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1. Introduction 



Traditional machine learning 

logistic regression 

neural networks 

K-means clustering 

Gaussian mixture 

factor analysis 

principal components 

Boltzmann machines 

support vector machines 

ICA 

HMM 

Kalman filter 

deep networks 

decision trees 

RVM 

Radial basis functions 

linear regression 

Gaussian process 

Markov random field 

kernel PCA 

random forest 
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infra-red 
camera 

infra-red 
emitter 
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(w1, w2, … wN) 



Fast depth image features 

Depth comparisons: 

– f(xi ; Δ) = d(xi) – d(xi’) 

–  where xi’ = xi + Δ/d(xi) 

 

input 
depth 
image 

i i’ 

Δ 
i i’ 

Δ 
i 

i’ 
Δ 

i 

i’ 
Δ 





2. Model-based 
Machine Learning 



Model-based machine learning 

Traditional: 

“how do I map my problem into standard tools”? 

 

Model-based:  

“what is the model that represents my problem”?  
 

Goal: 

A single development framework which supports 

the creation of a wide range of bespoke models 



Potential benefits of MBML 

Models optimised for each new application 

Transparent functionality 

– Models expressed as compact code 

– Community of model builders 

Segregate model from training/inference code 

Newcomers learn one modelling environment 

Does the “right thing” automatically 



Intelligent software 

Goal: software that can adapt, learn, and reason 

Player skill 

Game result 

Movie preferences 

Ratings  

Words 

Ink 

Can be described by a model 



Intelligent software 

Goal: software that can adapt, learn, and reason 

Player skill 

Game result 

Movie preferences 

Ratings  

Words 

Ink 

Reasoning backwards 



3. Uncertainty 



Handling uncertainty 

We are uncertain about a player’s skill 

Each result provides relevant information 

But we are never completely certain 

How can we compute with uncertainty in a 
principled way? 

 



Uncertainty everywhere 

Which movie should the user watch next? 

Which word did the user write? 

What did the user say? 

Which web page is the user trying to find? 

Which link will user click on? 

What kind of product does the user wish to buy? 

Which gesture is the user making? 

Many others …  



Probability 

Limit of infinite number of trials 

Quantification of uncertainty 

 

 

60% 40% 



Movie Recommender Demo 

Matchbox 



Xbox Live Recommendation 

Over 50M users 

Serves more than 100M requests per day 

Spans verticals: games, TV programmes, movies 

 



4. Probabilities 



A murder mystery 

A fiendish murder has been committed 

Whodunit? 

There are two suspects: 

– the Butler 

– the Cook 

There are three possible murder weapons: 

– a butcher’s Knife 

– a Pistol 

– a fireplace Poker 



Prior distribution 

Culprit = {Butler, Cook} 

P(Culprit) 

P(Culprit = Butler) = 20% 

P(Culprit = Cook)   = 80% 

Butler has served family well for many years 
Cook hired recently, rumours of dodgy history 

This is called a factor graph 
(we’ll see why later)  

Probabilities add to 100% 



Conditional distribution 

Butler is ex-army, keeps a gun in a locked drawer 

Cook has access to lots of knives 

Butler is older and getting frail 

P(Weapon | Culprit) 



Culprit = {Butler, Cook} 

Weapon = {Pistol, Knife, Poker} 

P(Culprit) 

P(Weapon | Culprit) 

Factor graph 

Conditional 
distribution 

Prior 
distribution 



Joint distribution 

What is the probability that the Cook committed 
the murder using the Pistol? 

 

 

 

 

Likewise for the other five combinations of 
Culprit and Weapon 

P(Culprit = Cook) = 80% 

P(Weapon = Pistol | Culprit = Cook) = 5% 

P(Weapon = Pistol , Culprit = Cook) = 80% x 5% = 4% 



Joint distribution 

Product rule 𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃(𝑥) 

= 100% 

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)  



Factor graphs 

Culprit = {Butler, Cook} 

P(Culprit) 

P(Weapon | Culprit) 

Weapon = {Pistol, Knife, Poker} 

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit) 
 

Generative model 



Generative viewpoint 

Murderer Weapon 

Cook Knife 

Butler Knife 

Cook Pistol 

Cook Poker 

Cook Knife 

Butler Pistol 

Cook Poker 

Cook Knife 

Butler Pistol 

Cook Knife 

… … 



Marginal distribution of Culprit 

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

 Sum rule 



Marginal distribution of Weapon 

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

 Sum rule 



Posterior distribution 

We discover a Pistol at the scene of the crime 

This looks bad for the Butler! 

= 20% 

= 80% 



Generative viewpoint 

Murderer Weapon 

Cook Knife 

Butler Knife 

Cook Pistol 

Cook Poker 

Cook Knife 

Butler Pistol 

Cook Poker 

Cook Knife 

Butler Pistol 

Cook Knife 

… … 



Culprit 

Weapon 

Reasoning backwards 



Bayes’ theorem 

Prior – belief before making a particular obs. 

Posterior – belief after making the obs. 

Posterior is the prior for the next observation 

– Intrinsically incremental 

𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃 𝑥 = 𝑃 𝑥 𝑦 𝑃(𝑦) 

𝑃 𝑦 𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)
 

prior likelihood 

posterior 



Two views of probability 

Frequency: limit of infinite number of trials 

Bayesian: quantification of uncertainty 

 

 



The Rules of Probability 

Sum rule 

 

Product rule 

 

Bayes’ theorem 

 

Denominator 

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

 

𝑃 𝑥 = 𝑃 𝑥|𝑦)𝑃(𝑦

𝑦

 

𝑃 𝑦 𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)
 

𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃(𝑥) 





5. Directed Graphs 



Probabilistic Graphical Models 

Combine probability theory with graphs 

new insights into existing models 

framework for designing new models 

Graph-based algorithms for calculation and 
computation (c.f. Feynman diagrams in physics) 

efficient software implementation 

 



Three types of graphical model  

Directed graphs 

– useful for designing models 

Undirected graphs 

– good for some domains, e.g. computer vision 

Factor graphs 

– useful for inference and learning 



Decomposition 

Consider an arbitrary joint distribution 
 
 

By successive application of the product rule: 

 

 

 



Directed Graphs 

Arrows may indicate causal relationships 



Special cases 

Kalman filters, 
hidden Markov models 

PCA, ICA, 
factor analysis, 

linear regression, 
logistic regression, 

mixture models 



Interns, Postdocs, Researchers, Developers  

We’re hiring! 



6. Conditional 
Independence 



Conditional Independence 



Conditional Independence: Example 1 



Conditional Independence: Example 1 



Conditional Independence: Example 2 



Conditional Independence: Example 2 



Conditional Independence: Example 3 



Conditional Independence: Example 3 



D-separation 



Two coins 

Both heads 
{true, false} 

Coin 2 
{H,T} 

Coin 1 
{H,T} 

p(H) = 1/2  p(H) = 1/2  



What is the probability of two heads? 

Both heads 
{true, false} 

Coin 2 
{H,T} 

Coin 1 
{H,T} 

p(H) = 1/2  p(H) = 1/2  

Generative model 

Coin 1 T T H H 

Coin 2 T H T H 

Both heads false false false true 

p(true) = 1/4  



Reasoning backwards 

Both heads 
{true, false} 

Coin 2 
{H,T} 

Coin 1 
{H,T} 

p(H) = 1/3  p(H) = 1/3  

Coin 1 T T H H 

Coin 2 T H T H 

Both heads false false false true 

false 

Inference 



Reasoning backwards 

Both heads 
{true, false} 

Coin 2 
{H,T} 

Coin 1 
{H,T} 

p(H) = 1/2  

Coin 1 T T H H 

Coin 2 T H T H 

Both heads false false false true 

tails 

false 



Reasoning backwards 

Both heads 
{true, false} 

Coin 2 
{H,T} 

Coin 1 
{H,T} 

p(H) = 0  

Coin 1 T T H H 

Coin 2 T H T H 

Both heads false false false true 

heads 

“Explaining away” 

false 



7. Undirected Graphs 



Undirected Graphs 

Markov random fields 



Factorization 

Clique 

Maximal Clique 
M K-state variables  KM terms in Z 



Illustration: Image De-Noising  







Directed versus Undirected 



8. Factor Graphs 



Factorization 

Directed graphs: 

 

 

Undirected graphs: 

 

 

Both have the form of products of factors: 



Factor Graphs 



From Directed Graph to Factor Graph 



9. Inference 



Efficient inference 



The Sum-Product Algorithm 

𝑥 𝑢 𝑤 

𝑦 

𝑧 𝑓1(𝑢, 𝑤) 𝑓2(𝑤, 𝑥) 

𝑓4(𝑥, 𝑧) 

𝑓3(𝑥, 𝑦) 









The Sum-Product Algorithm 

Three update equations 
 
 
 
 
 
 

 

Message schedule from root to leaves and back 

One message in each direction on each link 



What if the graph is not a tree? 

Condition on variables to break loops  

– cut-set conditioning (exact) 

Transform graph into tree of composite nodes  

– junction tree algorithm (exact) 

Approximate: keep iterating the messages: 

– loopy belief propagation (approximate) 



What if the messages are intractable? 

True distribution Monte Carlo Variational Message Passing 

Expectation propagation 

⁞ 



Learning is just inference! 



10. Example: Kalman filter 



Hand location 

Noisy position sensor 



Finding the true location 

𝑥 



The Gaussian distribution 

precision λ = 1/σ2 

mean μ  

standard deviation σ 

variance σ2 



The multi-dimensional Gaussian 



Learning the mean 

𝑝(𝑥|𝜇) 

𝑝(𝜇) 

μ 

𝑥 



Learning the mean 

μ 

𝑥 



Plates 

N 

μ 

𝑥 



μ 



Noisy position sensor and 
moving hand 

Hand tracking 



μ 

𝑥 

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4 

(The hidden Markov model) 

The Kalman filter 









What about the noise level? 

𝑝(𝑥|𝜇, 𝜆) 

𝑝(𝜇) 

𝑥 

𝜆 

𝑝(𝜆) 

𝜇 



The gamma distribution 

An example of a conjugate prior 



Predictions 

𝑝(𝑥|𝜇, 𝜆) 

𝑝(𝜇) 

𝑥 

𝜆 

𝑝(𝜆) 

𝜇 

N 



“Big data” 

? 

cu
rr

en
t 

voltage 





11. Case Study: 
TrueSkill ™ 



TrueSkillTM 

Ralf Herbrich, Tom Minka, and Thore Graepel (NIPS, 2007) 



Elo 

International standard for chess grading 

A single rating for each player 

Limitations: 

– not applicable to more than two players 

– not applicable to team games 



Stages of MBML 

1. Build a model: joint probability distribution of 
all of the relevant variables (e.g. as a graph) 

2. Incorporate the observed data 

3. Compute the distributions over the desired 
variables: inference 
 

Iterate 2 and 3 in real-time applications 
 

Extend model as required 

 

 



I(1 > 2) 

Gaussian 

s1 

Gaussian 

s2 

Gaussian 

1 

Gaussian 

2 

y12 



y12 

1 2 

s1 s2 



y12 

1 2 

s1 s2 



y12 

1 2 

s1 s2 



Expectation propagation (EP) 



Convergence 
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SQLWildman (Elo) 

char (TrueSkill™) 

SQLWildman (TrueSkill™) 



13. Probabilistic 
Programming 



CSOFT 

A representation language for probabilistic models. 

Takes C# and adds support for: 

random variables 

constraints on variables 

inference  

Can be embedded in ordinary C# to allow integration of 
deterministic + stochastic code 



Random variables 

Normal variables have a fixed single value   
 

 int length=6 

    

Random variables have a probability distribution 
 

 int length = random(Uniform(0,10)) 

    



Constraints 

• Constraints on random variables 
 
 constrain(visible==true) 

 

 constrain(length==4) 

 

 constrain(length>0) 

 

 constrain(i==j) 



Inference 

Compute posterior distribution  
  
 int i = random(Uniform(1,10)); 

 

 bool b = (i*i>50); 

 

 Dist bdist = infer(b); //Bernoulli(0.3) 



Random variables 

double x = random(Gaussian(0,1)); 

Probabilistic program 

Graphical model 

x 

Gaussian(0,1) 



Bayesian networks 

double x = random(Gaussian(0,1)); 

double y = random(Gamma(1,1)); 

double z = random(Gaussian(x,y)); 

Probabilistic program 

Graphical model 

x 

Gaussian(0,1) 

z 

Gaussian 

y 

Gamma(1,1)) 



Loops → plates 

double x = random(Gaussian(0,1)); 

double y = random(Gamma(1,1)); 

for(int i=0;i<10;i++) { 

  double z = random(Gaussian(x,y)); 

} 

Probabilistic program 

Graphical model 

x 

Gaussian(0,1) 

z 

Gaussian 

y 

Gamma(1,1)) 

i=0..9 



If statement → gates 

bool b = random(Bernoulli(0.5)); double x; 

if (b) { 

  x = random(Gaussian(0,1)); 

} else { 

  x = random(Gaussian(10,1)); 

} 

Probabilistic program 

Graphical model 

b 

Bernoulli(0.5) 

x 

Gaussian(10,1) 

T 

Gaussian(0,1) 

F 

Gates (Minka and Winn, NIPS 2008) 



Other language features 

• Functions/recursion 
• Indexing 
• Jagged arrays 
• Mutation: x=x+1 
• Objects 
• ... 

Probabilistic program 

Graphical model 

No common equivalent 



Sampling interpretation 

Imagine running program many times, where 
 

– random(dist) draws a random number from dist 

– constrain(b) stops the run if b is not true 

– infer(x) accumulates the value of x into memory 

 



http://research.microsoft.com/infernet  

John Winn, Tom Minka, John Guiver, et al. 

http://research.microsoft.com/infernet


Infer.NET 
compiler 

C# 
compiler C# Algo-

rithm 

Inference Engine 

Probabilistic 
program 
(model) 

Observed 
values 

Algorithm 
execution 

Probability 
distributions 

---------------- 
---------------- 
---------------- 
---------------- 
---------------- 
---------------- 
---------------- 

How Infer.NET works 



Standard models supported 

Mixture models 

Factor analysis / PCA / ICA 

Logistic regression 

Discrete Bayesian networks 

Hidden Markov models 

Ranking models 

Kalman filters 

Hierarchical models 

…  

 



s1 s2 

1 2 

y12 



// model variables 

Variable<double> skill1, skill2; 

Variable<double> performance1, performance2; 

Gaussian skillPosterior1, skillPosterior2; 

 

// model        

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);  

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1); 

 

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta); 

performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta); 

 

Variable.ConstrainPositive(performance1 – performance2); 

 

// infer new posterior skills 

InferenceEngine engine = new InferenceEngine(); 

 

skillPosterior1 = engine.Infer<Gaussian>(skill1); 

skillPosterior2 = engine.Infer<Gaussian>(skill2); 

 

 

 



Extension to Multiple players 

y12 

1 2 

s1 s2 

3 

s3 

y23 



// model variables 

Variable<double> skill1,         skill2,          skill3; 

Variable<double> performance1,   performance2,    performance3; 

Gaussian         skillPosterior1,skillPosterior2, skillPosterior3; 

 

// model 

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1); 

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1); 

skill3 = Variable.GaussianFromMeanAndPrecision(0, 1); 

 

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta); 

performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta); 

performance3 = Variable.GaussianFromMeanAndPrecision(skill3, beta); 

 

Variable.ConstrainPositive(performance1 - performance2); 

Variable.ConstrainPositive(performance2 - performance3); 

 

// infer new posterior skills 

InferenceEngine engine = new InferenceEngine(); 

 

skillPosterior1 = engine.Infer<Gaussian>(skill1); 

skillPosterior2 = engine.Infer<Gaussian>(skill2); 

skillPosterior3 = engine.Infer<Gaussian>(skill3); 



Extension to Teams 

y12 

1 

s1 s2 

2 

s3 s4 



// model variables 

Variable<double> skill1, skill2, skill3, skill4; 

Variable<double> performance1, performance2 , performance3, performance4; 

Gaussian skillPosterior1,skillPosterior2, skillPosterior3, skillPosterior4; 

 

// model 

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1); 

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1); 

skill3 = Variable.GaussianFromMeanAndPrecision(0, 1); 

skill4 = Variable.GaussianFromMeanAndPrecision(0, 1); 

 

performance1 = Variable.GaussianFromMeanAndPrecision(skill1 + skill2, beta); 

performance2 = Variable.GaussianFromMeanAndPrecision(skill3 + skill4, beta); 

 

Variable.ConstrainPositive(performance1 - performance2); 

 

// infer new posterior skills 

InferenceEngine engine = new InferenceEngine(); 

 

skillPosterior1 = engine.Infer<Gaussian>(skill1); 

skillPosterior2 = engine.Infer<Gaussian>(skill2); 

skillPosterior3 = engine.Infer<Gaussian>(skill3); 

skillPosterior4 = engine.Infer<Gaussian>(skill4); 
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TrueSkillTM through time 
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// model variables 

Variable<double> skill1, skill2; 

Variable<double> performance1, performance2; 

Gaussian skillPosterior1, skillPosterior2; 

 

// model 

skill1 = Variable.GaussianFromMeanAndPrecision(oldskill1, alpha); 

skill2 = Variable.GaussianFromMeanAndPrecision(oldskill2, alpha); 

 

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta); 

performance2 = Variable.GaussianFromMeanAndPrecision(skill2 ,beta); 

 

Variable.ConstrainPositive(performance1 - performance2); 

 

// infer new posterior skills 

InferenceEngine engine = new InferenceEngine(); 

 

skillPosterior1 = engine.Infer<Gaussian>(skill1); 

skillPosterior2 = engine.Infer<Gaussian>(skill2); 
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ChessBase Analysis: 1850 - 2006 

3.5M game outcomes 
20 million variables (200,000 players in each year of lifetime + latent variables) 
40 million factors 





Any questions? 




