
Graphical Models

Microsoft Research Cambridge

Machine Learning Summer School 2013, Tübingen

Chris Bishop

http://research.microsoft.com/~cmbishop

Chapter 8: Graphical Models (PDF download)

http://research.microsoft.com/~cmbishop

http://research.microsoft.com/~cmbishop

http://research.microsoft.com/~cmbishop

1. Introduction

Traditional machine learning

logistic regression

neural networks

K-means clustering

Gaussian mixture

factor analysis

principal components

Boltzmann machines

support vector machines

ICA

HMM

Kalman filter

deep networks

decision trees

RVM

Radial basis functions

linear regression

Gaussian process

Markov random field

kernel PCA

random forest

http://2.bp.blogspot.com/_NcSxbK86vWU/TBuoPqPOmEI/AAAAAAAAAuQ/H9WU3IAnbVg/s1600/kinect_001.png

infra-red
camera

infra-red
emitter

http://2.bp.blogspot.com/_NcSxbK86vWU/TBuoPqPOmEI/AAAAAAAAAuQ/H9WU3IAnbVg/s1600/kinect_001.png

(w1, w2, … wN)

Fast depth image features

Depth comparisons:

– f(xi ; Δ) = d(xi) – d(xi’)

– where xi’ = xi + Δ/d(xi)

input
depth
image

i i’

Δ
i i’

Δ
i

i’
Δ

i

i’
Δ

2. Model-based
Machine Learning

Model-based machine learning

Traditional:

“how do I map my problem into standard tools”?

Model-based:

“what is the model that represents my problem”?

Goal:

A single development framework which supports

the creation of a wide range of bespoke models

Potential benefits of MBML

Models optimised for each new application

Transparent functionality

– Models expressed as compact code

– Community of model builders

Segregate model from training/inference code

Newcomers learn one modelling environment

Does the “right thing” automatically

Intelligent software

Goal: software that can adapt, learn, and reason

Player skill

Game result

Movie preferences

Ratings

Words

Ink

Can be described by a model

Intelligent software

Goal: software that can adapt, learn, and reason

Player skill

Game result

Movie preferences

Ratings

Words

Ink

Reasoning backwards

3. Uncertainty

Handling uncertainty

We are uncertain about a player’s skill

Each result provides relevant information

But we are never completely certain

How can we compute with uncertainty in a
principled way?

Uncertainty everywhere

Which movie should the user watch next?

Which word did the user write?

What did the user say?

Which web page is the user trying to find?

Which link will user click on?

What kind of product does the user wish to buy?

Which gesture is the user making?

Many others …

Probability

Limit of infinite number of trials

Quantification of uncertainty

60% 40%

Movie Recommender Demo

Matchbox

Xbox Live Recommendation

Over 50M users

Serves more than 100M requests per day

Spans verticals: games, TV programmes, movies

4. Probabilities

A murder mystery

A fiendish murder has been committed

Whodunit?

There are two suspects:

– the Butler

– the Cook

There are three possible murder weapons:

– a butcher’s Knife

– a Pistol

– a fireplace Poker

Prior distribution

Culprit = {Butler, Cook}

P(Culprit)

P(Culprit = Butler) = 20%

P(Culprit = Cook) = 80%

Butler has served family well for many years
Cook hired recently, rumours of dodgy history

This is called a factor graph
(we’ll see why later)

Probabilities add to 100%

Conditional distribution

Butler is ex-army, keeps a gun in a locked drawer

Cook has access to lots of knives

Butler is older and getting frail

P(Weapon | Culprit)

Culprit = {Butler, Cook}

Weapon = {Pistol, Knife, Poker}

P(Culprit)

P(Weapon | Culprit)

Factor graph

Conditional
distribution

Prior
distribution

Joint distribution

What is the probability that the Cook committed
the murder using the Pistol?

Likewise for the other five combinations of
Culprit and Weapon

P(Culprit = Cook) = 80%

P(Weapon = Pistol | Culprit = Cook) = 5%

P(Weapon = Pistol , Culprit = Cook) = 80% x 5% = 4%

Joint distribution

Product rule 𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃(𝑥)

= 100%

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

Factor graphs

Culprit = {Butler, Cook}

P(Culprit)

P(Weapon | Culprit)

Weapon = {Pistol, Knife, Poker}

P(Weapon, Culprit) = P(Weapon | Culprit) P(Culprit)

Generative model

Generative viewpoint

Murderer Weapon

Cook Knife

Butler Knife

Cook Pistol

Cook Poker

Cook Knife

Butler Pistol

Cook Poker

Cook Knife

Butler Pistol

Cook Knife

… …

Marginal distribution of Culprit

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

 Sum rule

Marginal distribution of Weapon

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

 Sum rule

Posterior distribution

We discover a Pistol at the scene of the crime

This looks bad for the Butler!

= 20%

= 80%

Generative viewpoint

Murderer Weapon

Cook Knife

Butler Knife

Cook Pistol

Cook Poker

Cook Knife

Butler Pistol

Cook Poker

Cook Knife

Butler Pistol

Cook Knife

… …

Culprit

Weapon

Reasoning backwards

Bayes’ theorem

Prior – belief before making a particular obs.

Posterior – belief after making the obs.

Posterior is the prior for the next observation

– Intrinsically incremental

𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃 𝑥 = 𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃 𝑦 𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)

prior likelihood

posterior

Two views of probability

Frequency: limit of infinite number of trials

Bayesian: quantification of uncertainty

The Rules of Probability

Sum rule

Product rule

Bayes’ theorem

Denominator

𝑃 𝑥 = 𝑃 𝑥, 𝑦

𝑦

𝑃 𝑥 = 𝑃 𝑥|𝑦)𝑃(𝑦

𝑦

𝑃 𝑦 𝑥 =
𝑃 𝑥 𝑦 𝑃(𝑦)

𝑃(𝑥)

𝑃 𝑥, 𝑦 = 𝑃 𝑦 𝑥 𝑃(𝑥)

5. Directed Graphs

Probabilistic Graphical Models

Combine probability theory with graphs

new insights into existing models

framework for designing new models

Graph-based algorithms for calculation and
computation (c.f. Feynman diagrams in physics)

efficient software implementation

Three types of graphical model

Directed graphs

– useful for designing models

Undirected graphs

– good for some domains, e.g. computer vision

Factor graphs

– useful for inference and learning

Decomposition

Consider an arbitrary joint distribution

By successive application of the product rule:

Directed Graphs

Arrows may indicate causal relationships

Special cases

Kalman filters,
hidden Markov models

PCA, ICA,
factor analysis,

linear regression,
logistic regression,

mixture models

Interns, Postdocs, Researchers, Developers

We’re hiring!

6. Conditional
Independence

Conditional Independence

Conditional Independence: Example 1

Conditional Independence: Example 1

Conditional Independence: Example 2

Conditional Independence: Example 2

Conditional Independence: Example 3

Conditional Independence: Example 3

D-separation

Two coins

Both heads
{true, false}

Coin 2
{H,T}

Coin 1
{H,T}

p(H) = 1/2 p(H) = 1/2

What is the probability of two heads?

Both heads
{true, false}

Coin 2
{H,T}

Coin 1
{H,T}

p(H) = 1/2 p(H) = 1/2

Generative model

Coin 1 T T H H

Coin 2 T H T H

Both heads false false false true

p(true) = 1/4

Reasoning backwards

Both heads
{true, false}

Coin 2
{H,T}

Coin 1
{H,T}

p(H) = 1/3 p(H) = 1/3

Coin 1 T T H H

Coin 2 T H T H

Both heads false false false true

false

Inference

Reasoning backwards

Both heads
{true, false}

Coin 2
{H,T}

Coin 1
{H,T}

p(H) = 1/2

Coin 1 T T H H

Coin 2 T H T H

Both heads false false false true

tails

false

Reasoning backwards

Both heads
{true, false}

Coin 2
{H,T}

Coin 1
{H,T}

p(H) = 0

Coin 1 T T H H

Coin 2 T H T H

Both heads false false false true

heads

“Explaining away”

false

7. Undirected Graphs

Undirected Graphs

Markov random fields

Factorization

Clique

Maximal Clique
M K-state variables  KM terms in Z

Illustration: Image De-Noising

Directed versus Undirected

8. Factor Graphs

Factorization

Directed graphs:

Undirected graphs:

Both have the form of products of factors:

Factor Graphs

From Directed Graph to Factor Graph

9. Inference

Efficient inference

The Sum-Product Algorithm

𝑥 𝑢 𝑤

𝑦

𝑧 𝑓1(𝑢, 𝑤) 𝑓2(𝑤, 𝑥)

𝑓4(𝑥, 𝑧)

𝑓3(𝑥, 𝑦)

The Sum-Product Algorithm

Three update equations

Message schedule from root to leaves and back

One message in each direction on each link

What if the graph is not a tree?

Condition on variables to break loops

– cut-set conditioning (exact)

Transform graph into tree of composite nodes

– junction tree algorithm (exact)

Approximate: keep iterating the messages:

– loopy belief propagation (approximate)

What if the messages are intractable?

True distribution Monte Carlo Variational Message Passing

Expectation propagation

⁞

Learning is just inference!

10. Example: Kalman filter

Hand location

Noisy position sensor

Finding the true location

𝑥

The Gaussian distribution

precision λ = 1/σ2

mean μ

standard deviation σ

variance σ2

The multi-dimensional Gaussian

Learning the mean

𝑝(𝑥|𝜇)

𝑝(𝜇)

μ

𝑥

Learning the mean

μ

𝑥

Plates

N

μ

𝑥

μ

Noisy position sensor and
moving hand

Hand tracking

μ

𝑥

𝑡 = 1 𝑡 = 2 𝑡 = 3 𝑡 = 4

(The hidden Markov model)

The Kalman filter

What about the noise level?

𝑝(𝑥|𝜇, 𝜆)

𝑝(𝜇)

𝑥

𝜆

𝑝(𝜆)

𝜇

The gamma distribution

An example of a conjugate prior

Predictions

𝑝(𝑥|𝜇, 𝜆)

𝑝(𝜇)

𝑥

𝜆

𝑝(𝜆)

𝜇

N

“Big data”

?

cu
rr

en
t

voltage

11. Case Study:
TrueSkill ™

TrueSkillTM

Ralf Herbrich, Tom Minka, and Thore Graepel (NIPS, 2007)

Elo

International standard for chess grading

A single rating for each player

Limitations:

– not applicable to more than two players

– not applicable to team games

Stages of MBML

1. Build a model: joint probability distribution of
all of the relevant variables (e.g. as a graph)

2. Incorporate the observed data

3. Compute the distributions over the desired
variables: inference

Iterate 2 and 3 in real-time applications

Extend model as required

I(1 > 2)

Gaussian

s1

Gaussian

s2

Gaussian

1

Gaussian

2

y12

y12

1 2

s1 s2

y12

1 2

s1 s2

y12

1 2

s1 s2

Expectation propagation (EP)

Convergence

0

5

10

15

20

25

30

35

40
Le

ve
l

0 100 200 300 400

Number of Games

char (Elo)

SQLWildman (Elo)

char (TrueSkill™)

SQLWildman (TrueSkill™)

13. Probabilistic
Programming

CSOFT

A representation language for probabilistic models.

Takes C# and adds support for:

random variables

constraints on variables

inference

Can be embedded in ordinary C# to allow integration of
deterministic + stochastic code

Random variables

Normal variables have a fixed single value

 int length=6

Random variables have a probability distribution

 int length = random(Uniform(0,10))

Constraints

• Constraints on random variables

 constrain(visible==true)

 constrain(length==4)

 constrain(length>0)

 constrain(i==j)

Inference

Compute posterior distribution

 int i = random(Uniform(1,10));

 bool b = (i*i>50);

 Dist bdist = infer(b); //Bernoulli(0.3)

Random variables

double x = random(Gaussian(0,1));

Probabilistic program

Graphical model

x

Gaussian(0,1)

Bayesian networks

double x = random(Gaussian(0,1));

double y = random(Gamma(1,1));

double z = random(Gaussian(x,y));

Probabilistic program

Graphical model

x

Gaussian(0,1)

z

Gaussian

y

Gamma(1,1))

Loops → plates

double x = random(Gaussian(0,1));

double y = random(Gamma(1,1));

for(int i=0;i<10;i++) {

 double z = random(Gaussian(x,y));

}

Probabilistic program

Graphical model

x

Gaussian(0,1)

z

Gaussian

y

Gamma(1,1))

i=0..9

If statement → gates

bool b = random(Bernoulli(0.5)); double x;

if (b) {

 x = random(Gaussian(0,1));

} else {

 x = random(Gaussian(10,1));

}

Probabilistic program

Graphical model

b

Bernoulli(0.5)

x

Gaussian(10,1)

T

Gaussian(0,1)

F

Gates (Minka and Winn, NIPS 2008)

Other language features

• Functions/recursion
• Indexing
• Jagged arrays
• Mutation: x=x+1
• Objects
• ...

Probabilistic program

Graphical model

No common equivalent

Sampling interpretation

Imagine running program many times, where

– random(dist) draws a random number from dist

– constrain(b) stops the run if b is not true

– infer(x) accumulates the value of x into memory

http://research.microsoft.com/infernet

John Winn, Tom Minka, John Guiver, et al.

http://research.microsoft.com/infernet

Infer.NET
compiler

C#
compiler C# Algo-

rithm

Inference Engine

Probabilistic
program
(model)

Observed
values

Algorithm
execution

Probability
distributions

How Infer.NET works

Standard models supported

Mixture models

Factor analysis / PCA / ICA

Logistic regression

Discrete Bayesian networks

Hidden Markov models

Ranking models

Kalman filters

Hierarchical models

…

s1 s2

1 2

y12

// model variables

Variable<double> skill1, skill2;

Variable<double> performance1, performance2;

Gaussian skillPosterior1, skillPosterior2;

// model

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);

performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta);

Variable.ConstrainPositive(performance1 – performance2);

// infer new posterior skills

InferenceEngine engine = new InferenceEngine();

skillPosterior1 = engine.Infer<Gaussian>(skill1);

skillPosterior2 = engine.Infer<Gaussian>(skill2);

Extension to Multiple players

y12

1 2

s1 s2

3

s3

y23

// model variables

Variable<double> skill1, skill2, skill3;

Variable<double> performance1, performance2, performance3;

Gaussian skillPosterior1,skillPosterior2, skillPosterior3;

// model

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill3 = Variable.GaussianFromMeanAndPrecision(0, 1);

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);

performance2 = Variable.GaussianFromMeanAndPrecision(skill2, beta);

performance3 = Variable.GaussianFromMeanAndPrecision(skill3, beta);

Variable.ConstrainPositive(performance1 - performance2);

Variable.ConstrainPositive(performance2 - performance3);

// infer new posterior skills

InferenceEngine engine = new InferenceEngine();

skillPosterior1 = engine.Infer<Gaussian>(skill1);

skillPosterior2 = engine.Infer<Gaussian>(skill2);

skillPosterior3 = engine.Infer<Gaussian>(skill3);

Extension to Teams

y12

1

s1 s2

2

s3 s4

// model variables

Variable<double> skill1, skill2, skill3, skill4;

Variable<double> performance1, performance2 , performance3, performance4;

Gaussian skillPosterior1,skillPosterior2, skillPosterior3, skillPosterior4;

// model

skill1 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill2 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill3 = Variable.GaussianFromMeanAndPrecision(0, 1);

skill4 = Variable.GaussianFromMeanAndPrecision(0, 1);

performance1 = Variable.GaussianFromMeanAndPrecision(skill1 + skill2, beta);

performance2 = Variable.GaussianFromMeanAndPrecision(skill3 + skill4, beta);

Variable.ConstrainPositive(performance1 - performance2);

// infer new posterior skills

InferenceEngine engine = new InferenceEngine();

skillPosterior1 = engine.Infer<Gaussian>(skill1);

skillPosterior2 = engine.Infer<Gaussian>(skill2);

skillPosterior3 = engine.Infer<Gaussian>(skill3);

skillPosterior4 = engine.Infer<Gaussian>(skill4);

y12

1 2

s1 s2

y12

1 2

s1 s2

TrueSkillTM through time

~ ~

~ ~

~

// model variables

Variable<double> skill1, skill2;

Variable<double> performance1, performance2;

Gaussian skillPosterior1, skillPosterior2;

// model

skill1 = Variable.GaussianFromMeanAndPrecision(oldskill1, alpha);

skill2 = Variable.GaussianFromMeanAndPrecision(oldskill2, alpha);

performance1 = Variable.GaussianFromMeanAndPrecision(skill1, beta);

performance2 = Variable.GaussianFromMeanAndPrecision(skill2 ,beta);

Variable.ConstrainPositive(performance1 - performance2);

// infer new posterior skills

InferenceEngine engine = new InferenceEngine();

skillPosterior1 = engine.Infer<Gaussian>(skill1);

skillPosterior2 = engine.Infer<Gaussian>(skill2);

1850 1858 1866 1875 1883 1891 1899 1907 1916 1924 1932 1940 1949 1957 1965 1973 1981 1990 1998 2006

1400

1600

1800

2000

2200

2400

2600

2800

3000

Adolf Anderssen

Mikhail Botvinnik

Jose Raul Capablanca

Robert James Fischer
Anatoly Karpov

Garry Kasparov

Emanuel Lasker

Paul Morphy

Boris V Spassky

Whilhelm Steinitz

Year

Sk
ill

 e
st

im
at

e

ChessBase Analysis: 1850 - 2006

3.5M game outcomes
20 million variables (200,000 players in each year of lifetime + latent variables)
40 million factors

Any questions?

