://code.cogbits.com/wiki.)  

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki


Convnets in the 2000s 

OCR in natural images [2011]. Streetview house numbers (NYU) 

Traffic sign recognition [2011]. GTRSB competition (IDSIA, NYU) 

Pedestrian detection [2013]. INRIA datasets (NYU) 

Volumetric brain segmentation [2009]. Connectomics (MIT) 

Human action recognition [2002,2011]. Smartcatch (NEC), Hollywood II (SF) 

Object recognition [2004,2012]. Norb (NEC), ImageNet (UofT) 

Scene parsing [2010-2012]. Stanford bldg, Barcelona (NEC, NYU) 

Medical image analysis [2008]. Cancer detection (NEC) 



ImageNet 2012 competition 

Object recognition.  1000 categories.  1.2M examples 



ImageNet CNN 

 Structure (conv-relu-maxpool-norm)3-linear-relu-linear-relu-linear 

 Very good implementation, running on two GPUs. 

 ReLU transfer function. Dropout trick. 

 Also trains on full ImageNet (15M images, 15000 classes)  

(Kirzhevsky, Sutskever, Hinton, 2012) 



ImageNet CNN 



Replicated CNNs 

Wrong way Right way 





CNNs for speech recognition 
Time delay neural networks 
 1988: speaker independent phoneme recognition (Hinton&Lang, Waibel) 
 1989: speaker independent word recognition (B.) 
 1991: continuous speech recognition (Driancourt & B.) 



CNN for speech recognition 

Dynamic 
programming 



CNN for speech recognition 

In the 1990s 

 CNN are competitive with Gaussian Hidden Markov Models. 

 But not sufficiently better to justify a switch.  

 

In the 2010s 

 More data. More compute power. More results.  

 Major speech recognition systems (MS, IBM, Google) have 
  switched to neural network acoustic models around 2011-2012.  



Training multilayer networks 

Optimization basics 



Convex 



Non-convex 



Derivatives 



Line search 
 Bracketing a minimum 



Line search 
 Refining the bracket 



Line search 
 Refining the bracket (2) 



Line search 
 Refining the bracket (3) 



Line search 
 Refining the bracket (4) 



Line search 
 Golden ratio algorithm 



Line search 
 Parabolic interpolation 



Line search 
 Parabolic interpolation 



Line search 
 Brent algorithm 



Rescaling weights 

Consider the change  𝑓𝑛𝑒𝑤 𝑎 = 𝑓(2𝑎) and 𝑊𝑛𝑒𝑤 = 𝑊/2. 

 This leaves 𝑦(𝑥) unchanged. 

 What can you say about Δ𝑊𝑛𝑒𝑤 ?    

Propagation 

 𝑦 = 𝑓(𝑊𝑥) 

Back-propagation 

 𝑔𝑎 = 𝑓
′ 𝑎  𝑔𝑦 

 𝑔𝑥 = 𝑔𝑎 𝑊 

 Δ𝑊 = −𝜂 𝑥 𝑔𝑎 

𝑊𝑥 𝑓(𝑎) 

𝑥 

𝑊 

𝑎 𝑦 



Parabola 

Gradient descent 

 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 
𝑑𝐸

𝑑𝑤
(𝑤𝑡) 

 

Questions 

 How does 𝜂 affect the convergence? 

 What’s the best value of 𝜂 ? 

 

 

𝑤 ∈ ℝ 

𝐸 𝑤 =
𝑐

2
 𝑤2 



More dimensions 

 

Two dimensions. 

Two different curvatures. 

 

Same questions 

 How does 𝜂 affect the convergence? 

 What’s the best value of 𝜂 ? 

 

 



More dimensions 

Gradient descent 

 𝐸 𝑤 =
1

2
  𝑤𝑇𝐻 𝑤  

 𝑤𝑡+1 = 𝑤𝑡 − 𝜂 
𝑑𝐸

𝑑𝑤
(𝑤𝑡) 

 

Questions 

 How does 𝜂 affect the convergence? 

 What’s the best value of 𝜂 ? 

 

 



Second order rescaling 

Rescale 𝑤 

 𝑤𝑛𝑒𝑤 ← 𝐻
1

2 𝑤  

 𝐸 =
1

2
 𝑤𝑇𝐻 𝑤 =

1

2
 𝑤𝑛𝑒𝑤
𝑇  𝑤𝑛𝑒𝑤 

 

Questions 

 Write gradient descent in 𝑤𝑛𝑒𝑤 space. 

 Write the equivalent 𝑤 update.  



Second order rescaling 

Rescale 𝑤 

 𝑤𝑛𝑒𝑤 ← 𝐻
1

2 𝑤  

 𝐸 =
1

2
 𝑤𝑇𝐻 𝑤 =

1

2
 𝑤𝑛𝑒𝑤
𝑇  𝑤𝑛𝑒𝑤 

 

Gradient descent in 𝑤𝑛𝑒𝑤 space 

 Δ𝑤𝑛𝑒𝑤 = −𝜂
𝑑𝐸

𝑑𝑤𝑛𝑒𝑤
= −𝜂 𝐻−

1

2  
𝑑𝐸

𝑑𝑤
 

 Δ𝑤 = −𝜂 𝐻−1  
𝑑𝐸

𝑑𝑤
 

 



Practical issues 
  

 Objective function is not quadratic. 

   Local quadratic approximation is reasonable. 

   Hessian 𝐻 changes with 𝑤. 

   When objective is non-convex, 𝐻 can have negative eigenvalues 

 Estimate the Hessian 𝐻 on the fly. 

 The Hessian is often too large to store or invert. 



Standard solutions 

Idea: estimate a compact approximation of 𝐻−1 
    using the observed gradients 𝑔 𝑤𝑡 , 𝑔 𝑤𝑡−1 , … , 𝑔 𝑤𝑡−𝑘 , … 

Example: use line search and ensure conjugate search directions. 

 Let 𝑑𝑡−1, 𝑑𝑡−2, … , 𝑑𝑡−𝑘 be the last 𝑘 search directions. 
  We want to choose 𝑑𝑡 = 𝑔 𝑤𝑡 + ∑𝜆𝑖  𝑑𝑡−𝑖  such that  𝑑𝑡

𝑇  𝐻 𝑑𝑡−𝑖 = 0 

Very good algorithm have been developed. 

 Conjugate gradient  (𝑘 = 1) 

 LBFGS (𝑘 > 1) 



Attention 

Three reasons to remain suspicious. 

1. Our cost function is a sum of a large number of similar terms. 
This specific form can be used to speedup optimization. 

𝐸 𝑤 =
1

𝑁
  ℓ  𝐹 𝑥𝑖 , 𝑑𝑖
𝑖=1…𝑁

 

2. Our problem is such that a random subset of terms is informative. 
Otherwise we cannot expect that our model will generalize! 

3. Quickly achieving a good test set performance. 
≠ quickly achieving a good training set performance 



Simple things we can do 

Precondition the inputs 

Normalize in similar ranges 

  

Use different 𝜂 in different layers, on the basis of 

Average size of the gradient 

Average size of the weights 



Training multilayer networks 

Initialization 



Random weight initialization 

Why can we optimize such a complex non-convex function? 

 We are not really optimizing. 

 The problem is simpler than it looks. 

 

Performance with random weights? 

 The case of the two layer network with threshold units. 

 The case of convolutional networks. 

 



The simplest two-layer net 

 Train on examples (
1

2
,
1

2
) and (−

1

2
, −
1

2
) with mean squared loss.    

 𝐸 =
1

2
− tanh 𝑤2 tanh

𝑤1

2

2
 

 

How does this cost function look like? 

𝑥 
𝑤1 𝑤2 

𝑦 = tanh(𝑤2 tanh(𝑤1𝑥)) 



The simplest two-layer net 



The simplest two layer net 



Initialization 
 

The main rule for random weight initialization 

Do not pick initial weights that kill the gradient! 

 

The role of the transfer function 

The distribution of the inputs to the transfer function 

 should target the linear part. 

 should have a chance to exploit the nonlinearity. 

 Exercises: Tanh, Sigmoid, ReLU. 



Training multilayer networks 

Stochastic gradient descent 



Optimization vs. learning 



Offline vs. online 



Stochastic Gradient Descent 



Stochastic Gradient Descent 



Practical illustration 



Subtleties 
How to quickly achieve a good training set performance? 

Initialize super-linear algorithm with SGD! 

 

 

 

 

 

 

Question : when does this help the testing set performance? 



Training multilayer networks 

Improved algorithms 



Overview 
Lots of improved algorithms in the recent literature 

Momentum and acceleration 

Mini-batch techniques 

Parallel training 

 

Questions to ask ourselves… 

Do they quickly achieve good test errors or good training errors? 

In most papers, the experiments target the test, and the theory targets the training. 

This does not mean that the proposed method is useless. 
 It means that the theoretical argument is oversold. 

  

 

 

 



Momentum and acceleration 
MOMENTUM 

 𝑣𝑡+1 = 𝜇 𝑣𝑡 − 𝜂 grad 𝐸 𝑤𝑡  

 𝑤𝑡+1 = 𝑤𝑡 + 𝑣𝑡+1 

NESTEROV ACCELERATION 

 𝑣𝑡+1 = 𝜇 𝑣𝑡 − 𝜂 grad 𝐸 𝑤𝑡 + 𝜇𝑣𝑡  

 𝑤𝑡+1 = 𝑤𝑡 + 𝑣𝑡+1 

(Sutskever et al., ICML 2013) 



Mini-batches 
Stochastic gradient descent 

Use noisy gradient based on a single example. 

Mini-batch stochastic gradient descent 

Use noisy gradient based on a small batch of examples. 

Theoretical results are unimpressive for first order gradient descent. 

However: 

1. Mini-batches are well suited to modern hardware 

2. Mini-batches provide an opportunity to use second order info.  



Modern hardware 
Single example formulas 

𝑦 = 𝑊𝑥  (GEMV) 

𝑔𝑥 = 𝑔𝑦 𝑊  (GEMV) 

Δ𝑊 = 𝑥 𝑔𝑦  (GER) 

 

Multiple example formulas 

𝑌 = 𝑊𝑋  (GEMM) 

𝐺𝑋 = 𝐺𝑌𝑊  (GEMM) 

Δ𝑊 = 𝑋 𝐺𝑌  (GEMM) 

Linear 

𝑊 

𝑥 𝑦 



Successive LBFGS 

 This does not work with convex models     (why?) 

 But this works quite well with multilayer networks   (why?) 

 for t = 1,2,3, … 

◦ pick examples for mini-batch 𝑡 

◦ initialize net with weights 𝑤𝑡 

◦ optimize with LBFGS and obtain 𝑤𝑡+1 

 



Martens HF training 

 pick a first mini-batch (mini-batch 0) 

 for t = 1,2,3, … 

◦ pick examples for mini-batch 𝑡 

◦ compute 𝑔𝑡 =  𝑔𝑟𝑎𝑑 𝐸𝑡(𝑤𝑡) on mini-batch t 

◦ minimize 𝑑𝑇𝐻𝑑 + 𝜆𝑑2 + 𝑔𝑡𝑑 by CG  

   where the product 𝐻𝑑 is evaluated directly   
   using gradients measured on mini-batch 0. 

◦ update 𝑤𝑡+1 = 𝑤𝑡 + 𝑑 

Lots of refinements are necessary to make this work well. 

(Martens, 2010, 2012) 



Parallel training of neural nets 
An active topic of research. 

No clear winner yet. 

 

Baseline: lock-free stochastic gradient 

Assume shared memory 

Each processor access the weights through the shared memory 

Each processor runs SGD on different examples 

Read and writes to the weight memory are unsynchronized. 

Synchronization issues are just another kind noise… 



Deep networks for complex tasks 

Introduction 



How to design computers? 

Why do computers emulate mathematical logic? 

 Complex tasks are reduced to combinations of simple tasks. 

 New ways to solve simple tasks immediately benefit everything. 



Remember the perceptron 

Reducing complex tasks to combinations of simple tasks 

An engineering necessity. 

Simple learning tasks  
 - classification, regression, clustering, multi-armed bandits. 
    (and many other eight-pages papers) 

Complex learning tasks 
 - reading checks (segmentation, recognition, interpretation) 
 - parsing visual scenes (finding objects and their relations) 
 - composing personalized web pages (dealing with feedback) 
 - natural language understanding (hard to define…) 
 - strong AI (let’s dream…) 



Bayesian inference 
  

The appeal of Bayesian inference 

 A language to describe complex models with simpler ones? 

 Generic algorithms 

 

Things that Bayesian inference does not do well 

 Computationally costly algorithms lead to dirty approximations 

 Causation versus correlation (a different kind of reasoning) 

 Perception 



Deep networks for complex tasks 

Structured problems 



Engineering learning systems  
Reading check amounts 

Input 𝑥 ∈ 𝒳 : scanned check image 

Output 𝑦 ∈ 𝒴 : positive number 

 

Direct approach 

Collect examples 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , …  and train from scratch. 

Possible (we did not really try) 

Requires excessive numbers of labeled examples 

Requires excessive computation time. 



Engineering learning systems 
Identify sub-tasks 

Locate amount fields 

Segment amount fields into isolated characters 

Recognize isolated characters 

Translate character string into amount 

Define a model for each sub-task 

Fairly complex recognition models (e.g. CNN) 

Highly engineered location and segmentation models 

Collect data and train 



Interactions 
Locate amount fields 

 

Segment amount fields into isolated characters 

 

Recognize isolated characters 

 

Translate character string into amount 



Training strategies 
  

Independent training 
- train each sub-model separately. 

Sequential training (better) 
- pre-train with independent training. 
- label outputs of sub-model 𝑛 and train sub-model 𝑛 + 1. 

Global training (best) 
- pre-train with sequential training. 
- simultaneously train all sub-models with examples from 𝒳 ×𝒴. 

 

Problem: tracking multiple hypothesis, backtracking, etc. 

 



Graph transformer networks 
MULTILAYER NET 

  

 Intermediate 
representations are 
fixed size vectors. 

 Each vector 
represents a 
decision made by 
upstream modules 
and passed to 
downstream 
modules. 

GRAPH TRANSFORMER NET 

  

 Intermediate 
representations 
are graphs. 

 Each path in a 
graph represents a 
combination of 
hypotheses made 
by upstream 
modules and 
passed to 
downstream 
modules. 



A word reader 



Normalization and discrimination 

GENERATIVE TRAINING 

 Estimate 𝑃 𝑥, 𝑦  

 - Define model 𝑝𝑤 𝑥, 𝑦  

         ∀𝑤   ∑ 𝑝𝑤 𝑥, 𝑦 = 1𝑥,𝑦  

 - Optimize likelihood 

         max∑ log 𝑝𝑤(𝑥𝑖 , 𝑦𝑖)𝑖  

DISCRIMINANT TRAINING 

 Estimate 𝑃 𝑦 𝑥  

 - Define model 𝑝𝑤 𝑥, 𝑦  

        ∀ 𝑤, 𝑥   ∑ 𝑝𝑤 𝑥, 𝑦𝑦 = 1 

 - Optimize likelihood 

         max∑ log 𝑝𝑤(𝑥𝑖 , 𝑦𝑖)𝑖  

Spot the difference! 



Probabilistic models 
Generative Hidden Markov Model 

𝑝𝑤 𝑥, 𝑦 = 𝑃 𝑥, 𝑦 𝑤 =   𝑃 𝑠𝑡 𝑠𝑡−1, 𝑤  𝑃(𝑥𝑡|𝑠𝑡, 𝑤)

𝑡𝑠[𝑡]:𝑦

 

 Probabilistic construction ensures normalization. 

Discriminant Hidden Markov Model 

𝑝𝑤 𝑥, 𝑦 = 𝑃 𝑦 𝑥,𝑤 =   𝑃(𝑠𝑡|𝑠𝑡−1, 𝑥𝑡 , 𝑤)

𝑡𝑠 𝑡 :𝑦

 

 Output of the local classifier must be normalized. 

 This is a very bad idea. 



Denormalized models 
Build models using measures instead of probabilities 

Measures add and multiply like probabilities 

Measures are positive but not constrained to sum to one. 

 

 

 

 

Train by maximizing  ∑ log
𝑝𝑤(𝑥𝑖,𝑦𝑖)

∑ 𝑝𝑤(𝑥𝑖,𝑦)𝑦
𝑖  

Same as CRF cost function. 

Semi-ring variations : ℝ+, +, ×    ℝ, ⊕, +    (ℝ,max, +)   … 

Score of a path = product of arc scores 

Score of a subgraph = sum of path scores 





GTN and CRF 
  

 Graph Transformer Network  

CRF cost function 

Hierarchical coarse-to-fine model 

Cheap inference 



Check reader 
  

 AT&T Bell Labs, 1995-1996. 

 Industrially deployed in 1996. 

 Has processed  

15% of all the US checks 

for nearly fifteen years. 

  

  

 (B. et.al., CVPR 1997) 



Check reader 

Recognizer 

Lenet5 (CNN) 

Pre-trained on 500K  
isolated characters  
95 categories  (why?) 

Global training architecture  

 

 



Graph transduction brick 

Input graph 

Output graph 

Tr
an

sd
u

ce
r 



Deep networks for complex tasks 

Auxiliary tasks 



Retargeting learned features 
  

ImageNet features for Caltech256 

Train CNN on ImageNet 

Chop the last layer (ImageNet categories) 

Append a new last layer (Caltech 256 categories) 

Train network on Caltech256 data. 

 

Question 

Should we keep the weights fixed in the ImageNet-trained layers. 

(LeCun, Ranzato, 2012) 



Retargeting learned features 

(LeCun, Ranzato, 2012) 

CNN 



Auxiliary tasks 
The price of labels 

Labeled examples for interesting tasks are typically scarce. 

Abundant labeled examples exists for uninteresting tasks. 

Auxiliary task 

In the vicinity of an interesting task (with scarce labels) 
    there are uninteresting tasks (with cheap labels) 
       that can be put to good use. 

 



Example: face recognition 
Interesting task. Recognizing the faces of one million persons. 

How many labeled images per person can we obtain? 

Auxiliary task. Are two face images representing the same person? 

Abundant (but noisy) examples. 
 Two faces in the same picture are different persons (with exceptions) 

 Two faces in successive frames are often the same person (with exceptions)   

(Matt Miller, NEC, 2006) 



Example: NLP tagging 

Interesting task. Standard NLP tagging tasks. 

Labeled data: Treebank, Propbank     (1M words) 

 

Auxiliary task.  Word compatibility language model 

Positive examples: Wikipedia sentences segments. (600M words) 

Negative examples built by randomly replacing the central word. 

Ranking loss: score of positive > score of negative 

 

(Collobert et.al., 2008-2010) 



Example: NLP tagging 



Example: NLP tagging 



Example: NLP tagging 
  

Tagging speed above 10000 words per second 

http://ronan.collobert.com/senna  

http://ronan.collobert.com/senna


Example: NLP tagging 



Unsupervised auxiliary tasks 
  

Deep learning with unsupervised layer-wise training. 

Sequentially pre-train successive layers using unsupervised techniques. 
 e.g.,  noisy auto-encoders (feedforward), RBM (≠) 

Fine tune using multilayer supervised training. 

 

Remark 

This is less popular than it used to be two years ago. 
 (fully supervised technique seem to work as well.) 



Unsupervised learning? 



Unsupervised learning? 



Unsupervised learning? 



Deep networks for complex tasks 

Circuits algebra 

(B., ArXiV, 2011) 



Transfer learning by rewiring 



Bayesian perspective 



Circuit algebra 



Enriching the semantics 



Recursive Auto-Associative Memory 



Infinite depth structures 



Universal parser 



Training strategies 
Supervised 

 (Socher, 2010, … ) 

Unsupervised 

 In the spirit of the NLP system of (Collobert, Weston, etal., 2008) 



Learned representations 

Still lots of problems… 
- Does not scale well. 
- Does not induce good parse trees.  (Etter, 2008) 



Conclusion 



Exploitation 
  

Lots of neural net applications in the coming years 

 - Learning perceptual tasks with neural nets works quite well 

 - Data and compute power are here. 

  

  



Exploration 

The statistical machine learning research program 

Discussing the models  
 e.g., their approximation properties. 

Discussing the loss functions  
 e.g., asymptotic consistency. 

Discussing learning algorithms  
 e.g., optimization, large scale. 

Discussing generalization  
 e.g., capacity control. 



Exploration 

The statistical machine learning research program 

Discussing the models  
 e.g., their approximation properties. 

Discussing the loss functions  
 e.g., asymptotic consistency. 

Discussing learning algorithms  
 e.g., optimization, large scale. 

Discussing generalization  
 e.g., capacity control. 



Exploration (my two cents) 

A new object of study 
 A collection of statistical models 

 With different input and output spaces 

 Endowed with an algebraic structure 
connecting the models and their realizations 
describing how to transfer knowledge across models. 

Unstructured training data 
 Each example can pertain to a different model. 

 The algebraic structure is the glue. 

 The glue is connected to reasoning. 

  


