Multilayer
Neural Networks

(are no longer old-fashioned!)

MLSS TUEBINGEN 2013
LEON BOTTOU

Success stories

Record performance
= MNIST (1988, 2003, 2012)

= ImageNet (2012)

Real applications
= Check reading (AT&T Bell Labs, 1995 — 2005)

= Optical character recognition (Microsoft OCR, 2000)

= Cancer detection from medical images (NEC, 2010)

= Object recognition (Google and Baidu’s photo taggers, 2013)
= Speech recognition (Microsoft, Google, IBM switched in 2012)
= Natural Language Processing (NEC 2010)

Lecture 1

Neural information processing
= Origins
= Rumelhart’s propositional network
= Network construction kit

= Convolutional networks

Lecture 2

Training multilayer networks
= Optimization basics
= |nitialization
= Stochastic gradient descent

" Improved algorithms

Lecture 3

Deep networks for complex tasks
" Introduction

= Structured problems
= Auxiliary tasks

= Circuit algebra

Neural Information Processing

Origins

The perceptron

Rosenblatt 1957

The perceptron

Retina o
Associative area

T~
/>

Supervised learning of the weights w using the Perceptron algorithm.

Linear threshold unit

sign (w’ x)

>

The perceptron is a machine

Frank Rosenblatt

The perceptron

*The perceptron does things that vintage computers could not match.

=Alternative computer architecture? Analog computer?

Cybernetics (1948)

=(5)9,7%, b e A .y
e

Norbert Wiener X

)ﬁ‘l)‘ “AH)}A) I
}‘/;“4) I (%\é,) X

*"Mature communication technologies, nascent computing technologies

"Redefining the man-machine boundary

How to design computers?

Biological computer Mathematical computer
— 36 " W)(x, gy f .

Rn

(")
~In = G| ~)
Ca ,‘m : (51): *(51) /(&)

-~

g

[7(x) f’} f(x,0) M['I'(ﬁ)- 0 il

‘ ol o0

M “

“In I,(x,(lv)\-_/'('.r,(l)dx j
({/ / K,

0= |

= Which model to emulate : brain or mathematical logic ?
= Mathematical logic won.

Computing with symbols

General computing machines
= Turing machine
= von Neumann machine

Engineering

= Programming
(reducing a complex task into
a collection of simple tasks.)

Computer language
Debugging
Operating systems
Libraries

S intl) rgn) ¢

¢ res, le "W

or U 1] = checkRe 133},

decodeMessage(. ¢
Q; i <€ MAX_BES o) Bufl1) =

] = 0:; =
5 's 1-s;.length) { tiidde « 1

) buflloe’
¢ LEN)Y

‘g

extractMessage(res))

I =

le h) (

" B TR LB Y s - 0
res o

Computing with the brain

An engineering perspective
= Compact

Energy efficient (20 watts)

1012 Glial cells (power, cooling, support)
101! Neurons (soma + wires)

104 Connections (synapses)

Volume = 50% glial cells + 50% wires.

General computing machine?
= Slow for mathematical logic, arithmetic, etc.

= Very fast for vision, speech, language, social interactions, etc.
= Evolution: vision - language — logic.

McCulloch & Pitts (194 3)

= A simplified neuron model: the Linear Threshold Unit.

Perceptrons (1968)

“Linear threshold units as Boolean gates.
=Circuit theory is poorly known.

=Learning deep circuits means
solving the credit assignment problem.

=Linearly separable problems are few.

“Elementary problems need complex circuits.
(parity, connexity, invariances.)

=But have simple algorithmic solutions.
(programming versus learning.)

- Abandon perceptrons and other analog computers.
- Develop symbolic computers and symbolic Al techniques.

Perceptrons revisited

. : Still true. }

“Linear threshold units as Boolean gat
e . . N

Circuit theory is poorly known. Easier than expected
"Learning deep circuits means but still puzzling.

solving the credit assighment problem. <
=Linearly separable problems are few. L Low VCdim is good!

4

“Elementary problems need complexciw/ \
(parity, connexity, invariances.) Humans do not always
L do this well either

=But have simple algorithmic solutions.
(programming versus learning.) e s meessas b
when specs are not available.)

How to reduce complex learning
problems into simple ones?

Neural Information Processing

Rumelhart’s propositional network

(see McClelland and Roger, 2003)

Quillian’s hierarchical
propositional model (1968

ISA
HAS
Plant) Roots
ISA 1S4
Bark Petals Leaves
HAS
HAS HAS
Is__{J) Tree Pretly = () Flower
Big
ISA ISA ISA ISA
Pine (" Oak () () Rose Daisy (
53 IS HAS IS IS
Green Tall Leaves Red Yellow

Living thing
S CAN
= Grow
Living
ISA
CAN Move
Animal 1)
HAS
ISA ISA Skin
Feathers Swim Scales
HAS HAS
C
CAN
Fly ') Bird () Fish
HAS .
Wings Gills
ISA ISA ISA ISA
Robin () Canary ()) Sunfish () Salmon
s CAN 5] IS IS
Red Sing Yellows Yellow Red

Quillian’s hierarchical
propositional model (1968)

Living thing
. GAN

= Grow
Living

= Accessing specific properties should be
faster than accessing generic properties.

Move

Bark Scales
= Experimental results disagree.
[h
Big
Wings Gills
ISA ISA ISA ISA ISA ISA ISA ISA
Oak (] "3 Rose Daisy (Robin (" Canary (") Sunfish “7 Salmon
IS IS HAS IS [s CAN IS IS)
Green Tall Leaves Red Yellow Red Sing Yellows Yellow Red

Connectionism

Connectionism
=*From psychological ideas of the XIXth and XXth centuries.

=Some see connectionism as a regression (Fodor, Pinker, ...)

Parallel Distributed Processing (PDP) Research Group (1980s)

= Neural representations are distributed.

= Neural computation is parallel.

= Processing units, connectivity, propagation rule, learning rule.

= Geoff Hinton “I want to know how the brain works.”

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish
Salmon

Item

C | Living thing
C_ D|Plant
C)| Animal
C)| Tree
/ D|Flower
C D|Bid
C | Fower
C_D|Pine
Representation C | Oak
S C_)| Rose
Daisy
:1??. Robin
N = Canary
.‘.‘\ < Sunfish
‘:\\"‘ Salmon
%
.‘7 \\ Pretty
.’\‘ (Tall
NR Living
/’ - Green
/ 7 Red
:gA %l /> Yellow
IcAN .:;;A Grow
HAS |C D Move
Relation S
F'y
Sing
Bark
Petals
Wings
Feathers
Scales
Gills
Roots
Skin
Attribute

Training the network

= Replace threshold unit by sigmoid unit

>0 >0 (-

= Collect training examples
{...(Item(k), Relation(k), DesiredOutput(k)) ...}

= Form the mean squared error

E = Z(DesiredOutput(k) — Output (k))*
K

= [nitialize with random weights and optimize by gradient descent (!)

Propagation

Back-Propagation

Chain rule

g9.=f'(a.) Z W.; g

jEPoOSt(e)

0E

- = x.g.
aW.j J

Training algorithm (batch)

Repeat

= Clear gradient accumulators A;; < 0

= For each example k
= Set inputs as implied by Item(k) and Relation(k)
= Compute all a;(k) and x;(k) by propagation
= For all output units j, compute

gjk) = f’(aj(k)) (xj(k) - DesiredOutputj(k))

= Compute all g;(k) by back-propagation
= Accumulate A;; < A;j + x;(k)g; (k)

= Perform a gradient update w;; = w;; —n 4A;;

Training algorithm (stochastic)

Repeat
" For each example k
= Set inputs as implied by Item(k) and Relation(k)
= Compute all a;(k) and x;(k) by propagation
* For all output units j, compute
gjk) = f’(aj(k)) (xj(k) - DesiredOutputj(k))
= Compute all g;(k) by back-propagation
" Set A;; « x;(k)gj(k)
= Perform a gradient update w;; = w;; — 1 A;;

Outputs

0.8 1
S
= 0.67 == Canary-CAN-Grow
= — Canary-CAN-Move
< 0.4 == Canary-CAN-Fly
== Ganary-CAN-Sing
= Pine-HAS-Leaves
0.2
0.0 | | | | |
0 500 1,000 1,500 2,000 2,500

Learning epochs

Representations

Pine
Oak
Rose
Daisy
Robin
Canary
Sunfish

Salmon

Epoch 250

Epoch 750

Epoch 2,500

Representations

Epoch 1,500 Epoch 2,500

Epoch 500

[UOwes
b—————— ysijung

r AreueD
uiqoy

Me0
auld

AsreQ
_ 9soy

uowes
ysyung
KreueD
uiqoy
eO
auld
Asieq
o9soy

auld
Areue)
uIcoy
ysiung
uowes

2.5~

_
Q
o\

_ _ _
= < o
o

— —

souelsIp uesplong

-
r
L
—
| I
—
|
Asreq
.|_H O
8so
| d
-
|
O
o

ISA In representation space

1.5

Animal
Bird
10 Canary Robin
‘GC-J' O 5 -
gl ' Flower Rose Fish
O
0.0 : Sunfish
8 Daisy
§ Salmon
L] 0.5 -
a Tree
aa Oak Pine
15 - Plant
15 1.0 05 0.0 05 1.0 15

First component

Playing with item frequency

Land animal 1.0
Maple
Tree p Dog 0.8
-
Oak Goat S 08
. g == Dog (dog 1s4)
Pig 3 0.4 - (Goat (goat ISA)
< === Dog (goat IsA)
. === Dog (canary ISA)
Plant Animal :
Sunflower Bose 0.4 === Dog (pine 1sA)
Flower Robi . aih DY PR PR R R S
OLE 0.01 YO S TTY SOT WY TTY TI1 334 1iP i Sin st
Canary 0 500 1,000 1,500 2,000 2500 3,000
Bird
Epochs

Adding relations

b Epoch 2,500

a Epoch 500

IH m_ﬂm__z
auld

— yoid
L— 0

dijnL
_|H es0y

_ ango_E:m
fsieq
POD

[n._ 8puNo|4

L— uowyeg
— |SUNS
Hggmam
uigoy
— Areuen)
e IINBUSH

uowes
| nc_gom
L— ssoy
e JOMOYUNS
ﬂll*””?ﬁcmo
fseq
L— usyung
POD
unbBusd
- Jspunol4
euld
rz_.gmam
= youg
— 3.0

e 1

— S|

2.0+

I I I
0 o 0
— — =
80UEBISID UBSpIoNT

0.0-

Neural Information Processing

Network construction kit

(B. & Gallinari, 1991)

Linear brick

Propagation

y=Wx

Back-propagation

oF aEW
dx 0y

0E O0E
—x

Transfer function brick

Propagation

Vs = f(xs)
=l
Back-propagation
5 =[5 e

Transfer functions

- Propagation Back-propagation

- 1 OE] OE] 1
Sigmoid Vs = 1te—%s -a-s - _E_S (1+e*s)(1+e~%s)
Tanh ys = tanh(xy) :g—i:s = :g—is COS;Z -

Relu y, = max(0, x,) :Z—i:s = :Z—is [{xs > 0}
Ramp ys = min(—1, max(1, x,)) g_is - g_f’s =1 <x<1}

Square loss brick

Propagation

Loss bricks

_ 1. N2 9E _ . _ nT9E
Square y =3 (x —d) e (x—4a) 3
_ —cx 9E _ _—c OE
Log c=+1 y =log(1l+e™*) ox — 11ec oy
Hinge c=+1 y = max(0,m — cx) g—i = —c I{ex <mj Z—i
X 0E] . o x OE
LogSoftMax c=1..k y = log(X, e**) —x, a]s = (e*s/Y, e*k — 6“)@

: _ _ 9E] _ L 9E
MaxMargin c=1..k y = [rlggg({xk + m} xc] ax]s = (65 — 05c) I{E > 0} %

+

Sequential brick

= E-EE BTl

Propagation

“Apply propagation rule to B4, By, B3, ..., By,.
Back-propagation

“Apply back-propagation rule to By, ..., B3, B,, B.

Benefits

Implementation
= Flexible modular framework

= Many toolkits (Lush, Torch, ...)

Testing

= Each brick can be tested separately (finite differences)
Possibilities

= RBF brick, Vector Quantization brick, and more.

Torch code sample

Defining a hetwork (see http://code.cogbits.com/wiki.)

|

Noutputs = 10;

nfeats = 3; Width = 32; height = 32
ninputs = nfeats*width*height
nhiddens 1500

»
e

—-— Simple Zlayer neural network

model = nn.Sequential ()

model :add (nn.Reshape (ninputs))
model:add (nn.Linear (ninputs,nhiddens))
model radd (nn.Tanh ())

model :add (nn.Linear (nhiddens, noutputs))
model :add (nn.LogSoftMax ())

a
H
63
./
1
51
0

BEE -

criterion = nn.ClassNLLCriterion(”

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki

Torch code sample

Training the network

for t = 1,trainData:size () ,batch3Size do
inputs, outputs = getNextBatch/()
—— define closure that computes the gradient
local feval = function (x)
parameters:copy (x)
gradParameters:zero ()
local £ = 0
for i = 1,#inputs do
local output = model:forward (inputs[i])
local err = criterion:forward (output,targets[i])
f=f + err
local df do = criterion:backward (output, targets[i])
model :backward (inputs[i], df do)
end
gradParameters:div (#inputs)
f = f£/#inputs
return f,gradParameters
end
—-— perform sgd step on minibatch
optim.sgd (feval, parameters, optimState)
end

Neural Information Processing

Convolutional networks (CNNs)

Vision is fast

Categorical judgments,

decision making Simple visual forms

edges, corners

To spinal cord
ger muscle ———160-220 ms
180-260 ms

(Thorpe et al., 1995-...)

Hubel & Wiesel (1962)

Insights about early image processing in the brain.

=Simple cells detect local features

=Complex cells pool local features in a retinotopic neighborhood

The Neocognitron

Up]
input
layer
contrast
ion edge
x ion .
xiracho extraction

(Fukushima 1974-1982)

10NS

Local connect

. W
“T I N
o Il 1!
HE I
1l { LI
Jqr RV \ \
111 : \ MY \
] | A\L Y \
SN P \ L\
B \ \ \
2 \ \ \ \
e

/

Convolution

Shared weights

Multiple convolutions

CNNs in the 1990s

1989 Isolated handwritten character recognition (AT&T Bell Labs)
1991 Face recognition. Sonar image analysis. (Neuristique)

1993 Vehicle recognition. (Onera)
1994 Zip code recognition (AT&T Bell Labs)
1996 Check reading (AT&T Bell Labs)

C3:f. maps 16@10x10

INPUT g('léggg;tzuge maps S4: f. maps 16@5x5
32x32 S2: f. maps C5: layer . OUTPUT
6@14x14 r 120 o laver 5o

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

in the 1990s

Convnets

C1 S2 C3 s4 C5

rlf,%a

Pooling

1
Average pool = Yx;
OO Max pool max{x;}
OO0 .
- 2600 2
1
1 p
L, pool (S_22|xi|p>

Contrast Normalization

Contrast normalization

= Subtracting a low-pass smoothed version of the layer

= Just another convolution in fact (with fixed coefficients)

= Lots of variants (per feature map, across feature maps, ...)

= Divisive normalization

CNNs in the 2010s

L2 pool Contrast

Pixels Convolve

Max pool normalization

L2 pool Contrast

Convolve o
Max pool normalization

Linear Linear Categories

Torch code sample

Defining a convolutional network (see http://code.cogbits.com/wiki.)

nstates = {16,256,128}; fanin = {1,4}; filtsize = 5; poolsize = 2
normkernel = imaqge.gaussianlD(7))

—-— Container:

model = nn.Sequential ()

—-— stage 1 : filter bank -» sguashing -* L2 pocoling -* neormalization

model:add (nn.SpatialConvolutionMap (nn.tables.random (nfeats, nstates[l], fanin[l]), filtsize, filtsize))
model:add(nn.Tanh())

model :add (nn.SpatialLPPooling (nstates[1],2,poolsize,poolsize,poolsize,poolsize))

model:add (nn.SpatialsubtractiveNormalization (16, normkernel))

—— stage 2 : filter bank —» sguashing —-» LZ pooling —» neormalization

model:add (nn.SpatialConvolutionMap (nn.tables.random(nstates[1l], nstates[2], fanin([2]), filtsize, filtsize))
model:add (nn.Tanh ()})

model:add (nn.SpatiallPPooling (nstates[2],2,poolsize,poolsize,poolsize, pooclsize))
model:add(nn.SpatialSubtractiveNormalization (nstates[2], normkernel))

—-— stage 3 : standard 2-layer neural network

model:add (nn.Reshape (nstates[2]*filtsize*filtsize))

model:add(nn.Linear (nstates[2]*filtsize*filtsize, nstates[3]))

model:add (nn.Tanh())

model:add (nn.Linear (nstates[3], noutputs))

http://code.cogbits.com/wiki
http://code.cogbits.com/wiki

Convnets in the 2000s

*OCR in natural images [2011]. Streetview house numbers (NYU)

=Traffic sign recognition [2011]. GTRSB competition (IDSIA, NYU)
=Pedestrian detection [2013]. INRIA datasets (NYU)

=\/olumetric brain segmentation [2009]. Connectomics (MIT)

"Human action recognition [2002,2011]. Smartcatch (NEC), Hollywood Il (SF)
=Object recognition [2004,2012]. Norb (NEC), ImageNet (UofT)

=Scene parsing [2010-2012]. Stanford bldg, Barcelona (NEC, NYU)

=Medical image analysis [2008]. Cancer detection (NEC)

ImageNet 2012 competition

=Object recognition. 1000 categories. 1.2M examples

TASK 1 - CLASSIFICATION TASK 2 - DETECTION

Error %

CNN SIFT+FV SVM1 SVYM2 NCM CNN DPM-SVM1 DPM-SVM2

ImageNet CNN

2048 \/ 20ag \dense

224 o

dense’| [dense

155

1000

. 192 192 128 Max
Stride Max: 128 Max pooling
Uof 4 pooling pooling

3 48

2048 2048

Structure (conv-relu-maxpool-norm)3-linear-relu-linear-relu-linear
Very good implementation, running on two GPUs.

ReLU transfer function. Dropout trick.

Also trains on full ImageNet (15M images, 15000 classes)

(Kirzhevsky, Sutskever, Hinton, 2012)

ImageNet CNN

mite

container shi

motor scooter

mite

black widow |

‘container ship

‘motor scooter

lifeboat |
amphibian|
fireboat|

drilling platform |

moped |
bumper car
golfcart

go-kart|

pickup

beach wagon
fire engine

mushroom

jelly fungus
gill fungus
dead-man’'s-fingers

agaric |

grape
elderberry |

rdshire bullterrier ||

currant |

it spider monkey

tti
indri
howler monkey

Replicated CNNs

Wrong way Right way

CNNs for speech recognition

Time delay neural networks

= 1988: speaker independent phoneme recognition (Hinton&Lang, Waibel)
= 1989: speaker independent word recognition (B.)
= 1991: continuous speech recognition (Driancourt & B.)

Bank of 16 filters 8

Time

Classes: 10 digits + 20 words

95 47

30 30

CNN for speech recognition

Banc de 16 filtres

sdwa)

v

Dynamic
programming

parole codée

95

47

time
—

self determined XD

frequenc initial coding
quency
[Sesssasanasannsnnnns |
\ / KB
§m* [ssssaausnassnnsannas|
1] r \

nput layer

filter layer

(local cannctions with shared weights)

recurrent
part

(shared

[weights)

v

output layer

CNN for speech recognition

In the 1990s
= CNN are competitive with Gaussian Hidden Markov Models.

= But not sufficiently better to justify a switch.

In the 2010s
= More data. More compute power. More results.

= Major speech recognition systems (MS, IBM, Google) have
switched to neural network acoustic models around 2011-2012.

raining multilayer networks

Optimization basics

Convex

Definition
Y&, YVOLAE L,
fOz+(1=Ny) <Af(z)+ (1 =) f(y)

Property
Any local minimum is a global minimum.

Conclusion
Optimization algorithms are easy to use.
They always return the same solution.

1

Example: Linear model with convex loss function.
— Curve fitting with mean squared error.
— Linear classification with log-loss or hinge loss.

Non-convex

Landscape
et %y — local minima, saddle points.
)| - — plateaux, ravines, etc.

N s o0 o
G S S A

¢y %2

Optimization algorithms
— Usually find local minima.
» — Good and bad local minima.
N — Result depend on subtle details.

oo & o
S T T

os

Examples

— Multilayer networks. — Mixture models.

— Clustering algorithms. — Hidden Markov Models.

— Learning features. — Selecting features (some).

Derivatives

Derivatives indicate Second derivatives can
the general position of give an estimate of the
—.. theclosest local position of the closest local

minimum minimum.

(5
| |
S J

No such local cues without derivatives
— Derivatives may not exist.
— Derivatives may be too costly to compute.

Line search

Bracketing a minimum

({ | /
€.

Three points a < b < ¢ such that f(b) < f(a) and f(b) < f(c).

Line search

Refining the bracket

|)

Split the largest half and compute f(x).

Line search

Refining the bracket (2)

\/)

— Redefine a < b< c. Here a « .
— Split the largest half and compute f(x).

Line search

Refining the bracket (3)

ol
e

—
%

— Redefine a <b<c. Herea«b, b« x.
— Split the largest half and compute f(x).

Line search

Refining the bracket (4)

) 7

— Redefine a < b< ¢. Here ¢« z.
— Split the largest half and compute f(z).

Line search

Golden ratio algorithm

Golden ratio %:0.618
L 0818
L0382

— Optimal improvement by splitting at the golden ratio.

Line search

Parabolic interpolation

.
.
.
.
.
\
.
,
.
.
P o
@@=
\l
)
.
.
.
.

— Fitting a parabola can give much better guess.

Line search

Parabolic interpolation

Ly
.
[l
[
[l
.
.

v

.
.

T

£

\‘
-

(1
.
Y
1

— Fitting a parabola sometimes gives much better guess.

Line search

Brent algorithm

Brent Algorithm for line search
— Alternate golden section and parabolic interpolation.

— No more than twice slower than golden section.
— No more than twice slower than parabolic section.
— In practice, almost as good as the best of the two.

Variants with derivatives
— Improvements if we can compute f(z) and f’(x) together.
— Improvements if we can compute f(z), f'(z), f”(x) together.

Rescaling weights

Propagation

* 4 Y "y =f(Wx)

[> e j\> f(a) j\> Back-propagation
ﬁ “ga=f'(a) gy

w "gx = ga W

AW =-nxgq

Consider the change f,.,(a) = f(2a) and W}, = W /2.

= This leaves y(x) unchanged.

= What can you say about AW,,,,, ?

Parabola

E(w) = = w? Gradient descent
SWeq =wp—n (W)
i t+1 = W — 1 -— (W
Questions
= How does 7 affect the convergence?

Vv

= What’s the best value of n ?

More dimensions

Two dimensions.

Two different curvatures.

Same questions

" How does n affect the convergence?

SS=——=

" What'’s the best value of n ?

More dimensions

Gradient descent

= E(w) =% wlHw

B dE
"Wiy1 =W —7 E(Wt)

Questions

" How does n affect the convergence?

" What'’s the best value of n ?

Second order rescaling

A Rescale w

1
" Wpew < Hzw

_1 T _1 T

Questions
= Write gradient descent in w,,,,, space.

= Write the equivalent w update.

Second order rescaling

A Rescale w

1
" Wpew < Hzw

_ 1T _ 1T

Gradient descent in w,,,,, space

dE _1 dE
Aw. = = —nH 2=
new n AWnon n I

41 dE

"Aw =-nH ! —

Practical issues

= Objective function is not quadratic.
= Local quadratic approximation is reasonable.

= Hessian H changes with w.

= When objective is non-convex, H can have negative eigenvalues

= Estimate the Hessian H on the fly.

= The Hessian is often too large to store or invert.

Standard solutions

Idea: estimate a compact approximation of H~1
using the observed gradients g(w;), g(W¢_1), <., g(Ws_g), ...

Example: use line search and ensure conjugate search directions.

"letds_q,d¢_p, ..., ds_j be the last k search directions.
We want to choose d; = g(w;) + X A; d;_; suchthat df Hd,_; =0

Very good algorithm have been developed.
= Conjugate gradient (k = 1)
= LBFGS (k > 1)

Attention

Three reasons to remain suspicious.

1. Our cost function is a sum of a large number of similar terms.
This specific form can be used to speedup optimization.

Ew) == Y #(F(),d)
i=1..N

2. Our problem is such that a random subset of terms is informative.
Otherwise we cannot expect that our model will generalize!

3. Quickly achieving a good test set performance.
quickly achieving a good training set performance

Simple things we can do

Precondition the inputs

*Normalize in similar ranges
Use different n in different layers, on the basis of

=Average size of the gradient

=Average size of the weights

raining multilayer networks

Initialization

Random weight initialization

Why can we optimize such a complex non-convex function?
= We are not really optimizing.

= The problem is simpler than it looks.
Performance with random weights?

= The case of the two layer network with threshold units.

= The case of convolutional networks.

The simplest two-layer net

X y = tanh(w, tanh(w; x))

* Train on examples (%,%) and (—%, —%) with mean squared loss.
2
" F = (% — tanh (WZ tanh (%)))

How does this cost function look like?

The simplest two-layer net

The simplest two layer net

w2
A

.

Initialization

The main rule for random weight initialization

=Do not pick initial weights that kill the gradient!

The role of the transfer function

*The distribution of the inputs to the transfer function
= should target the linear part.

= should have a chance to exploit the nonlinearity.

= Exercises: Tanh, Sigmoid, RelLU.

raining multilayer networks

Stochastic gradient descent

Optimization vs. learning

Empirical cost
— Usually f(w) = %Z?:l L(x;, yis w)
— The number n of training examples can be large (billions?)

Redundant examples

— Examples are redundant (otherwise there is nothing to learn.)

— Doubling the number of examples brings a little more information.
— Do we need it during the first optimization iterations?

Examples on-the-fly

— All examples may not be available simultaneously.

— Sometimes they come on the fly (e.g. web click stream.)

— In quantities that are too large to store or retrieve (e.g. click stream.)

Offline vs. online

. DU
Minimize C'(w) = §||fw||‘ + £2L(xﬁ;,yi,ur).
1=

Offline: process all examples together
— Example: minimization by gradient descent

1 0L
Repeat: w =y A+ =y —(x, Y, w
peat: w «— w 7(W+~ 2 5 T yz,w))

Offline: process examples one by one
— Example: minimization by stochastic gradient descent

Repeat: (a) Pick random example zy,y;
oL

(b) we—w— (Xw + 55 (Tt Ut w))

Stochastic Gradient Descent

Starting point

— Very noisy estimates of the gradient.
— Gain ~; controls the size of the cloud.
— Decreasing gains ~y; = (1 + Myt) L.

— Why is it attractive?

Stochastic Gradient Descent

Redundant examples
— Increase the computing cost of offline learning.
— Do not change the computing cost of online learning.

Imagine the dataset contains 10 copies of the same 100 examples.

e Offline Gradient Descent
Computation is 10 times larger than necessary.

e Stochastic Gradient Descent
No difference regardless of the number of copies.

Practical illustration

0.3 . Testing cost

02 — @

~ Training time (secs)

100
| SGD
50 _
| — TRON
__— T (LibLinear)

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09
Optimization accuracy (trainingCost—optimalTrainingCost)

Subtleties

How to quickly achieve a good training set performance?

=Initialize super-linear algorithm with SGD!

50

:‘/"'"_--—

0.1 0.01 0.001 0.0001 1e-05 1e-06 1e-07 1e-08 1e-09

— i

=Question : when does this help the testing set performance?

raining multilayer networks

Improved algorithms

Overview

Lots of improved algorithms in the recent literature
*Momentum and acceleration
= Mini-batch techniques

=Parallel training

Questions to ask ourselves...
=Do they quickly achieve good test errors or good training errors?
=In most papers, the experiments target the test, and the theory targets the training.

=This does not mean that the proposed method is useless.
It means that the theoretical argument is oversold.

Momentum and acceleration

MOMENTUM NESTEROV ACCELERATION
Veyr = p Uy — 1 grad E(wy) Vip1 = p v — 1 grad E(wy + pvg)
Wt+1 — Wt + vt_l_l Wiy1 = W + vt+1

(Sutskever et al., ICML 2013)

Mini-batches

Stochastic gradient descent

=Use noisy gradient based on a single example.

Mini-batch stochastic gradient descent
=Use noisy gradient based on a small batch of examples.

*Theoretical results are unimpressive for first order gradient descent.

"However:
1. Mini-batches are well suited to modern hardware
2. Mini-batches provide an opportunity to use second order info.

Modern hardware

Single example formulas

=y = Wx (GEMV)
"Ix =gy W (GEMV)
. AW =x g, (GER)

Multiple example formulas

Y =WX (GEMM)
"Gy = GyW (GEMM)
AW =X Gy (GEMM)

Successive LBFGS

for t = 1,2,3, ..

o pick examples for mini-batch t

o initialize net with weights w;

o optimize with LBFGS and obtain w;, 4

= This does not work with convex models (why?)

= But this works quite well with multilayer networks (why?)

Martens HF training

pick a first mini-batch (mini-batch ©)
for t = 1,2,3, ..

o pick examples for mini-batch t

o compute g, = grad E;(w;) on mini-batch t
> minimize d"Hd + Ad? + g,d by CG

where the product Hd is evaluated directly
using gradients measured on mini-batch 0.

o update wyq =w; +d

=|ots of refinements are necessary to make this work well.
(Martens, 2010, 2012)

Parallel training of neural nets

An active topic of research.

=No clear winner yet.

Baseline: lock-free stochastic gradient

=Assume shared memory

=Each processor access the weights through the shared memory
=Each processor runs SGD on different examples

=Read and writes to the weight memory are unsynchronized.

sSynchronization issues are just another kind noise...

Deep networks for complex tasks

Introduction

How to design computers?

Biological computer Mathematical computer
ey (’() (‘)/(\ ()h], .

A
i £
da™ . (6)-bd g

««W

 1nLx //) f(x,0)s f’”
o

x0=)

Why do computers emulate mathematical logic?
= Complex tasks are reduced to combinations of simple tasks.

= New ways to solve simple tasks immediately benefit everything.

Remember the perceptron

Reducing complex tasks to combinations of simple tasks
"An engineering necessity.

=Simple learning tasks
- classification, regression, clustering, multi-armed bandits.
(and many other eight-pages papers)

="Complex learning tasks
- reading checks (segmentation, recognition, interpretation)
- parsing visual scenes (finding objects and their relations)
- composing personalized web pages (dealing with feedback)
- natural language understanding (hard to define...)
- strong Al (let’s dream...)

Bayesian inference

The appeal of Bayesian inference

= A language to describe complex models with simpler ones?

= Generic algorithms

Things that Bayesian inference does not do well

= Computationally costly algorithms lead to dirty approximations
= Causation versus correlation (a different kind of reasoning)

= Perception

Deep networks for complex tasks

Structured problems

Engineering learning systems

Reading check amounts

2nd Nat. Bank
"Input x € X : scanned check image | ot to exceed $10,000.00 § #5% 345
i three doll d 45/
=Output y € Y : positive number ree dollars and 45/xx s

Direct approach

=Collect examples {(x1, 1), (x5, ¥,), ... } and train from scratch.
=Possible (we did not really try)

=Requires excessive numbers of labeled examples

=Requires excessive computation time.

Engineering learning systems

Identify sub-tasks

"Locate amount fields

=Segment amount fields into isolated characters
=Recognize isolated characters

*Translate character string into amount

Define a model for each sub-task
=Fairly complex recognition models (e.g. CNN)

=Highly engineered location and segmentation models

Collect data and train

Interactions

=L ocate amount fields

<

=Segment amount fields into isolated characters

<

=Recognize isolated characters

U

=Translate character string into amount

Training strategies

=Independent training
- train each sub-model separately.

sSequential training (better)
- pre-train with independent training.
- label outputs of sub-model n and train sub-model n + 1.

=Global training (best)
- pre-train with sequential training.
- simultaneously train all sub-models with examples from X X .

Problem: tracking multiple hypothesis, backtracking, etc.

Graph transformer networks

MULTILAYER NET

Intermediate
representations are
fixed size vectors.

Each vector
represents a
decision made by
upstream modules
and passed to
downstream
modules.

L

Graph
Transformer

Graph
Transformer

f

GRAPH TRANSFORMER NET

Intermediate
representations
are graphs.

Each pathina
graph represents a
combination of
hypotheses made
by upstream
modules and
passed to
downstream
modules.

A word reader

3[0.1] 2[0.7]
4[1.1]

Viterbi

3[0.1] 4(3.4] 1[0.2] 2[0.7]

8[5.2] ' 4[1.1]

Character Scorer

YU g

t

Segmentor

i{z

best
segmentation

picks the path with
the lowest accumulated

penalty

scored character
candidates

gives low penalties
to well-formed characters

segmentation
graph

cuts a word into
pieces of ink

image of a word

Normalization and discrimination

GENERATIVE TRAINING DISCRIMINANT TRAINING
Estimate P(x,y) Estimate P(y|x)
- Define model p,, (x, y) - Define model p,, (x, y)

YW Yy bw(x,y) =1 Vw,x Yypw(xy) =1
- Optimize likelihood - Optimize likelihood

max 2;; log py, (x;, ;) max 2;; log py, (x;, i)

Spot the difference!

Probabilistic models

Generative Hidden Markov Model

puCey) = PGyiw) = > | | Plselseor,w) PGrlse w)
t

s[t]:y

Probabilistic construction ensures normalization.

Discriminant Hidden Markov Model

pw(x,y) = P(ylx,w) = Z HP(Stlst—l:xtf w)
t

s[t]:y
Output of the local classifier must be normalized. Izl |§| ﬂ 2

This is a very bad idea.

L q

Denormalized models

Build models using measures instead of probabilities

*Measures add and multiply like probabilities

=Measures are positive but not constrained to sum to one.

@ @ ﬂ Score of a path = product of arc scores

Score of a subgraph = sum of path scores

L q

Pw(Xi,Yi)
Zy Pw (xi»y)

=Train by maximizing),; log

=Same as CRF cost function.

=Semi-ring variations : (R, +, X) (R, @, +) (R, max,+) ..

3[0.1] 2[0.7]
4a01.1]

Viterbi

3[0.1] 4[3.4) 1[0.2] 2[0.7]

652 {711

Character Scorer

YU

t cL

Segmentor Pl

i}z

Loss Function
[0.1](+1)

[0-8](-1)

3[0.1](+1)
(6] G.
G, Vit
ovit ' 4 [0.6)(+1)

3[01]=1) [04](=1) 1 [0.1](=1)
[Viterbi Tansformer | é 8‘1 t B ‘.

3[0A]+1 f
4 [2.4)(0
G «)‘°,>-<'° -
3[3.4](0) 4[0.8){+1)

"34" | _Path Selector |

Viterbi Transformer

Desired
Answer Interpretation
Graph
Gint
-1 _
\() /[+1] /(1 Recognition
4 4 1 Transfomer
b o PO Y B R T
Neural Net rec
Weights / /‘ \

Segmentation
Graph

£ "

| Segmenter |

GTN and CRF

Graph Transformer Network
=CRF cost function

="Hierarchical coarse-to-fine model

*Cheap inference

Best Amount Graph 00%_.
}

Check reader T
Interpretation Graph @ ?%’1

f Grammar

Compose - OQQ.
1

AT&T Bell Labs, 1995-1996. Fecomiin et @38

Industrially deployed in 1996. Recognizer

Segmentation Graph [+] E

Has processed YL

15% of all the US checks Segmenter

. . $tm*1
for nearly fifteen years. Fleld Graph 0;,-
A

[45hx |

Field Locator

!

o—e

Check Graph

2nd Nat. Bank
not to exceed $10,000.00 frer 345

(B. et.al., CVPR 1997) e Y

Check reader

1.1 discriminant cost

+ -
negati\o"e Iog—likelihood 4-3/0‘\3.2 negati\re |Dg—|ike|ih0°d

I Forward | | Forward I
t '
. . doz 5702 all possible
. correct interpretation o4 a4 interpretations
Recognizer e T e o et
f | | Q I—_Grammar
__I Compose Compose o
Lenet5 (CNN) — =
Recognition Graph @ -
.. "B" 236
Pre-trained on 500K o e
o answer R 1
isolated characters ‘""’g"'z‘; -
. S tation Graph
95 categories (why?) comentation Graphl et Gt
Segmenter
Global training architecture 2 Fietd Graph T
age S|
old system new system —
(was state of (with graph Field Locator
the art) transformers) I
Check Graph
654 machine o-e
orintoq chocks 68/31/1 82/17/1 S
three dollars and 45/xx
realistic mixture AL
of 1986 checks 45/54 /1 50/49/1

Graph transduction brick

Interﬁretation I:ieICK;IEEHTQClC_>|per.':1t|ons
grap nyw — BUILD
Output graph | !

Grammar graph
(lexicon trie)

Transducer

Graph Composition

Input graph

"O" 1 -0

lldn 1 8

Recognition
Graph

Deep networks for complex tasks

Auxiliary tasks

Retargeting learned features

ImageNet features for Caltech256

=*Train CNN on ImageNet

*Chop the last layer (ImageNet categories)
="Append a new last layer (Caltech 256 categories)

=Train network on Caltech256 data.

Question

=Should we keep the weights fixed in the ImageNet-trained layers.

(LeCun, Ranzato, 2012)

Retargeting learned features

only 6 training

55k =g o m o —m g ——————

Accuracy %
)
@)
I

asf] T e —— CNN

—_—Bo etal
— Sohn etal

i i i | | i
10 20 30 40 50 60
Trainina Imaaes per—class

(LeCun, Ranzato, 2012)

Auxiliary tasks

The price of labels

=Labeled examples for interesting tasks are typically scarce.
="Abundant labeled examples exists for uninteresting tasks.

Auxiliary task

=In the vicinity of an interesting task (with scarce labels)
there are uninteresting tasks (with cheap labels)
that can be put to good use.

Example: face recognition

Interesting task. Recognizing the faces of one million persons.

"How many labeled images per person can we obtain?
Auxiliary task. Are two face images representing the same person?

=Abundant (but noisy) examples.
= Two faces in the same picture are different persons (with exceptions)
= Two faces in successive frames are often the same person (with exceptions)

al- P
P

\-Uf

o e -l
(Matt Miller, NEC, 2006)

h-Ux

Example: NLP tagging

Interesting task. Standard NLP tagging tasks.

=Labeled data: Treebank, Propbank (1M words)

Auxiliary task. Word compatibility language model

=Positive examples: Wikipedia sentences segments. (600M words)
=Negative examples built by randomly replacing the central word.
=Ranking loss: score of positive > score of negative

(Collobert et.al., 2008-2010)

Example: NLP tagging

Five Time-Delay

Binary encoded .
— Words embedded Multilayer networks :
sentence words. . in50-100 dim space 4

Part Of Speech Tagging
(treebank, split 02-21 / 23)

Named Entity Recognition
(treebank, Stanford NER)

Chunking
(treebank)

Semantic Role Labeling
(propbank)

.~ Positional
e information relative to
d the chosen predicate for
o semantic tagging

N Language Model
(wikipedia, 620M examples)

Example: NLP tagging

FRANCE JESUS XBOX REDDISH SCRATCHED MEGABITS
454 1973 6909 11724 29869 87025
AUSTRIA GOD AMIGA GREENISH NAILED OCTETS
BELGIUM SATI PLAYSTATION BLUISH SMASHED MB/S
GERMANY CHRIST MSX PINKISH PUNCHED BIT/S
ITALY SATAN IPOD PURPLISH POPPED BAUD
GREECE KALI SEGA BROWNISH CRIMPED CARATS
SWEDEN INDRA pSNUMBER GREYISH SCRAPED KBIT/S
NORWAY VISHNU HD GRAYISH SCREWED MEGAHERTZ
EUROPE ANANDA DREAMCAST WHITISH SECTIONED MEGAPIXELS
HUNGARY PARVATI GEFORCE SILVERY SLASHED GBIT/S
SWITZERLAND GRACE CAPCOM YELLOWISH RIPPED AMPERES

Example: NLP tagging

=Tagging speed above 10000 words per second

$ echo "I've made up this sentence to demonstrate Senna." | ./senna-1inux64
I PRP S-NP 0 S-A0 S-A0
‘ve VBP B-VP 0 - 0 0
made VBN E-VP 0 made B-V 0
up RP S-PRT 0 . E-V 0
this DT B-NP 0 B-Al 0
sentence NN E-NP 0 E-Al 0
to T0 B-VP 0 B-AM-PNC 0
demonst rate VB E-VP 0 demonstrate I-AM-PNC S-V
Senna NNP S-NP S-PER E-AM-PNC S-Al
0 0 . 0 0

http://ronan.collobert.com/senna

http://ronan.collobert.com/senna

Example: NLP tagging

Task Benchmark | SENNA
Part of Speech (POS) (Accuracy) 97.24 % 97.29 %
Chunking (CHUNK) (FI) 94.29 % 94.32 %
Named Entity Recognition (NER) (F1) 89.31 % 89.59 %
Parse Tree level O (PTO) (F1) 91.94 % 92.25 %
Semantic Role Labeling (SRL) (F1) 77.92 % 75.49 %

POS System RAM (MB) Time (s)

Toutanova et al. (2003) 800 64

Shen et al. (2007) 2200 833

SENNA 32 4

SRL System RAM (MB) Time (s)

Koomen et al. (2003) 3400 6253

SENNA 124 51

Unsupervised auxiliary tasks

Deep learning with unsupervised layer-wise training.

=Sequentially pre-train successive layers using unsupervised technigues.
e.g., hoisy auto-encoders (feedforward), RBM (#)

“Fine tune using multilayer supervised training.

Remark

=This is less popular than it used to be two years ago.
(fully supervised technigue seem to work as well.)

Unsupervised learning?

What is a cluster?
— Assumption: the shape of the density reveals the underlying categories.

Bayes decision boundary

Unsupervised learning?

Input space transforms

) m)@n) — Categories are invariant.

YY VY XYY ry vy v ouvuy — Bayes rate is invariant.
— Clustering is not invariant.

Bayes decision boundary

Unsupervised learning?

Clustering revisited

— Clustering is the expression
of the prior knowledge
encoded by our choice of

_ “ -_ “ input representation.

YY VY Y XXXYYYPPP7P 7V ¥V ¥V Y YYY Unsupervised Iearning
— Comparable to using
really cheap labels:
“r1 and xo are close".
“r1 and x3 are not close”.

4

Bayes decision boundary

Deep networks for complex tasks

Circuits algebra

(B., ArXiV, 2011)

Transfer learning by rewiring

EE mE Fuos jes 1ed

Bayesian perspective

Elementary modules are parametrized by distributions.

&Ry .

D » y/n mb{ P >. » john
o B

Step 1 - Training the auxillary task

— Posteriors do not necessarily factorize according to modular structure
— Projecting posteriors on the factorized space.

Step 2 - Training the main task
— The auxilliary task posterior becomes the main task prior.

— Improved generalization (e.g. using the PAC-Bayes theorem.)
— But this does not say which transfer strategies will work best.

Circuit algebra

Rewiring as Algebraic Operation

— Rewiring simultaneous operates in two spaces:
o Composition of statistical models.
o Composition of model realizations.

— Transporting the functions and their parametrization
— Inherited structure in the parameter spaces
— Inherited structure in the ‘“space” of questions of interest

Algebraic structure is an expression of the semantics
— Circuit algebra <= Semantic Equation Models (Pearl, 2000).
— Causal semantics rather than probabilistic semantics.

Enriching the semantics

Algebraic structure is an expression of the semantics
— Enriching the algebraic structure < Enriching the semantics.

Y
- - Making the structure recursive
/ \" — A time-honored way to generate

rich algebraic structures.

Recursive Auto-Associative Memory

Elements

— A representation space R.

— Association module A: R X R — R.
— Dissociation module: D : R — R X R.

sat W

the W\ J > the? on W
cat Wl »cat? the W
mat W

jh:,

— Desired invariance: D(A(z,y)) = (z,y).

(Pollack, 1988) (Hinton, 1990)

Infinite depth structures

Algebraic structure matters more than representation space R.
— RAAMSs can represent infinite depth predicates.
— Same as cons, car, cdr.

YVYVY Y

Approximate invariance
— Consider a numerical representation space, i.e. R = R100

— Numerical accuracy will eventually degrade reconstruction.
— If the embeddings in the representation space make sense
the dissociation module then reconstruct approximate sentences.

Universal parser

Elements
— Saliency module S : R — R
— Short term memory.

Tl - : saliency
P STM I score

— Parsing text and images e.g. (Socher, 2010).
— Parsing anything in fact.
— Related to “chunking” (Miller, 1956).

Training strategies

Supervised

= (Socher, 2010, ...)

Unsupervised

"= In the spirit of the NLP system of (Collobert, Weston, etal., 2008)

sat W sat W

on w] song W

the W ‘4 the W

mat W ‘ \ §) \‘good mat
\" good

good

Learned representations

— Wikipedia dataset.

— Vocabulary restricted to 1000 words.

— All pairs of the 500 most frequent words were mapped into R.
— Examples of nearest neightbors:

last year red house the city two men
first year french house the town three men
same year rock house the church four men

first day red court the village two children
third year | german house | the state two women
first season | black house | the country | three children

Still lots of problemes...
- Does not scale well.
- Does not induce good parse trees. (Etter, 2008)

Conclusion

Exploitation

Lots of neural net applications in the coming years

- Learning perceptual tasks with neural nets works quite well

- Data and compute power are here.

Exploration

The statistical machine learning research program

=Discussing the models
e.g., their approximation properties.

=Discussing the loss functions
e.g., asymptotic consistency.

=Discussing learning algorithms
e.g., optimization, large scale.

=Discussing generalization
e.g., capacity control.

Exploration

The statistical machine learning research program

=Discussing the modg

e.g., their apprg perties.

=Discussing generalization
e.g., capacity control.

Exploration (my two cents)

A new object of study
= A collection of statistical models
= With different input and output spaces

= Endowed with an algebraic structure
connecting the models and their realizations
describing how to transfer knowledge across models.

Unstructured training data
= Each example can pertain to a different model.

= The algebraic structure is the glue.
= The glue is connected to reasoning.

