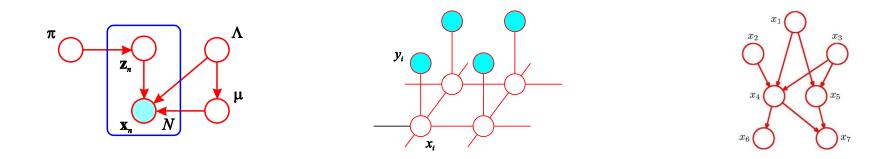
Graphical Models

Chris Bishop

Microsoft Research Cambridge



Machine Learning Summer School 2013, Tübingen

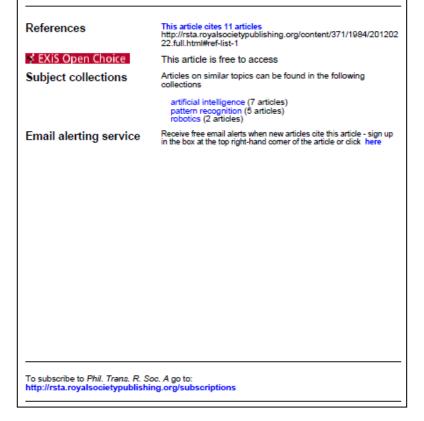
http://research.microsoft.com/~cmbishop

Chapter 8: Graphical Models (PDF download)

Model-based machine learning

Christopher M. Bishop

Phil. Trans. R. Soc. A 2013 371, doi: 10.1098/rsta.2012.0222



http://research.microsoft.com/~cmbishop

Please ask questions!

1. Introduction

Traditional machine learning

K-means clustering

logistic regression

random forest

neural networks

Markov random field

Kalman filter

principal components

deep networks

RVM

support vector machines

kernel PCA

Boltzmann machines

Gaussian mixture

ICA linear regression

Radial basis functions

Gaussian process

factor analysis

decision trees

For XBOX 360.

10 March 2011 Last updated at 06:09 ET

🛃 🕒 🧲 🖂 🖯

Microsoft Kinect 'fastest-selling device on record'

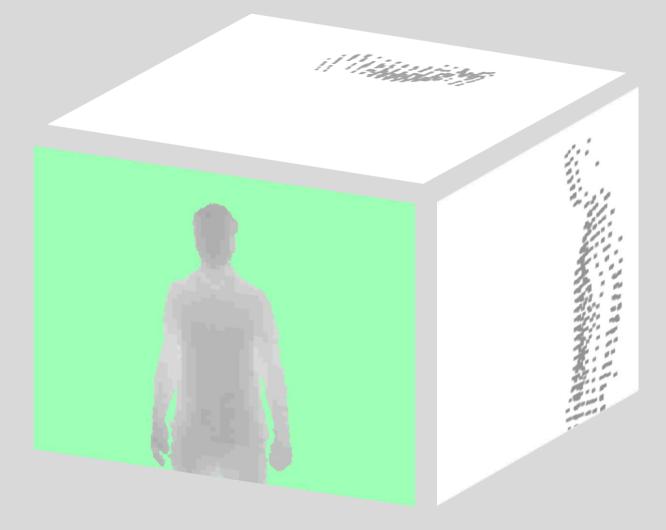
Microsoft has sold more than 10 million Kinect sensor systems since launch on 4 November, and - according to Guinness World Records - is the fastest-selling consumer electronics device on record.

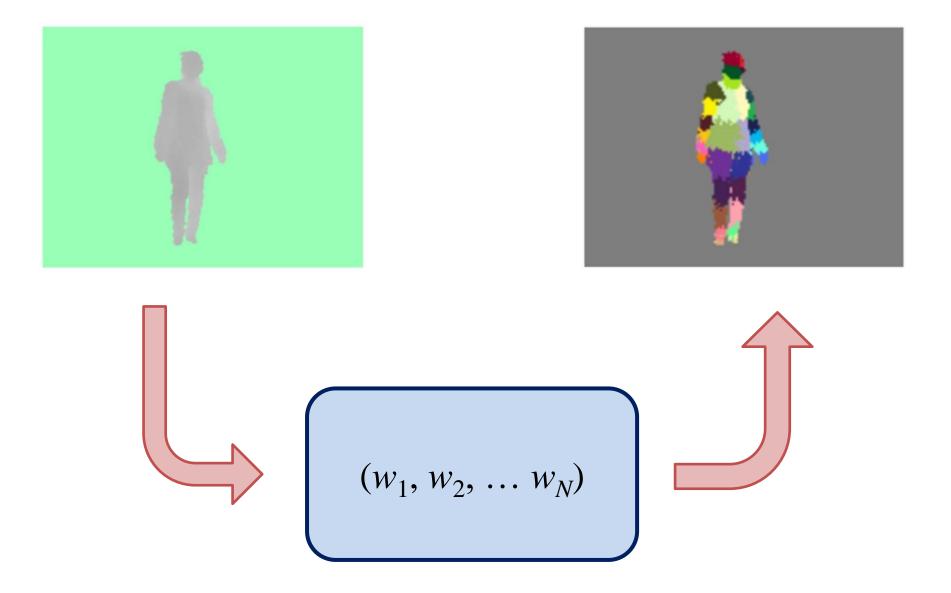
The sales figures outstrip those of both Apple's iPhone and iPad when launched, Guinness said.

Kinect is an infrared camera add-on for Microsoft's Xbox 360 games console that allows it to track body movements.

The popularity of the Kinect has helped to boost sales of games, Microsoft says

Related Stories



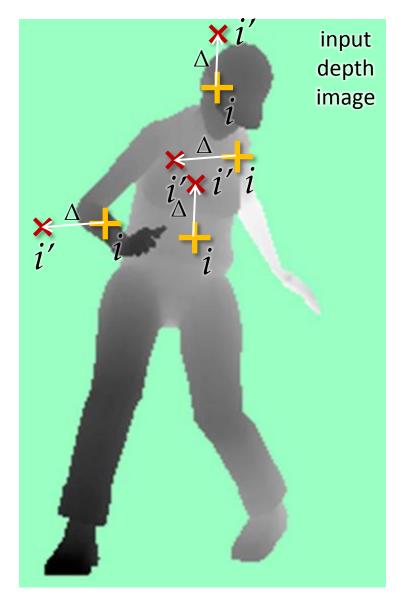


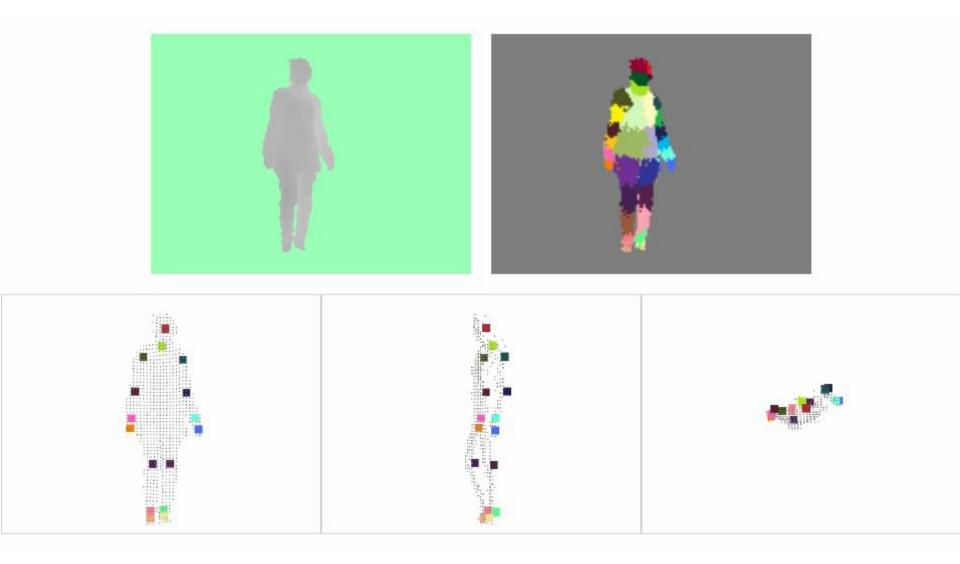
Fast depth image features

Depth comparisons:

$$-f(\mathbf{x}_i; \Delta) = d(\mathbf{x}_i) - d(\mathbf{x}_{i'})$$

- where
$$\mathbf{x}_{i'} = \mathbf{x}_i + \Delta/d(\mathbf{x}_i)$$





2. Model-based Machine Learning

Model-based machine learning

Goal:

A *single* development framework which supports the creation of a wide range of bespoke models

Traditional:

"how do I map my problem into standard tools"?

Model-based:

"what is the model that represents my problem"?

Potential benefits of MBML

Models optimised for each new application Transparent functionality

- Models expressed as compact code
- Community of model builders

Segregate model from training/inference code

Newcomers learn one modelling environment

Does the "right thing" automatically

Intelligent software

Goal: software that can adapt, learn, and reason

Can be described by a *model*

Intelligent software

Goal: software that can adapt, learn, and reason

Reasoning backwards

3. Uncertainty

Handling uncertainty

We are uncertain about a player's skill Each result provides relevant information But we are never completely certain *How can we compute with uncertainty in a principled way?*

Uncertainty everywhere

- Which movie should the user watch next?
- Which word did the user write?
- What did the user say?
- Which web page is the user trying to find?
- Which link will user click on?
- What kind of product does the user wish to buy? Which gesture is the user making? Many others ...

Probability

Limit of infinite number of trials Quantification of uncertainty

60%

40%

Movie Recommender Demo

Matchbox

Xbox Live Recommendation

Over 50M users

Serves more than 100M requests per day

Spans verticals: games, TV programmes, movies

4. Probabilities

A murder mystery

A fiendish murder has been committed Whodunit?

There are two suspects:

- the Butler
- the **Cook**

There are three possible murder weapons:

- a butcher's Knife
- a Pistol
- a fireplace Poker

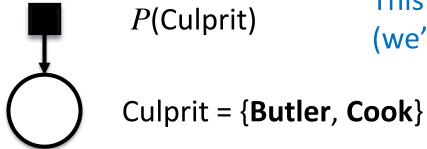
Prior distribution

Butler has served family well for many years Cook hired recently, rumours of dodgy history

P(Culprit = **Butler**) = 20%

P(Culprit = Cook) = 80%

Probabilities add to 100%



This is called a *factor graph* (we'll see why later)

Conditional distribution

Butler is ex-army, keeps a gun in a locked drawer

Poker

Cook has access to lots of knives

Butler is older and getting frail

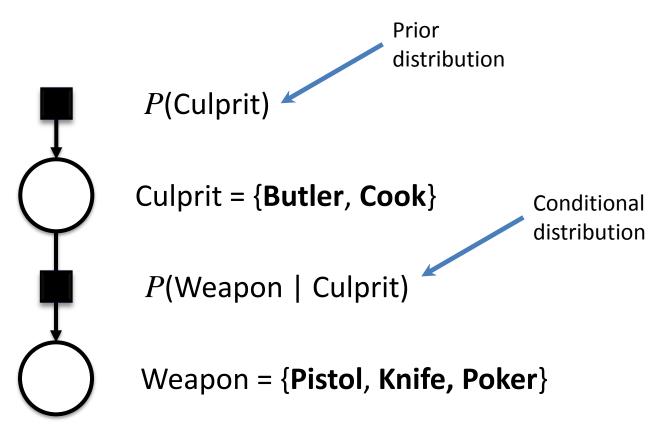
Pistol

Cook	5%	65%	30%	= 100%
Butler	80%	10%	10%	= 100%

Knife

P(Weapon | Culprit)

Factor graph



Joint distribution

What is the probability that the **Cook** committed the murder using the **Pistol**?

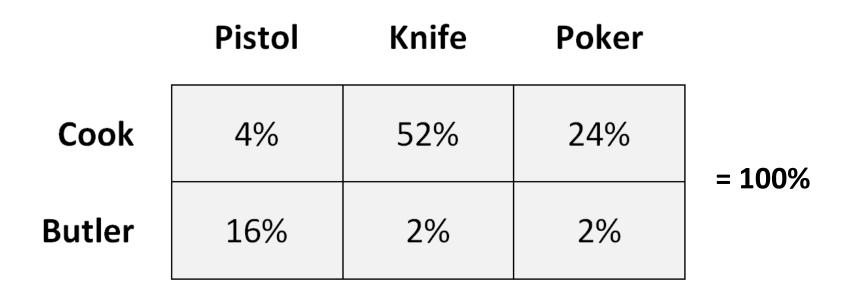
P(Culprit = **Cook**) = 80%

P(Weapon = Pistol | Culprit = Cook) = 5%

P(Weapon = **Pistol** , Culprit = **Cook**) = 80% x 5% = 4%

Likewise for the other five combinations of Culprit and Weapon

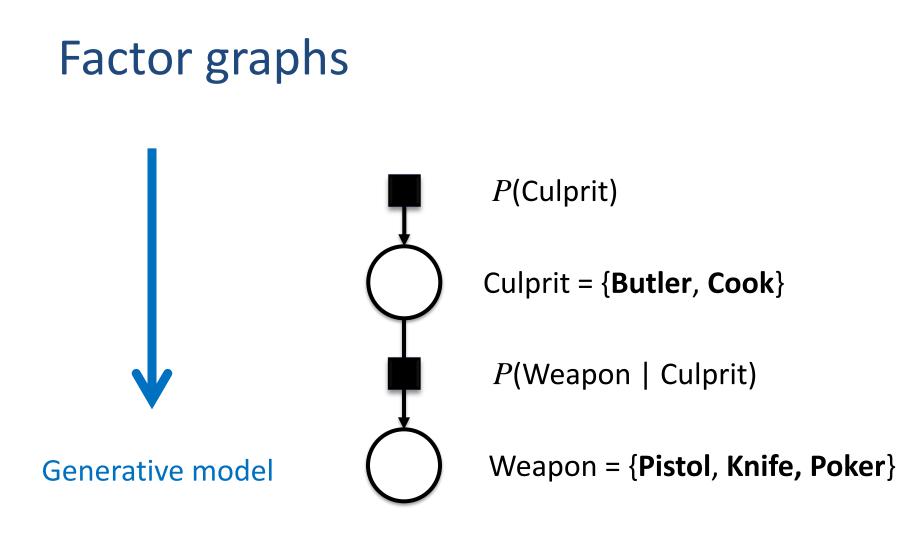
Joint distribution



P(Weapon, Culprit) = *P*(Weapon | Culprit) *P*(Culprit)

$$P(x,y) = P(y|x)P(x)$$

Product rule



P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

Generative viewpoint

Murderer	Weapon		
Cook	Knife		
Butler	Knife		
Cook	Pistol		
Cook	Poker		
Cook	Knife		
Butler	Pistol		
Cook	Poker		
Cook	Knife		
Butler	Pistol		
Cook	Knife		

Marginal distribution of Culprit

	Pistol	Knife	Poker	
Cook	4%	52%	24%	= 80%
Butler	16%	2%	2%	= 20%

$$P(x) = \sum_{y} P(x, y)$$
 Sum rule

Marginal distribution of Weapon

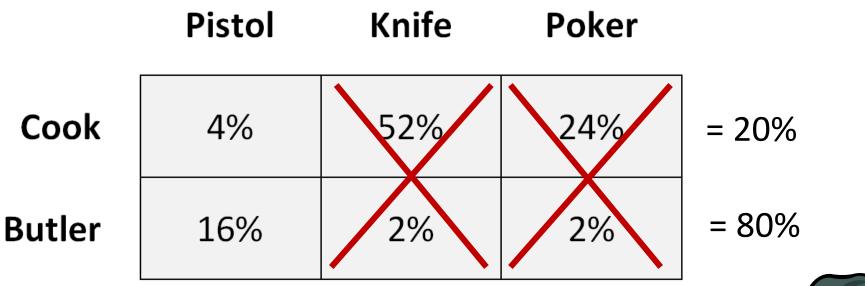
	Pistol	Knife	Poker
Cook	4%	52%	24%
Butler	16%	2%	2%

= 20% = 54% = 26%

$$P(x) = \sum_{y} P(x, y)$$

Sum rule

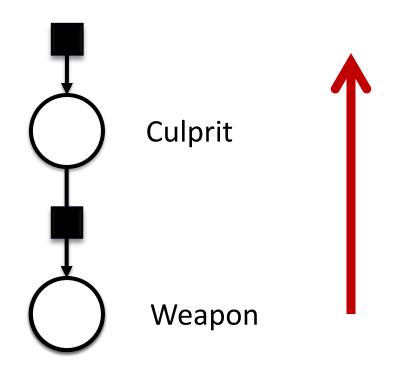
We discover a **Pistol** at the scene of the crime

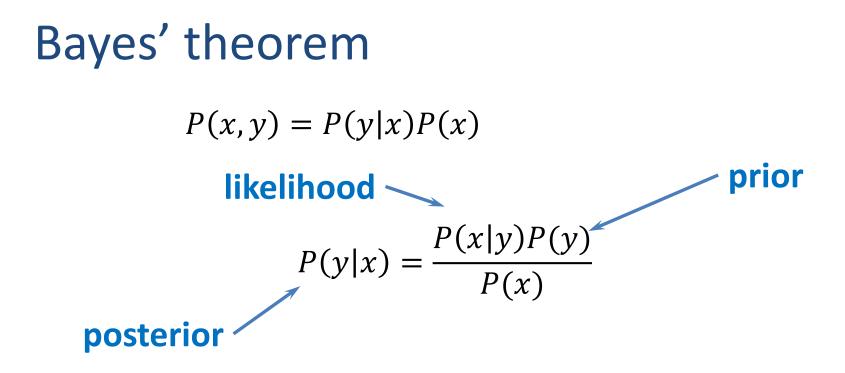


This looks bad for the Butler!

Generative viewpoint

	Murderer	Weapon
	Cook	Knife
	Butler	Knife
	Cook	Pistol
	Cook	Poker
	Cook	Knife
	Butler	Pistol
	Cook	Poker
	Cook	Knife
	Butler	Pistol
	Cook	Knife





Prior – belief before making a particular obs.
Posterior – belief after making the obs.
Posterior is the prior for the next observation

Intrinsically incremental

Two views of probability

Frequency: limit of infinite number of trials Bayesian: quantification of uncertainty

The Rules of Probability

Sum rule

$$P(x) = \sum_{y} P(x, y)$$

Product rule

$$P(x, y) = P(y|x)P(x)$$

Bayes' theorem

$$P(y|x) = \frac{P(x|y)P(y)}{P(x)}$$

Denominator

$$P(x) = \sum_{y} P(x|y)P(y)$$

5. Directed Graphs

Probabilistic Graphical Models

Combine probability theory with graphs

- \checkmark new insights into existing models
- ✓ framework for designing new models
- ✓ Graph-based algorithms for calculation and computation (c.f. Feynman diagrams in physics)

✓ efficient software implementation

Three types of graphical model

Directed graphs

- useful for designing models

Undirected graphs

- good for some domains, e.g. computer vision

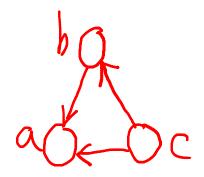
Factor graphs

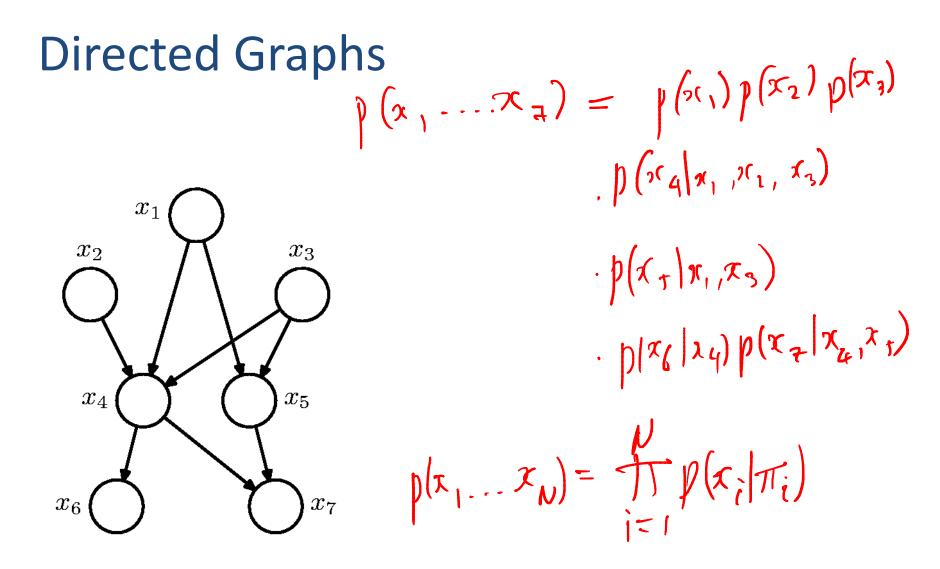
useful for inference and learning

Decomposition

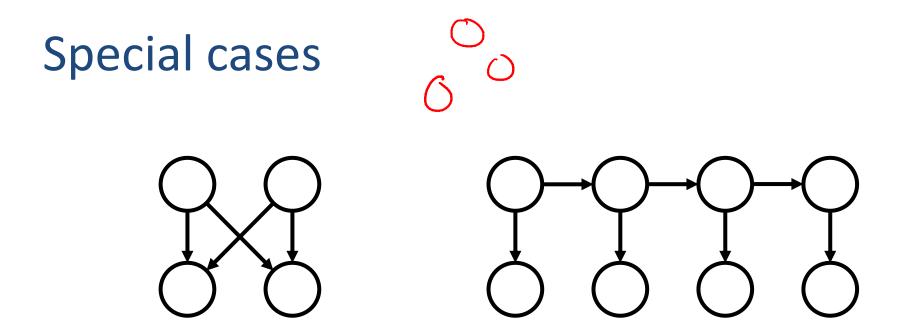
Consider an arbitrary joint distribution

By successive application of the product rule: p(a,b,c) = p(a)b,c)p(b,c) = p(a|b,c)p(b|c)p(c)





Arrows may indicate causal relationships



PCA, ICA, factor analysis, linear regression, logistic regression, mixture models Kalman filters, hidden Markov models

 $p(x_1, \dots, x_N) = \prod_{i=1}^{N} p(x_i)$

We're hiring!

Interns, Postdocs, Researchers, Developers

6. Conditional Independence

Conditional Independence p(a,b) = p(a)p(b)p(a|b) = p(a,b) = p(a)p(h)p(a,b|c) = p(a|b,c)p(b|c) = p(a|c)p(b|c)a IL b C DC

Conditional Independence: Example 1 p(a,b,c) = p(c)p(a|c)p(b|c)anb | ¢ 7 a p(a,b) = Zp(a,b,c) = Zp(c)p(a|c)p(b|c) $\neq p(\alpha)p(b)$

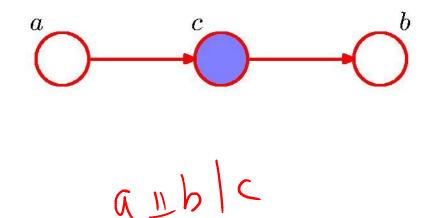
Conditional Independence: Example 1 p(a,b|c) = p(a,b,c)p(c) $= p(\epsilon) p(a|c) p(b|c)$ $p(\epsilon)$ ba= p(a|c)p(b|c)allb

Conditional Independence: Example 2

p(a,b,c) = p(a)p(c|a)p(b|c)

a ¥ b 1 ¢

Conditional Independence: Example 2



Conditional Independence: Example 3 p(a,b,c) = p(a)p(b)p(c(a,b))aub 17? 11 $p(a,b) = \sum p(a,b,c)$ = $p(a) p(b) \sum_{c} p(c|a,b)$ = p(a) p(b)Q 110

Conditional Independence: Example 3

$$p(a,b|c) = p(a,b,c)$$

$$p(c)$$

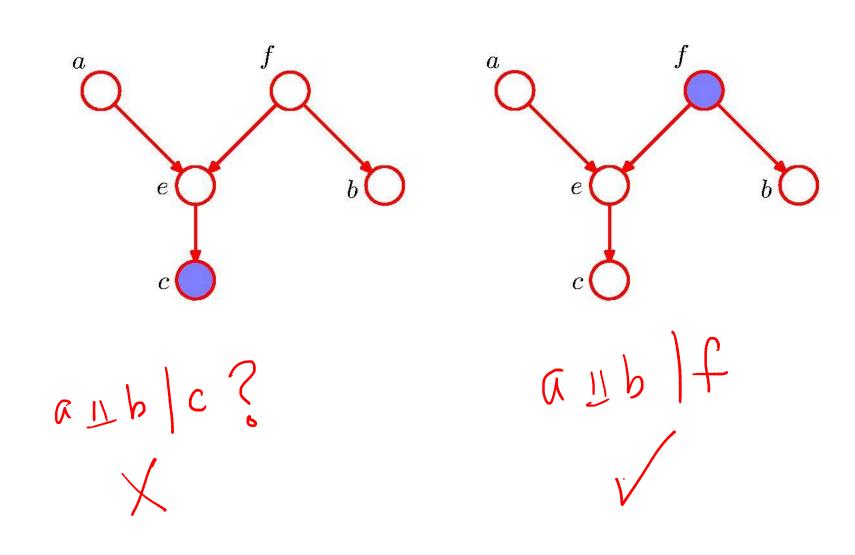
$$p(c)$$

$$p(c) = \frac{p(a)p(b)p(c|c,b)}{p(c)}$$

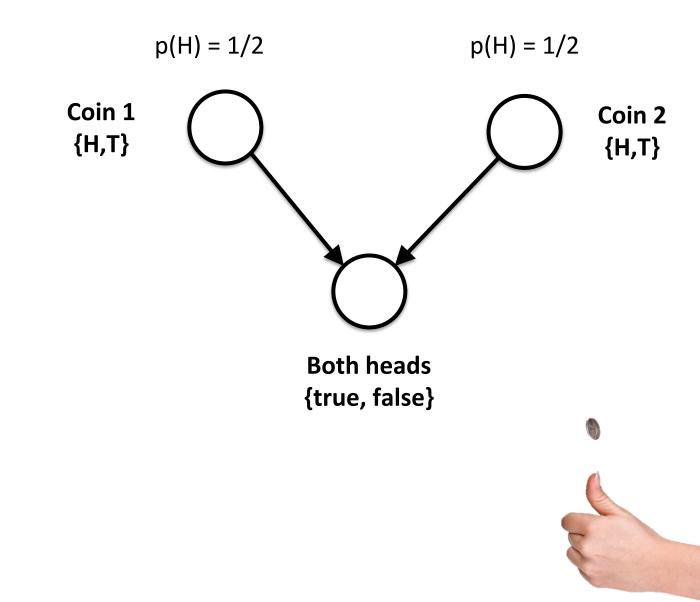
$$p(c)$$

$$p(c) = p(a|c)p(b|c)$$

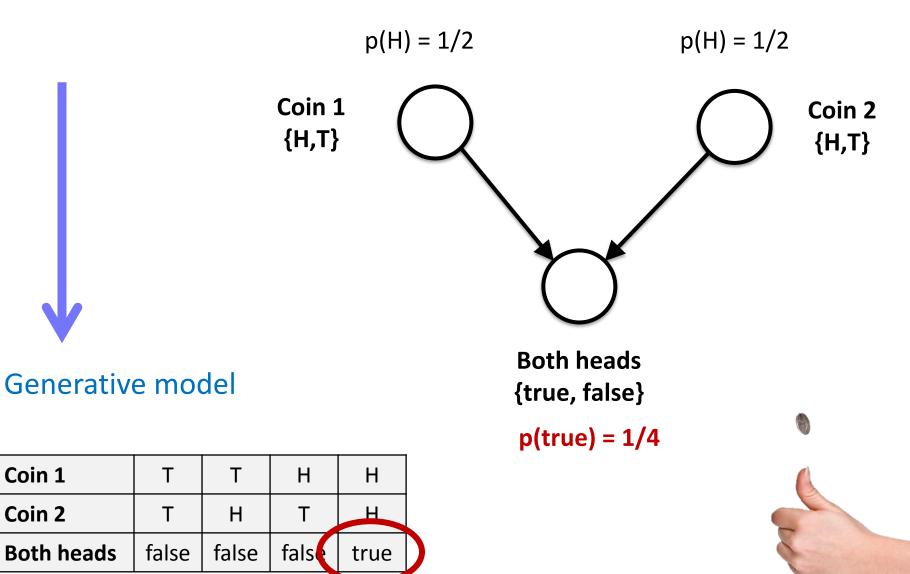
D-separation

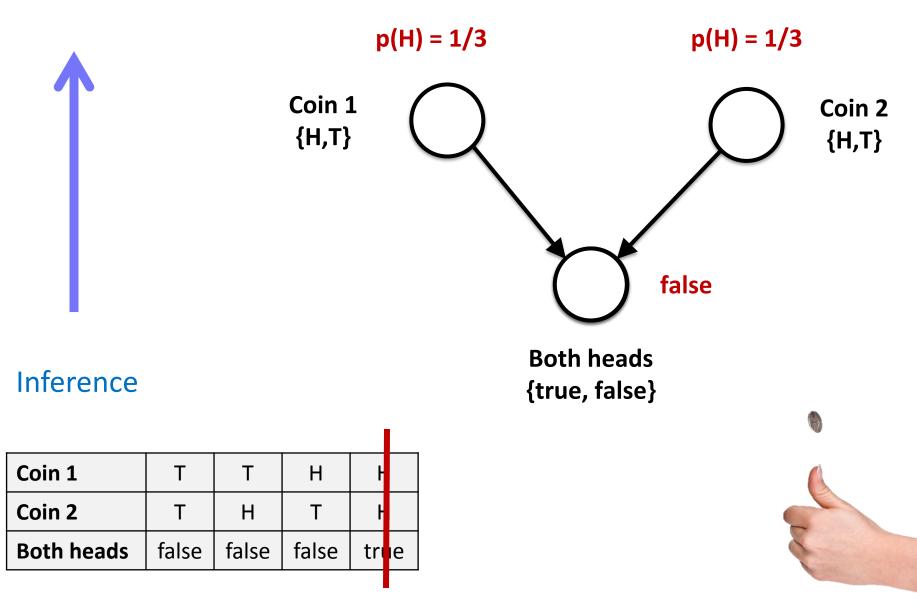


Two coins



What is the probability of two heads?





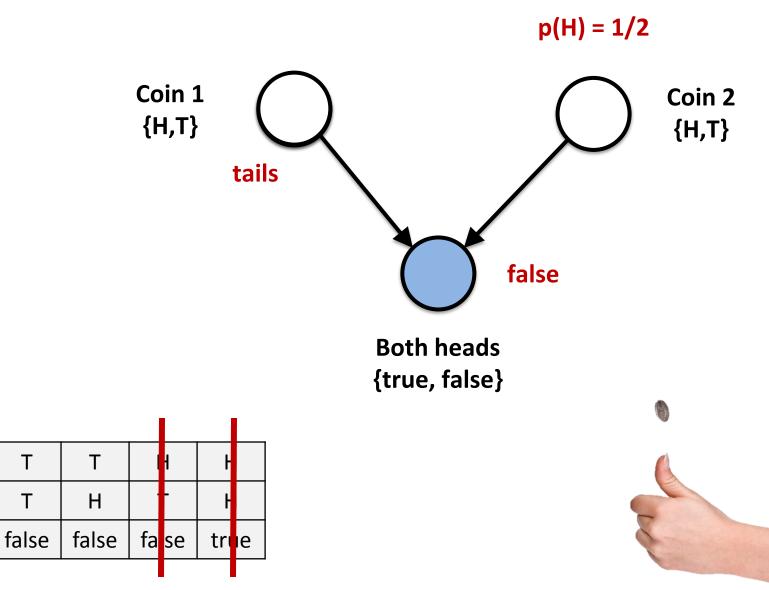
Coin 1

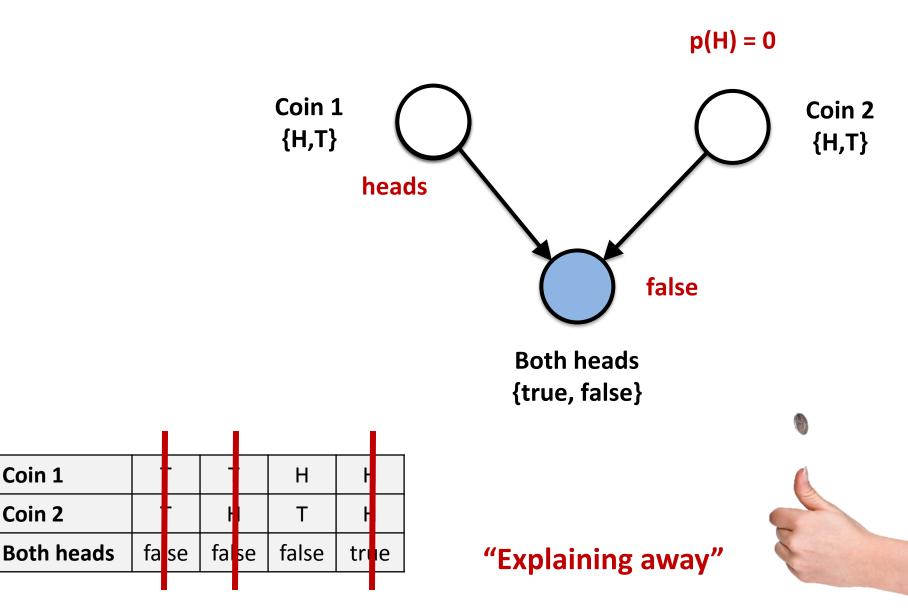
Coin 2

Both heads

Т

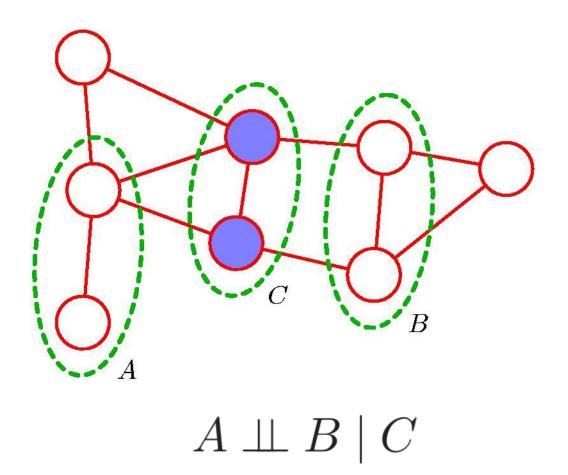
Т





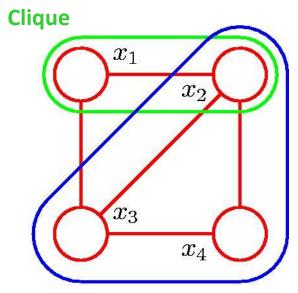
7. Undirected Graphs

Undirected Graphs



Markov random fields

Factorization



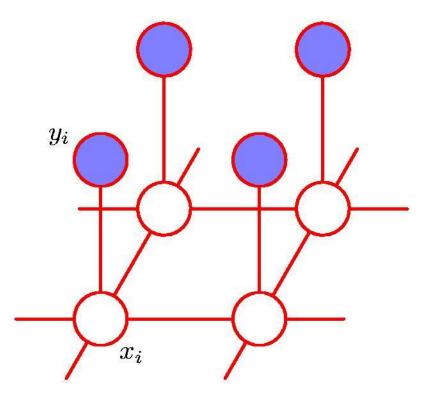
Maximal Clique

 $p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C})$

 $Z = \sum \prod \psi_C(\mathbf{x}_C)$ $\mathbf{x} \quad C$

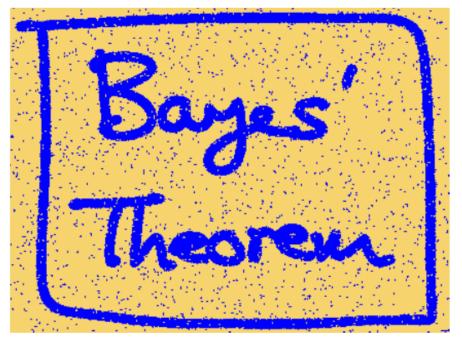
M K-state variables $\rightarrow K^M$ terms in Z

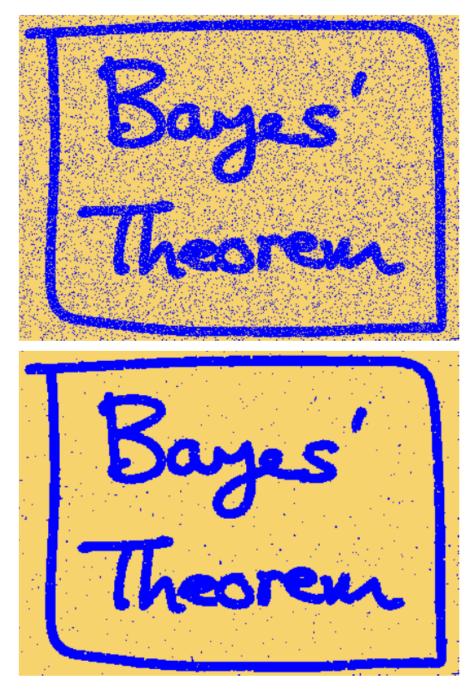
Illustration: Image De-Noising



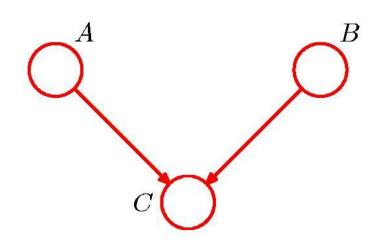
$$p(\mathbf{x}, \mathbf{y}) = \frac{1}{Z} \exp\{-E(\mathbf{x}, \mathbf{y})\}$$
$$\mathcal{X}_{i} \in \left\{-1, +1\right\}$$

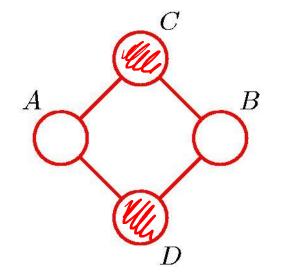
$$E(\mathbf{x}, \mathbf{y}) = h \sum_{i} x_{i} - \beta \sum_{\{i,j\}} x_{i} x_{j}$$
$$-\eta \sum_{i} x_{i} y_{i}$$





Directed versus Undirected





8. Factor Graphs

Factorization

Directed graphs:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathrm{pa}_k)$$

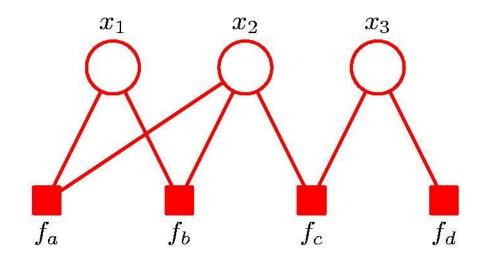
Undirected graphs:

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$$

Both have the form of products of factors:

$$p(\mathbf{x}) = \prod f_s(\mathbf{x}_s)$$

Factor Graphs

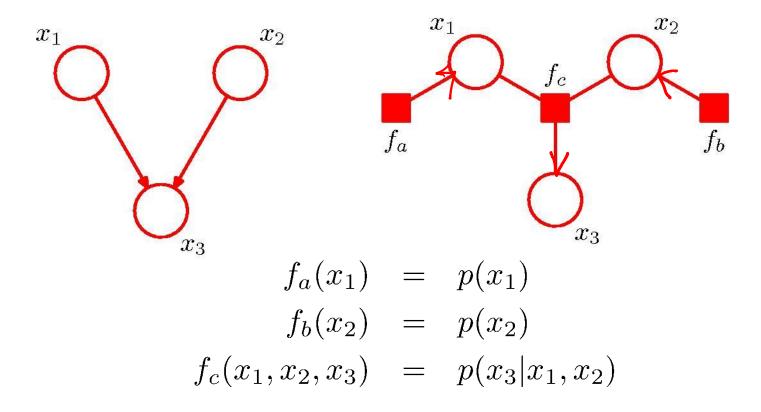


 $p(\mathbf{x}) = f_a(x_1, x_2) f_b(x_1, x_2) f_c(x_2, x_3) f_d(x_3)$

$$p(\mathbf{x}) = \prod f_s(\mathbf{x}_s)$$

From Directed Graph to Factor Graph

 $p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3|x_1, x_2)$

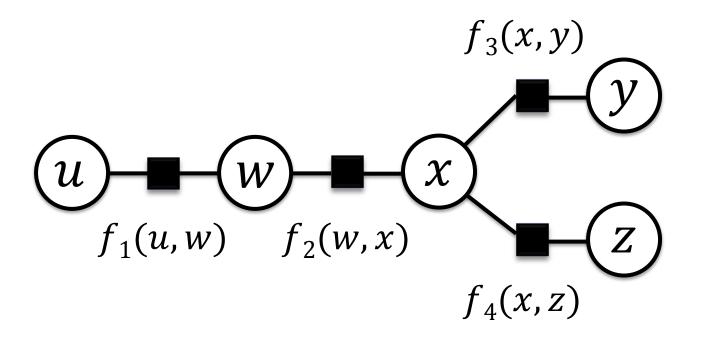


9. Inference

Efficient inference

$$\sum_{x} \sum_{y} xy = x_1y_1 + x_2y_1 + x_1y_2 + x_2y_2$$
$$= (x_1 + x_2)(y_1 + y_2)$$

The Sum-Product Algorithm



$$u = w = x$$

$$f_{3}(x,y) = y$$

$$f_{1}(u,w) = x$$

$$f_{2}(w,x) = z$$

$$f_{4}(x,z)$$

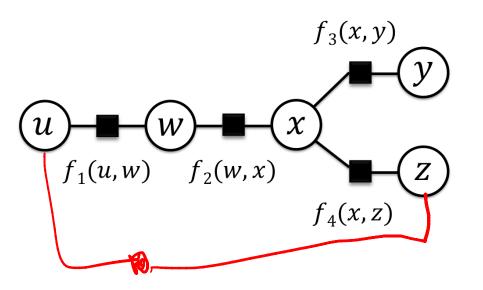
$$M_{f_{2}\rightarrow w} = x$$

$$f_{2}(w,x) = z$$

$$f_{2}(w,x) = z$$

$$f_{3}(x,y) = z$$

$$f_{3}(x,y)$$



The Sum-Product Algorithm

Three update equations

$$p(x) = \prod_{f \in F_x} m_{f \to x}(x)$$

$$m_{f \to x_1}(x_1) = \sum_{x_2} \sum_{x_3} \cdots \sum_{x_n} f(x_1, x_2, x_3, \dots) \prod_{i>1} m_{x_i \to f}(x_i)$$

$$m_{x \to f}(x) = \prod_{f_j \in F_x \setminus \{f\}} m_{f_j \to x}(x)$$

Message schedule from root to leaves and back One message in each direction on each link

What if the graph is not a tree?

Condition on variables to break loops

– cut-set conditioning (exact)

Transform graph into tree of composite nodes

- junction tree algorithm (exact)

Approximate: keep iterating the messages:

– loopy belief propagation (approximate)

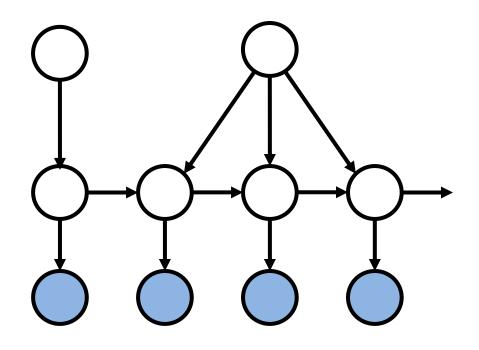
What if the messages are intractable?

True distribution

Monte Carlo

Variational Message Passing Expectation propagation

Learning is just inference!

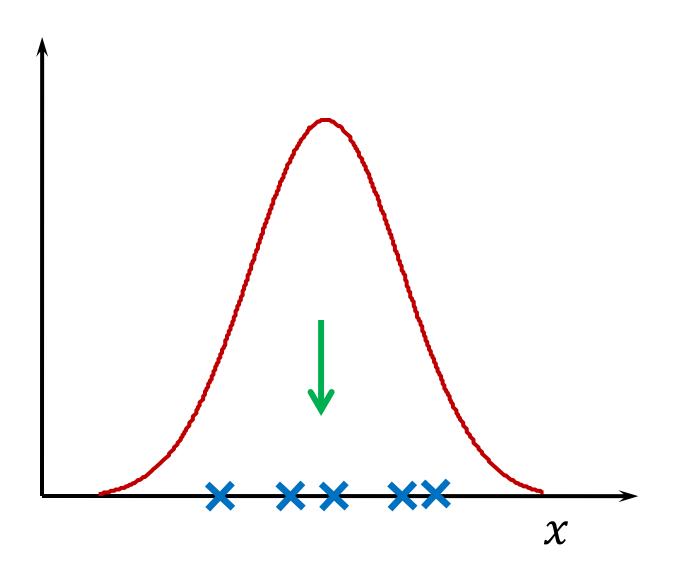


10. Example: Kalman filter

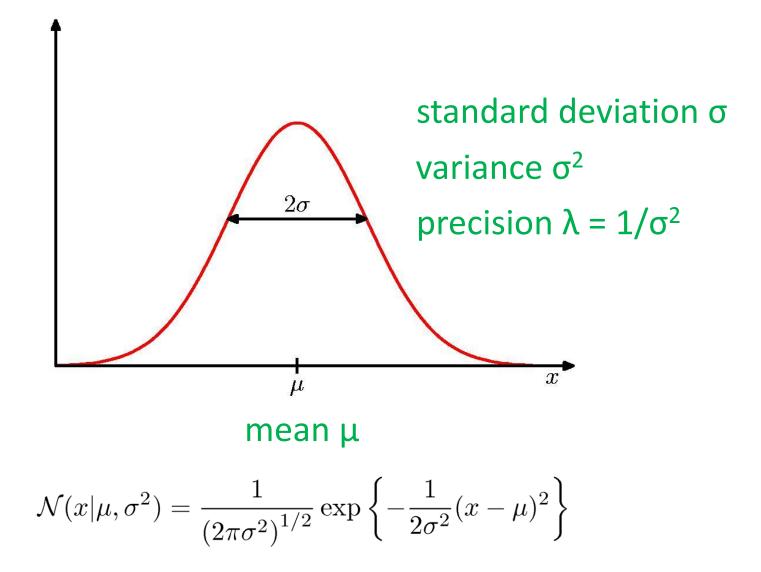
Hand location

Noisy position sensor

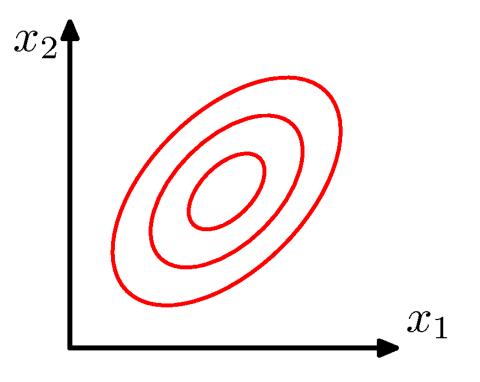
Finding the true location



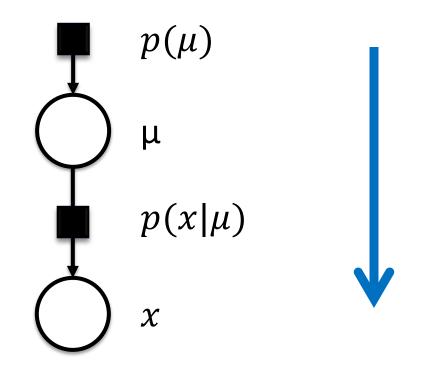
The Gaussian distribution



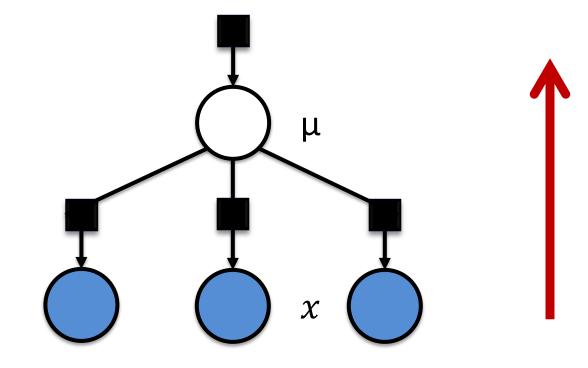
The multi-dimensional Gaussian



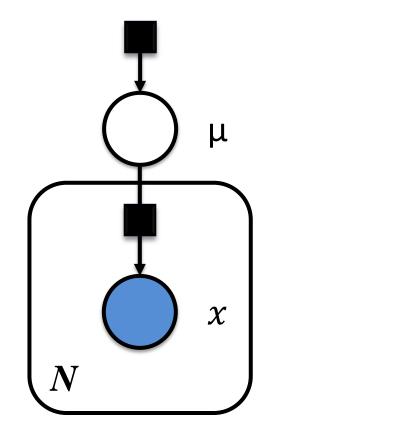
Learning the mean

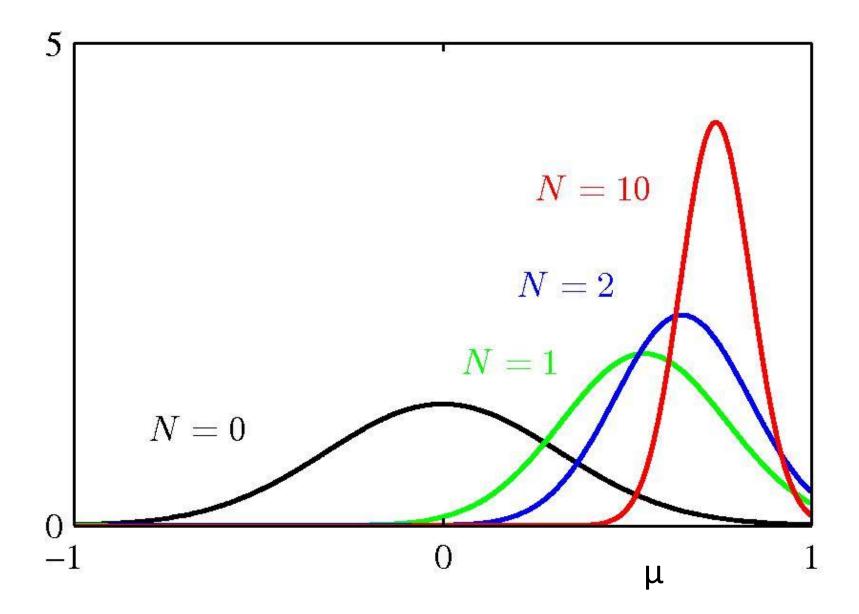


Learning the mean



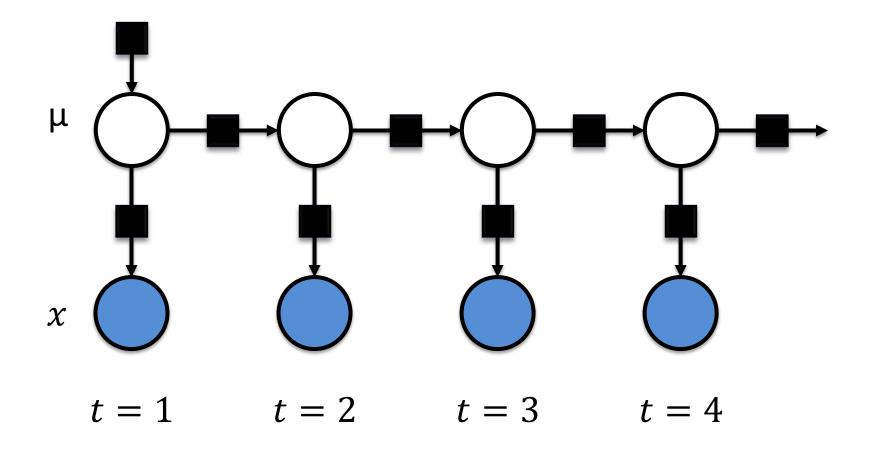
Plates



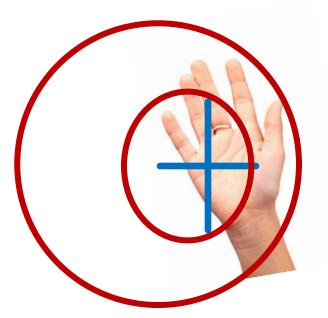


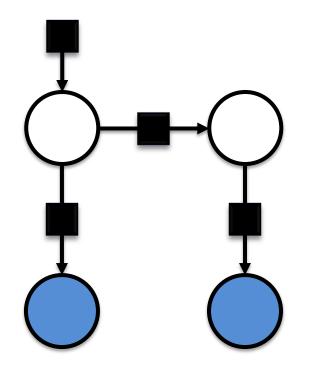
Hand tracking

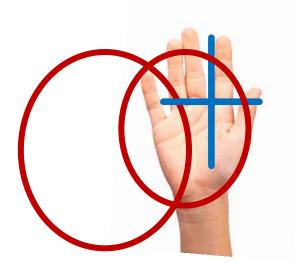
Noisy position sensor and moving hand

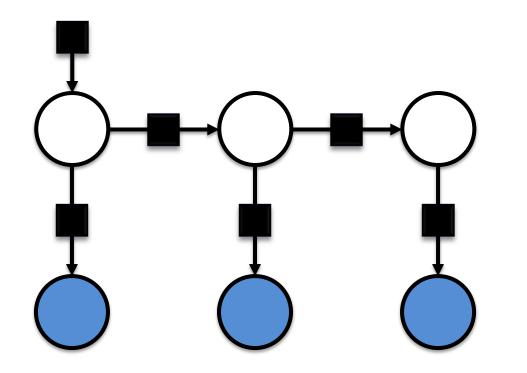


The Kalman filter (The hidden Markov model)

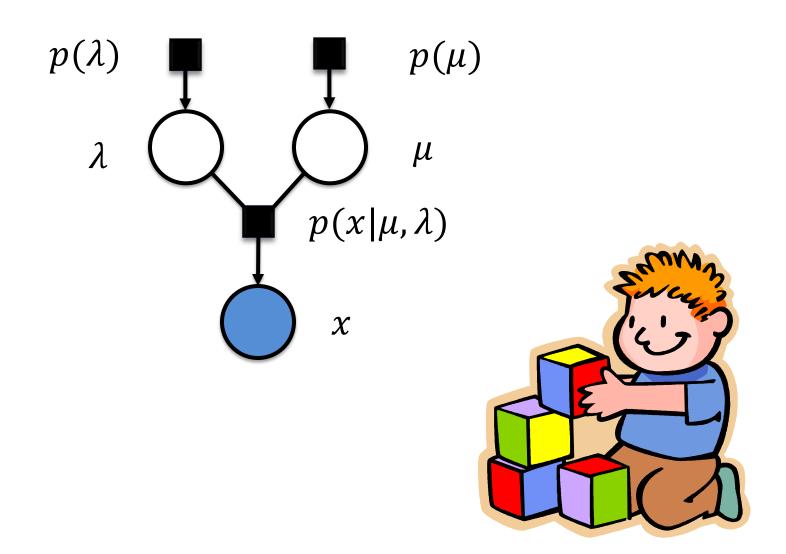






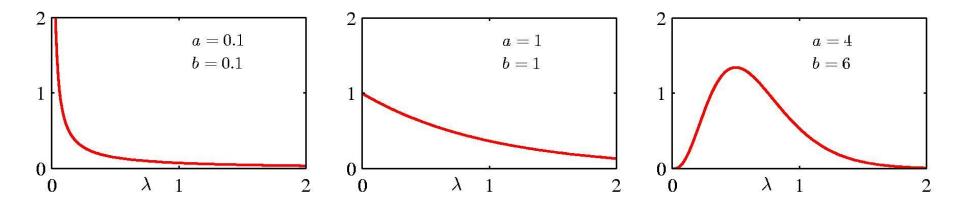


What about the noise level?



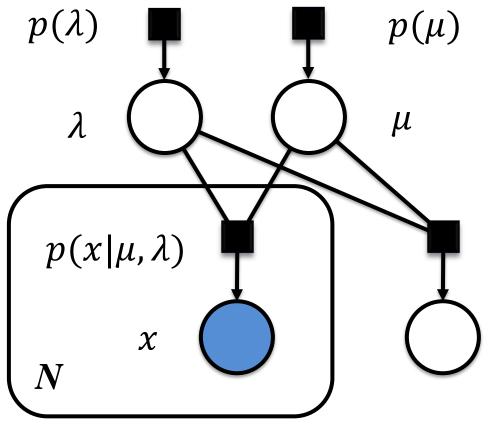
The gamma distribution

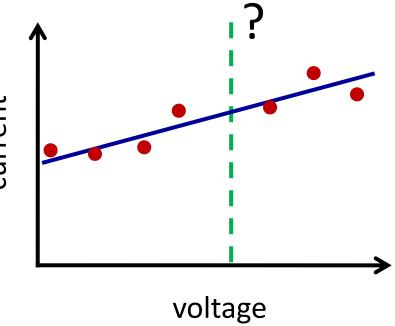
$$\operatorname{Gam}(\lambda|a,b) = \frac{1}{\Gamma(a)} b^a \lambda^{a-1} \exp(-b\lambda)$$



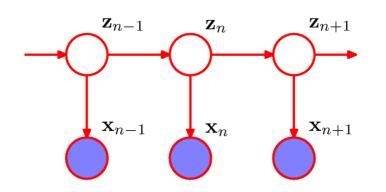
An example of a *conjugate prior*

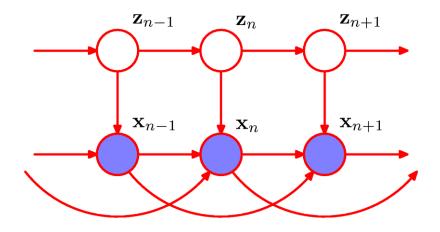
Predictions

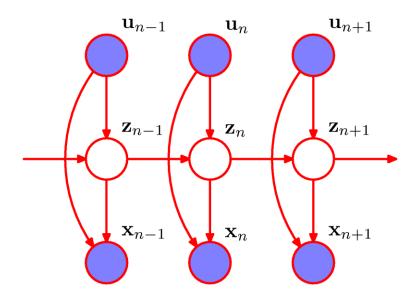


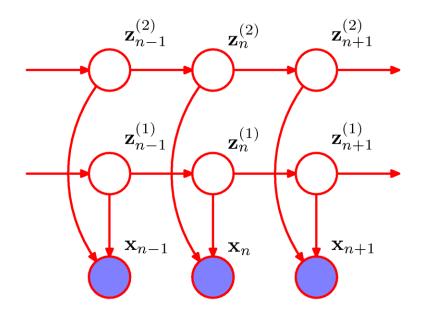


current









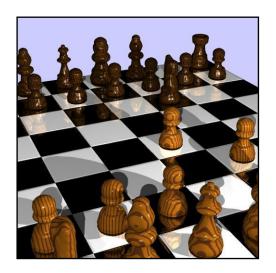
11. Case Study: *TrueSkill*™

*TrueSkill*TM

Ralf Herbrich, Tom Minka, and Thore Graepel (NIPS, 2007)

International standard for chess grading A single rating for each player Limitations:

- not applicable to more than two players
- not applicable to team games

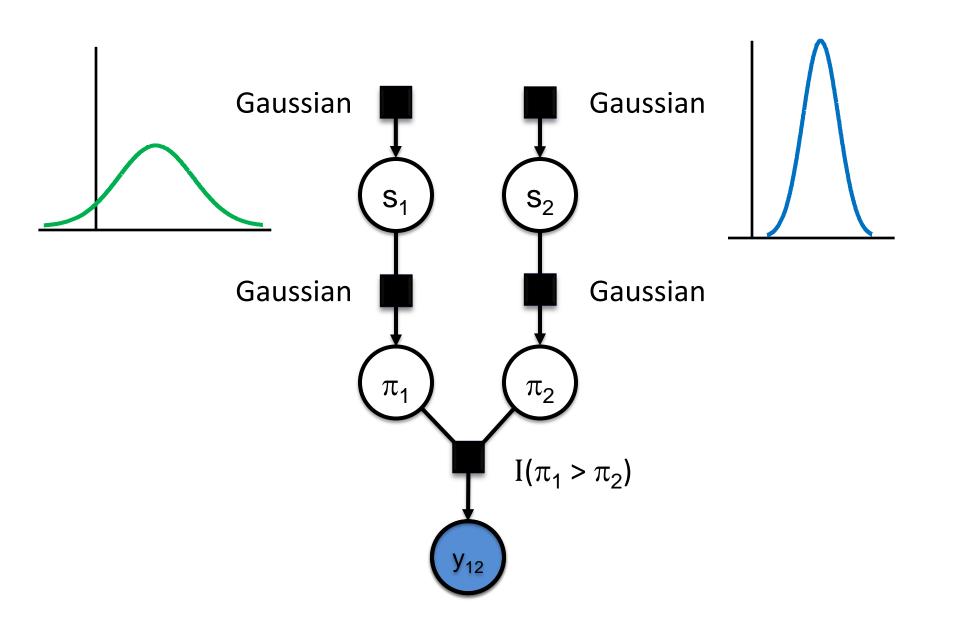


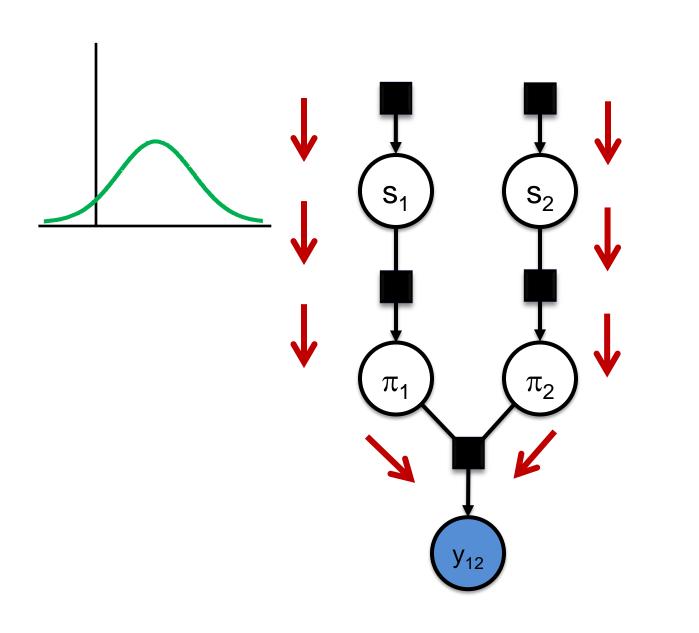
Stages of MBML

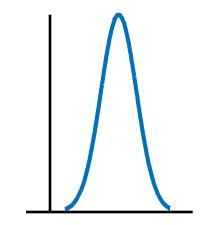
- 1. Build a *model*: joint probability distribution of all of the relevant variables (e.g. as a graph)
- 2. Incorporate the *observed* data
- 3. Compute the distributions over the desired variables: *inference*

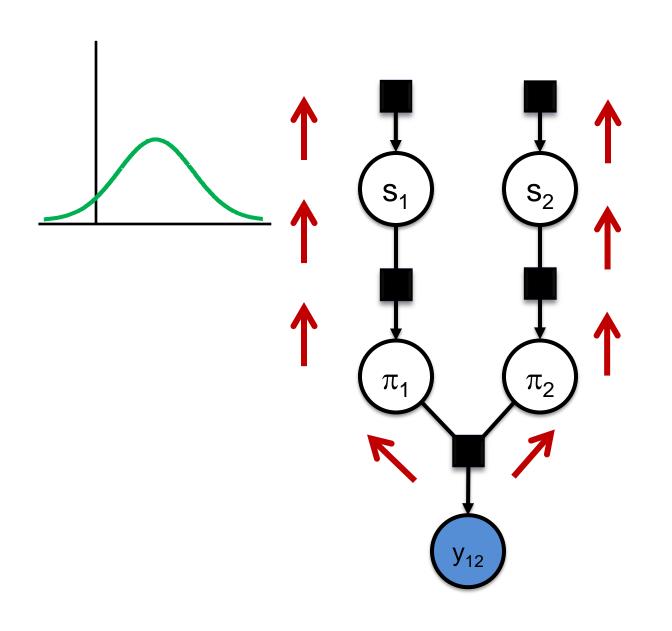
Iterate 2 and 3 in real-time applications

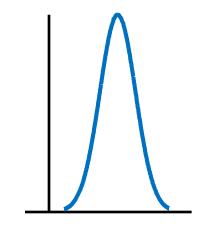
Extend model as required

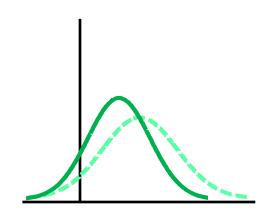


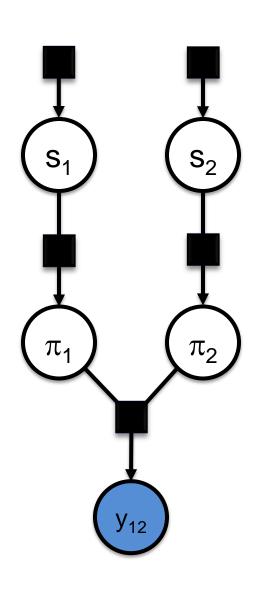


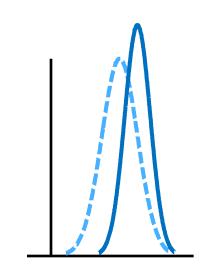




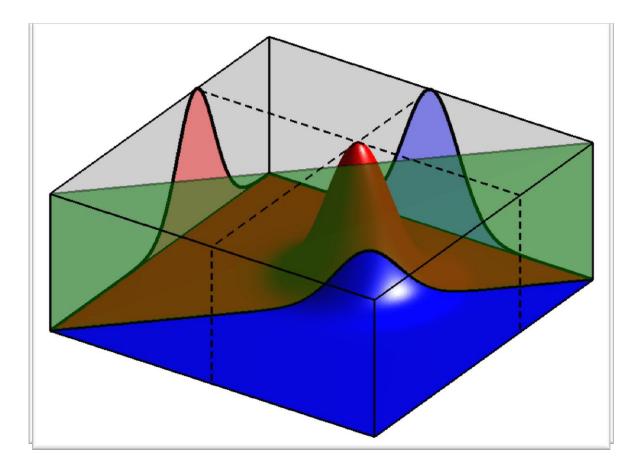




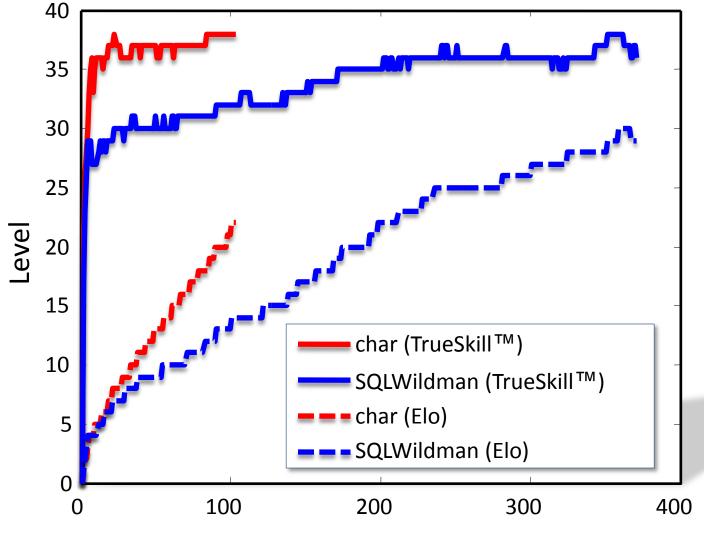




Expectation propagation (EP)



Convergence



Number of Games

13. Probabilistic Programming

A representation language for probabilistic models.

Takes C# and adds support for:

random variables

constraints on variables

inference

Can be embedded in ordinary C# to allow integration of deterministic + stochastic code

Random variables

Normal variables have a fixed single value

int length=6

Random variables have a probability distribution

int length = random(Uniform(0,10))

Constraints

• Constraints on random variables

```
constrain(visible==true)
constrain(length==4)
```

```
constrain(length>0)
```

constrain(i==j)

Inference

Compute posterior distribution

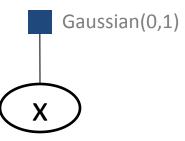
int i = random(Uniform(1,10)); bool b = (i*i>50); Dist bdist = infer(b); //Bernoulli(0.3)

Random variables

Probabilistic program

double x = random(Gaussian(0,1));

Graphical model

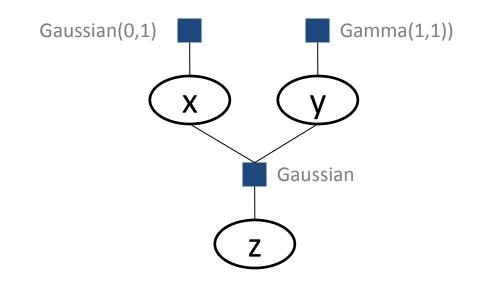


Bayesian networks

Probabilistic program

double x = random(Gaussian(0,1)); double y = random(Gamma(1,1)); double z = random(Gaussian(x,y));

Graphical model

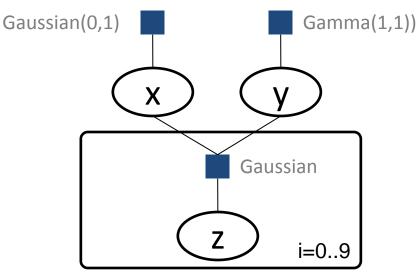


Loops \rightarrow plates

Probabilistic program

```
double x = random(Gaussian(0,1));
double y = random(Gamma(1,1));
for(int i=0;i<10;i++) {
   double z = random(Gaussian(x,y));
}
```

Graphical model

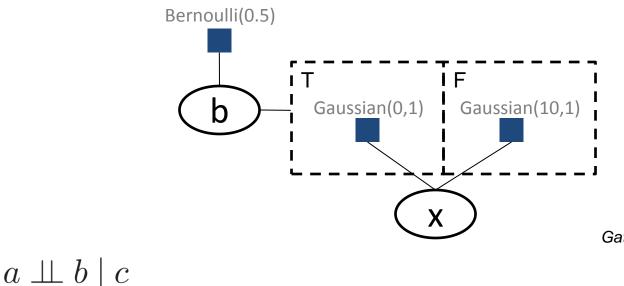


If statement \rightarrow gates

Probabilistic program

```
bool b = random(Bernoulli(0.5)); double x;
if (b) {
  x = random(Gaussian(0,1));
} else {
  x = random(Gaussian(10,1));
}
```

Graphical model



Gates (Minka and Winn, NIPS 2008)

Other language features

Probabilistic program

- Functions/recursion
- Indexing
- Jagged arrays
- Mutation: x=x+1
- Objects
- ...

Graphical model

No common equivalent

Sampling interpretation

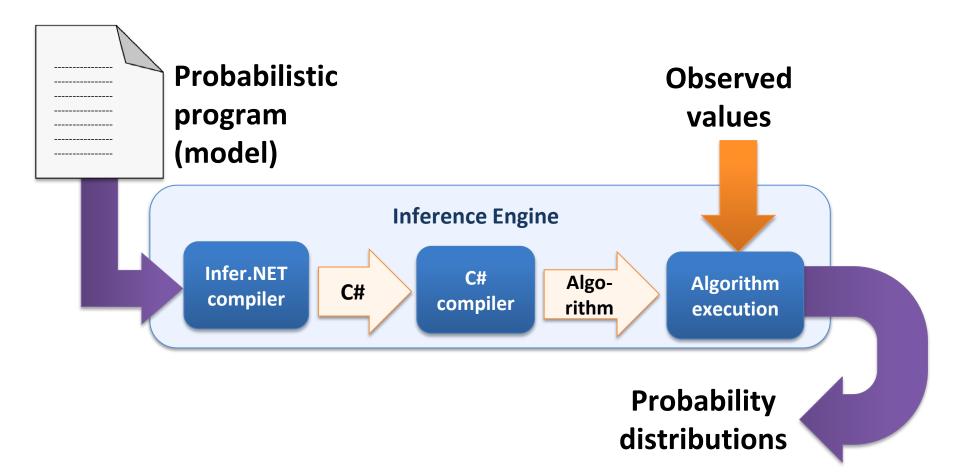
Imagine running program many times, where

- random (dist) draws a random number from dist
- constrain(b) stops the run if b is not true
- infer (x) accumulates the value of x into memory

http://research.microsoft.com/infernet

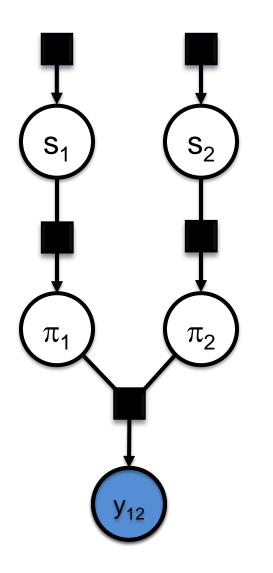
John Winn, Tom Minka, John Guiver, et al.

How Infer.NET works



Standard models supported

Mixture models Factor analysis / PCA / ICA Logistic regression **Discrete Bayesian networks** Hidden Markov models **Ranking models** Kalman filters **Hierarchical models**



```
// model variables
Variable<double> skill1, skill2;
Variable<double> performance1, performance2;
Gaussian skillPosterior1, skillPosterior2;
```

// model

```
skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);
skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);
```

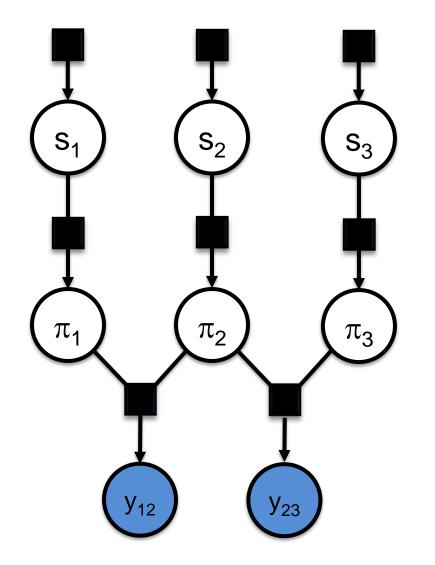
```
performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);
performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta);
```

```
Variable.ConstrainPositive(performance1 - performance2);
```

```
// infer new posterior skills
InferenceEngine engine = new InferenceEngine();
```

```
skillPosterior1 = engine.Infer<Gaussian>(skill1);
skillPosterior2 = engine.Infer<Gaussian>(skill2);
```

Extension to Multiple players



```
// model variables
Variable<double> skill1, skill2, skill3;
Variable<double> performance1, performance2, performance3;
Gaussian skillPosterior1,skillPosterior2, skillPosterior3;
```

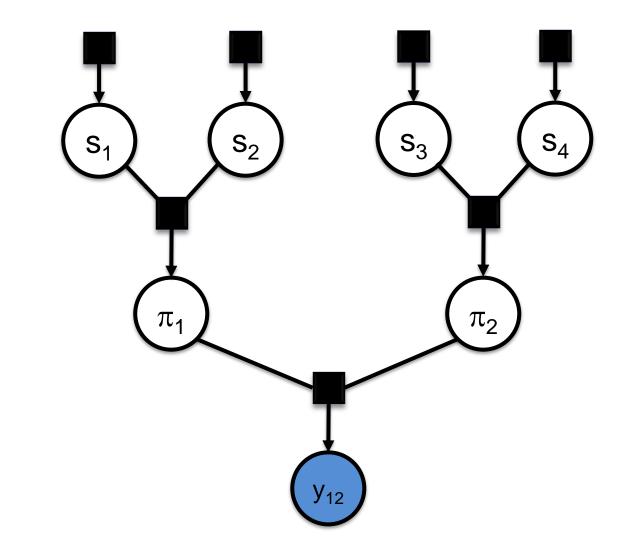
// model
skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);
skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);
skill3 = Variable.GaussianFromMeanAndPrecision(0, 1);

```
performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);
performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta);
performance3 = Variable.GaussianFromMeanAndPrecision(skill3, beta);
```

```
Variable.ConstrainPositive(performance1 - performance2);
Variable.ConstrainPositive(performance2 - performance3);
```

```
// infer new posterior skills
InferenceEngine engine = new InferenceEngine();
skillPosterior1 = engine.Infer<Gaussian>(skill1);
skillPosterior2 = engine.Infer<Gaussian>(skill2);
skillPosterior3 = engine.Infer<Gaussian>(skill3);
```

Extension to Teams



```
// model variables
Variable<double> skill1, skill2, skill3, skill4;
Variable<double> performance1, performance2 , performance3, performance4;
Gaussian skillPosterior1, skillPosterior2, skillPosterior3, skillPosterior4;
```

```
// model
```

```
skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);
skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);
```

skill3 = Variable.GaussianFromMeanAndPrecision(0, 1);

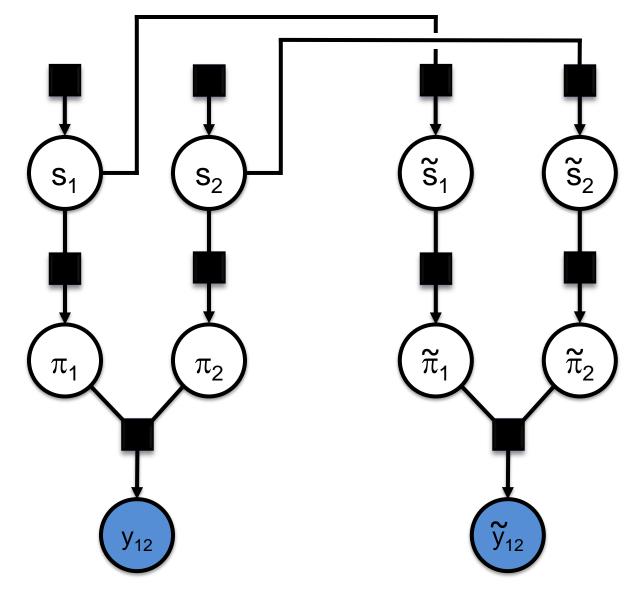
skill4 = Variable.GaussianFromMeanAndPrecision(0, 1);

```
performance1 = Variable.GaussianFromMeanAndPrecision(skill1 + skill2, beta);
performance2 = Variable.GaussianFromMeanAndPrecision(skill3 + skill4, beta);
```

Variable.ConstrainPositive(performance1 - performance2);

```
// infer new posterior skills
InferenceEngine engine = new InferenceEngine();
skillPosterior1 = engine.Infer<Gaussian>(skill1);
skillPosterior2 = engine.Infer<Gaussian>(skill2);
skillPosterior3 = engine.Infer<Gaussian>(skill3);
skillPosterior4 = engine.Infer<Gaussian>(skill4);
```

*TrueSkill*TM through time



```
// model variables
Variable<double> skill1, skill2;
Variable<double> performance1, performance2;
Gaussian skillPosterior1, skillPosterior2;
```

```
// model
skill1 = Variable.GaussianFromMeanAndPrecision(oldskill1, alpha);
skill2 = Variable.GaussianFromMeanAndPrecision(oldskill2, alpha);
```

```
performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);
performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta);
```

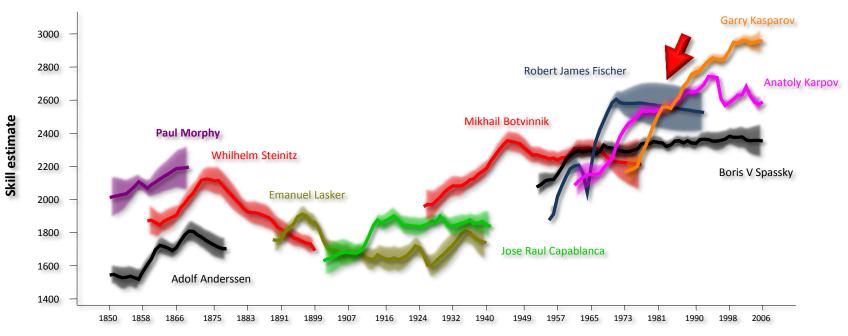
```
Variable.ConstrainPositive(performance1 - performance2);
```

```
// infer new posterior skills
InferenceEngine engine = new InferenceEngine();
skillPosterior1 = engine.Infer<Gaussian>(skill1);
```

```
skillPosterior2 = engine.Infer<Gaussian>(skill2);
```

ChessBase Analysis: 1850 - 2006

3.5M game outcomes20 million variables (200,000 players in each year of lifetime + latent variables)40 million factors



DARPA ENVISIONS THE FUTURE OF MACHINE LEARNING

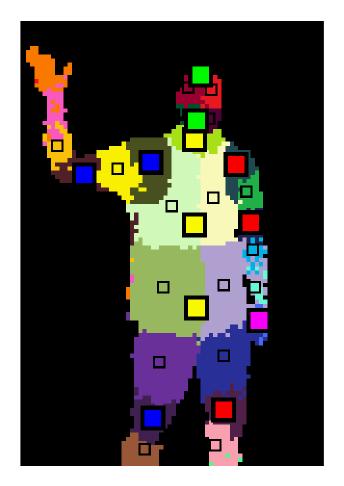
March 19, 2013

Automated tools aim to make it easier to teach a computer than to program it

Machine learning – the ability of computers to understand data, manage results, and infer insights from uncertain information – is the force behind many recent revolutions in computing. Email spam filters, smartphone personal assistants and self-driving vehicles are all based on research advances in machine learning. Unfortunately, even as the demand for these capabilities is accelerating, every new application requires a Herculean effort. Even a team of specially-trained machine learning experts makes only painfully slow progress due to the lack of tools to build these systems.

The Probabilistic Programming for Advanced Machine Learning (PPAML) program was launched to address this challenge. Probabilistic programming is a new programming paradigm for managing uncertain information. By incorporating it into machine learning, PPAML seeks to greatly increase the number of people who can successfully build machine learning applications and make machine learning experts radically more

Any questions?



Thank you!