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1. Introduction



Traditional machine learning

_ Markov random field
K-means clustering

RVM Gaussian mixture

logistic regression .
Kalman filter

random forest

HMM principal components

neural networks
deep networks

support vector machines kernel PCA

ICA linear regression Boltzmann machines
Radial basis functions

Gaussian process _ decision trees
factor analysis
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Microsoft Kinect 'fastest-selling device on

record’

Microsoft has sold more than 10 million
Kinect sensor systems since launch on 4
Movember, and - according to Guinness
World Records - is the fastest-selling
consumer electronics device on record.

The sales figures outstrip those of both Apple's
iPhone and iPad when launched, Guinness
said.

Kinect is an infrared camera add-on for
Microsoft's Xbox 360 games console that allows
it to track body movements.

The popularity of the Kinect has helped to boost
sales of games, Microsoft says

Related Stories
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Fast depth image features

Depth comparisons:
— f(x;; A) = d(x;) — d(x;)

— where x;, = x; + A/d(x))







2. Model-based
Machine Learning



Model-based machine learning

Goal:
A single development framework which supports

X the creation of a wide range of bespoke models )

Traditional:
“how do | map my problem into standard tools”?

Model-based:
“what is the model that represents my problem”?



Potential benefits of MBML

Models optimised for each new application
Transparent functionality

— Models expressed as compact code
— Community of model builders

Segregate model from training/inference code
Newcomers learn one modelling environment
Does the “right thing” automatically



Intelligent software

Goal: software that can adapt, learn, and reason

Player skill Movie preferences Words
Game result Ratings Ink

Can be described by a model



Intelligent software

Goal: software that can adapt, learn, and reason

, NI
ey s |
oA
ik :
Player skill Movie preferences Words
Game result Ratings Ink

Reasoning backwards



3. Uncertainty



Handling uncertainty

We are uncertain about a player’s skill
Each result provides relevant information
But we are never completely certain

How can we compute with uncertainty in a
principled way?




Uncertainty everywhere

nich movie should the user watch next?

nich word did the user write?

nat did the user say?

nich web page is the user trying to find?

nich link will user click on?

nat kind of product does the user wish to buy?
nich gesture is the user making?

Many others ...

Sz z=sz=



Probability

Limit of infinite number of trials
Quantification of uncertainty




Movie Recommender Demo

Matchbox

infer.net



Xbox Live Recommendation

Over 50M users
Serves more than 100M requests per day
Spans verticals: games, TV programmes, movies




4. Probabilities



A murder mystery

A fiendish murder has been committed
Whodunit?

There are two suspects:
— the Butler
— the Cook

There are three possible murder weapons:

— a butcher’s Knife \\

— a Pistol
— a fireplace Poker




Prior distribution

Butler has served family well for many years
Cook hired recently, rumours of dodgy history

P(Culprit = Butler) = 20%

P(Culprit = Cook) =80%

Probabilities add to 100%

This is called a factor graph

P(Culprit) (we’ll see why later)

Culprit = {Butler, Cook}



Conditional distribution

Butler is ex-army, keeps a gun in a locked drawer
Cook has access to lots of knives
Butler is older and getting frail

Pistol Knife Poker
Cook 5% 65% 30% =100%
Butler 80% 10% 10% =100%

P(Weapon | Culprit)



Factor graph

Prior

/ distribution
P(Culprit)

Culprit = {Butler, Cook} Conditional

/ distribution

P(Weapon | Culprit)
Weapon = {Pistol, Knife, Poker}



Joint distribution

What is the probability that the Cook committed

il %«"T
P(Culprit = Cook) = 80% L 3\/\—

P(Weapon = Pistol | Culprit = Cook) = 5% i’ G;;

P(Weapon = Pistol , Culprit = Cook) = 80% x 5% = 4%

the murder using the Pistol?

Likewise for the other five combinations of
Culprit and Weapon



Joint distribution

Cook

Butler

Pistol Knife Poker
4% 52% 24%
16% 2% 2%

=100%

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

[P(x, y) = P(ny)P(x)] Product rule




Factor graphs

P(Culprit)
Culprit = {Butler, Cook}
P(Weapon | Culprit)

Generative model Weapon = {Pistol, Knife, Poker}

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)



Generative viewpoint
| Murderer | Weapon

Cook Knife
Butler Knife
Cook Pistol
Cook Poker
Cook Knife
Butler Pistol
Cook Poker
Cook Knife
Butler Pistol

Cook Knife



Marginal distribution of Culprit

Pistol Knife Poker
Cook 4% 52% 24% = 80%
Butler 16% 2% 2% =20%

[ P(x) = 2 P(x,y) J Sum rule
y




Marginal distribution of Weapon

Pistol Knife Poker
Cook 4% 52% 24%
Butler 16% 2% 2%
=20% = 54% = 26%

[ P(x) = 2 P(x,y) J Sum rule
y




Posterior distribution T

We discover a Pistol at the scene of the crime

Pistol Knife Poker
Cook 4% 2% 24% =20%
Butler 16% 2% 2% = 80%

This looks bad for the Butler!




Generative viewpoint
| Murderer | Weapon

—Cook Krrife
Brrtter irrife
Cook Pistol
Eeol Poter
ool ierife
Butler Pistol
—LCook Rolkear
—(0ak Knife
Butler Pistol

-

€ook



Reasoning backwards

Culprit

Weapon



Bayes’ theorem

P(x,y) = P(ylx)P(x)

likelihood —__ / prior

piylx) = PEIPD)
/ P(x)
posterior

Prior — belief before making a particular obs.

Posterior — belief after making the obs.
Posterior is the prior for the next observation

— Intrinsically incremental



Two views of probability

Frequency: limit of infinite number of trials
Bayesian: quantification of uncertainty




The Rules of Probability

Sum rule
PG = ) P(Y)
y

Product rule
P(x,y) = P(y|x)P(x)

Bayes’ theorem
P(x|y)P(y)
P(x)

P(ylx) =
Denominator
P(O) = ) P(xIy)P()
y






b. Directed Graphs



Probabilistic Graphical Models

Combine probability theory with graphs
v'new insights into existing models
v’ framework for designing new models

v Graph-based algorithms for calculation and
computation (c.f. Feynman diagrams in physics)

v efficient software implementation



Three types of graphical model

Directed graphs

— useful for designing models

Undirected graphs

— good for some domains, e.g. computer vision

Factor graphs

— useful for inference and learning



Decomposition

Consider an arbitrary joint distribution

p(a, b, c)
By successive application of the product rule:

\()(G;\G,C3 = v(ow),C>P(b/C): y/q|b;c)P£lic)QF)

)



Directed Graphs

Arrows may indicate causal relationships

?(9‘ \ (7(37 — r[o(\)})(f1)p(‘fa)



Special cases O

PCA, ICA, Kalman filters,
factor analysis, hidden Markov models
linear regression ¢ (
Vi - 1—(\
logistic regression, XH\ "’7(/\)) /’j’? }
=

mixture models



We’re hiring!

Interns, Postdocs, Researchers, Developers



6. Conditional
Independence



Conditional Independence O O
? (ab) = ?(O&P(b)
p (=1b) = plab) - P(&



Conditional Independence: Example 1

)”){5,19/() = ?(c)?(m‘C)P(}o’r>



Conditional Independence: Example 1

?(o/\f) \ c) = P(a,b,C>
=

et
b )0)

_ V(q)q) ‘?(17, >




Conditional Independence: Example 2

O0—0—0O

(a ,\ovCB’/ P((O f(dq) {)(k\C)
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Conditional Independence: Example 2




Conditional Independence' Example 3
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Conditional Independence: Example 3




D-separation
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Two coins

p(H) =1/2 p(H) =1/2
Coin1 Coin 2
{H,T} {H,T}
Both heads
{true, false}
®
&
"4
D\



What is the probability of two heads?
p(H) =1/2 p(H) = 1/2

Coin1 Coin 2
{H,T} {H,T}

' Both heads
Generative model {true, false}

p(true) =1/4

Coin1l T T H H Q

Coin 2 T H T H .
Both heads | false | false fals k\




Reasoning backwards

p(H)=1/3 p(H)=1/3
Coin1 Coin 2
{H,T} {H,T}
false
Both heads
®
Coin1l T T H
Coin 2 T H T ' Q
Both heads | false | false | false | trge k\




Reasoning backwards

p(H) =1/2
Coin1l Coin 2
{H,T} {H,T}
tails
false
Both heads
{true, false}
)
Coin1l T T Q
Coin 2 T H «
Both heads | false | false | fajse | tr@e 'g\




Reasoning backwards

p(H)=0
Coin1l Coin 2
{H,T} {H,T}
heads
false
Both heads
{true, false}
)
Coin1l H (
Coin 2 T ¢
Both heads | fajse | fa false | tr@ie ”Explaining away" \g




/. Undirected Graphs



Undirected Graphs

AL B|C

Markov random fields



Factorization

p(x) = [ [ ve(xe)

C

Z=>_]1vexe)
x C

M K-state variables — KM terms in Z

Maximal Clique



lllustration: Image De-Noising










Directed versus Undirected




8. Factor Graphs



Factorization

Directed graphs:

Both have the form of products of factors:

p(x) = HfS(XS)



Factor Graphs

T T2 T3

Jfa Jo fe Jd
p(X) — fa(xla QZQ)fb(CUl, xQ)fC($27 Ig)fd(ng)

p(x) = H fs(Xs)



From Directed Graph to Factor Graph

p(z1, T2, v3) = p(x1)p(22)p(T3|71, 2)

p($3|$19 $2)

oh
=
|
=
(\W]
&
o

|



9. Inference



Efficient inference

szy =  T1Y1 + T2Y1 T T1Y2 + T2Yy2
Ty

= (z1+x2)(y1 + y2)



The Sum-Product Algorithm
f3(xy)

fraw)  folw,x) (2,

fa(x,2)
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f3(x,y)

D " 5 (L)

fiww)  fomx) NOB2)

fa(x,2) ___1

n ¢ (W) = zf(wq[zi_ «G(vw)(? (<, 2)
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fa(w, x)
fa(x,2)

\i(i:



The Sum-Product Algorithm

Three update equations » C/
y
pr /"Q
i) = [ mpa(@) b l =h

feFy

me_g, (1) = Y Y ) flwr,x0,23,...) || my,—p(z;)
L2 T3 In — i>1
fi€F\{f}

Message schedule from root to leaves and back
One message in each direction on each link



What if the graph is not a tree?

Condition on variables to break loops

— cut-set conditioning (exact)
Transform graph into tree of composite nodes

— junction tree algorithm (exact)

Approximate: keep iterating the messages:
— loopy belief propagation (approximate)



What if the messages are intractable?

True distribution Monte Carlo  Variational Message Passing

Expectation propagation



Learning is just inference!



10. Example: Kalman filter



Hand location

Noisy position sensor




Finding the true location

A




The Gaussian distribution

&

standard deviation o

variance o2

precision A = 1/0?

5 z
mean U
N 2\ _ 1 _L — 2
(x‘ﬂ,(f ) T (27{_0_2)1/2 exXp 20_2 (J; I‘L)



The multi-dimensional Gaussian

@



Learning the mean

p(u)

p(x|u)



Learning the mean




Plates







Hand tracking

Noisy position sensor and
moving hand




The Kalman filter
(The hidden Markov model)












What about the noise level?

p(A) p(u)

A u
p(x|u, A)

X




The gamma distribution

1
Gam(\a, b) = peNe—1 —bA
am(Aa,b) = F exp(—bA)
2 B 2 - 2 B
1 h | lx | .
00 A1 2 00 A 1 2 00 A1

An example of a conjugate prior



Predictions

p(A) p(u)




current

voltage




(2) (2)
z'fz?—)l Z

Upn41

un—l un




11. Case Study:
TrueSkill ™



TrueSkill™™

XBOX
g LIVE
¢ e ¥
e 'F\
Sept. 2005,

10s million users,
millions of matches per day

Ralf Herbrich, Tom Minka, and Thore Graepel (NIPS, 2007)



Elo

International standard for chess grading
A single rating for each player

Limitations:
— not applicable to more than two players
— not applicable to team games




Stages of MBML

1. Build a model: joint probability distribution of
all of the relevant variables (e.g. as a graph)

2. Incorporate the observed data

3. Compute the distributions over the desired
variables: inference

[terate 2 and 3 in real-time applications

Extend model as required



Gaussian

AN

Gaussian

Gaussian

Gaussian

I(mt, > m,)
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Expectation propagation (EP)




Convergence

40
35 | l
30 l
25 l
2 20 l
)
—
15 7
. :.l '_,.' e char (TrueSkill ™)
r_',"'-' m—— SQLWildman (TrueSkill ™)
. ‘l === = char (Elo) :
= == SQLWildman (Elo)
O |
A 100 200 300 400

Number of Games



13. Probabilistic
Programming



CsorT

A representation language for probabilistic models.
Takes C# and adds support for:

random variables

constraints on variables

inference

Can be embedded in ordinary C# to allow integration of
deterministic + stochastic code



Random variables

Normal variables have a fixed single value
int length=6

Random variables have a probability distribution

int length = random (Uniform(0,10))



Constraints

e Constraints on random variables

constrain (visible==true)
constrain (length==4)
constrain (length>0)

constrain(i==17)



Inference

Compute posterior distribution

int 1 = random(Uniform(1l,10));
bool b = (1*1i>50) ;

Dist bdist = infer (b); //Bernoulli (0.3)



Random variables

Probabilistic program

double x = random (Gaussian(0,1));

Graphical model

Gaussian(0,1)



Bayesian networks

Probabilistic program

double x = random (Gaussian(0,1));
double y = random (Gamma (1,1));
double z = random(Gaussian(x,Vy));

Graphical model

Gaussian(0,1) Gamma(1,1))

Gaussian



Loops — plates

Probabilistic program

double x = random(Gaussian(0,1));
double y = random (Gamma (1,1));
for (int 1=0;1<10;i++) {

double z = random (Gaussian (x,V)):

}

Graphical model

Gaussian(0,1) Gamma(1,1))

%aussian




If statement - gates

Probabilistic program
bool b = random(Bernoulli(0.5)); double x;
if (b)) {
X = random (Gaussian(0,1));
} else {
X = random (Gaussian(10,1));

}

Graphical model
Bernoulli(0.5)

Gates (Minka and Winn, NIPS 2008)

all bl|c



Other language features

Probabilistic program

* Functions/recursion
* Indexing

e Jagged arrays

* Mutation: x=x+1
e Objects

Graphical model

No common equivalent



Sampling interpretation

Imagine running program many times, where

— random (dist) draws a random number from dist
— constrain (b) stops the run if b is not true
— infer (x) accumulates the value of x into memory



infer.net

http://research.microsoft.com/infernet

John Winn, Tom Minka, John Guiver, et al.


http://research.microsoft.com/infernet

How Infer.NET works

Probabilistic Observed
program values
(model)

Inference Engine

Infer.NET i CH Algo- Algorithm
compiler compiler rithm execution

Probability
distributions



Standard models supported

Mixture models

actor analysis / PCA / ICA
_Logistic regression

Discrete Bayesian networks
Hidden Markov models
Ranking models

Kalman filters

Hierarchical models







// model wvariables

Variable<double> skilll, skill2;
Variable<double> performancel, performance2;
Gaussian skillPosteriorl, skillPosterior2;

// model
skilll = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skill2 = Variable.GaussianFromMeanAndPrecision (0, 1) ;

performancel = Variable.GaussianFromMeanAndPrecision(skilll, beta) ;
performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta) ;

Variable.ConstrainPositive (performancel - performance?) ;

// infer new posterior skills
InferenceEngine engine = new InferenceEngine() ;

skillPosteriorl = engine.Infer<Gaussian>(skilll);
skillPosterior2 = engine.Infer<Gaussian>(skill2);



Extension to Multiple players

1




// model variables

Variable<double> skilll, skill2, skill3;
Variable<double> performancel, performance?, performance3;
Gaussian skillPosteriorl,skillPosterior2, skillPosterior3;
// model

skilll = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skill2 = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skill3 = Variable.GaussianFromMeanAndPrecision (0, 1) ;

performancel = Variable.GaussianFromMeanAndPrecision(skilll, beta)
performance?2 Variable.GaussianFromMeanAndPrecision(skill2, beta);
performance3 = Variable.GaussianFromMeanAndPrecision(skill3, beta) ;

Variable.ConstrainPositive (performancel - performance2) ;
Variable.ConstrainPositive (performance2 - performance3) ;

// infer new posterior skills
InferenceEngine engine = new InferenceEngine() ;

skillPosteriorl = engine.Infer<Gaussian>(skilll) ;
skillPosterior2 = engine.Infer<Gaussian>(skill2) ;
skillPosterior3 = engine.Infer<Gaussian>(skill3) ;



Extension to Teams




// model wvariables

Variable<double> skilll, skill2, skill3, skill4;

Variable<double> performancel, performance2 , performance3, performance4;
Gaussian skillPosteriorl,skillPosterior2, skillPosterior3, skillPosterior4;

// model

skilll = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skill2 = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skill3 = Variable.GaussianFromMeanAndPrecision (0, 1) ;
skilld4d = Variable.GaussianFromMeanAndPrecision (0, 1) ;

performancel Variable.GaussianFromMeanAndPrecision(skilll + skill2, beta);
performance2 = Variable.GaussianFromMeanAndPrecision(skill3 + skill4, beta);

Variable.ConstrainPositive (performancel - performance2) ;

// infer new posterior skills
InferenceEngine engine = new InferenceEngine () ;

skillPosteriorl = engine.Infer<Gaussian>(skilll);
skillPosterior2 engine.Infer<Gaussian>(skill2) ;
skillPosterior3 engine.Infer<Gaussian>(skill3) ;
skillPosterior4 = engine.Infer<Gaussian>(skill4) ;



TrueSkill™ through time




// model wvariables

Variable<double> skilll, skill2;
Variable<double> performancel, performance2;
Gaussian skillPosteriorl, skillPosterior2;

// model

skilll = Variable.GaussianFromMeanAndPrecision (oldskilll, alpha);
skill2 = Variable.GaussianFromMeanAndPrecision (oldskill2, alpha) ;

performancel = Variable.GaussianFromMeanAndPrecision(skilll, beta)
performance2 = Variable.GaussianFromMeanAndPrecision(skill2 ,beta);

Variable.ConstrainPositive (performancel - performance2) ;

// infer new posterior skills
InferenceEngine engine = new InferenceEngine() ;

skillPosteriorl = engine.Infer<Gaussian>(skilll) ;
skillPosterior2 = engine.Infer<Gaussian>(skill2) ;



Skill estimate

ChessBase Analysis: 1850 - 2006

3.5M game outcomes

20 million variables (200,000 players in each year of lifetime + latent variables)

40 million factors

3000 —

2800 — Robert James Fischer

2600 —

Mikhail Botvinnik
2400 — Paul Morphy

2200 —
2000 —

1800 —

Whilhelm Steinitz

Emanuel Lasker

Jose Raul Capablanca

1600 —
Adolf Anderssen

1400 —

Garry Kasparov

Anatoly Karpov

Boris V Spassky

T T T T T T ! ! I I ! ! I I I I I I
1850 1858 1866 1875 1883 1891 1899 1907 1916 1924 1932 1940 1949 1957 1965 1973 1981 1990

Year

I I
1998 2006



DARPA ENVISIONS THE FUTURE OF MACHINE LEARNING

March 19, 2013

Automated tools aim to make it easier to teach a computer than to program it

Machine learning — the ability of computers to understand data, manage results, and
infer insights from uncertain information — is the force behind many recent revolutions
in computing. Email spam filters, smartphone personal assistants and self-driving
vehicles are all based on research advances in machine learning. Unfortunately, even
as the demand for these capabilities is accelerating, every new application requires a
Herculean effort. Even a team of specially-trained machine learning experts makes
only painfully slow progress due to the lack of tools to build these systems.

The Probabilistic Programming for Advanced Machine Learning (PPAML) program was
launched to address this challenge. Probabilistic programming is a new programming
paradigm for managing uncertain information. By incorporating it into machine learning,
PPAML seeks to greatly increase the number of people who can successfully build

marhina laarmina ammlicatinne anAd malbe macrhine laarmina avearde radicaliby marae




Any questions?






