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Probabilistic Modelling

e A model describes data that one could observe from a system

e If we use the mathematics of probability theory to express all
forms of uncertainty and noise associated with our model...

e ...then inverse probability (i.e. Bayes rule) allows us to infer
unknown quantities, adapt our models, make predictions and
learn from data.



Why Bayesian Nonparametrics...?

e Why Bayesian?

Simplicity (of the framework)

e Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

Parametric models assume some finite set of parameters 6. Given the parameters,
future predictions, x, are independent of the observed data, D:

P(z|0,D) = P(x|0)
therefore 6 capture everything there is to know about the data.

So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional 6. Usually we think of 6 as a function.

The amount of information that # can capture about the data D can grow as
the amount of data grows. This makes them more flexible.




Why nonparametrics?

o flexibility

e better predictive performance

e more realistic

Almost all successful methods in machine learning are essentially nonparametrid'}

e kernel methods / SVM / GP
e deep networks / large neural networks

e k-nearest neighbors, ...

Lor highly scalable!



Examples of non-parametric models

Bayesian nonparametrics has many uses.

Parametric Non-parametric Process Application
polynomial regression Gaussian processes GP function approx.
logistic regression Gaussian process classifiers GP classification
mixture models, k-means Dirichlet process mixtures DP / CRP  clustering
hidden Markov models infinite HMMs HDP time series
factor analysis/pPCA/PMF infinite latent factor models BP / IBP  feature discovery




Gaussian and Dirichlet Processes

e Gaussian processes define a distribution on functions

where 1 is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional”’ Gaussians

e Dirichlet processes define a distribution on distributions

G ~ DP(lGo, Oé)

where o« > 0 is a concentration parameter, and G is the base measure.
We can think of DPs as “infinite-dimensional”’ Dirichlet distributions.

Note that both f and G are infinite dimensional objects.
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Dirichlet Distribution

The Dirichlet distribution is a distribution on the K-dim probability simplex.

Let p be a K-dimensional vector s.t. Vj : p; > 0 and Zlepj =1

P(p|la) = Dir(ay,...,akx) =

where the first term is a normalization constant’ and E(p;) = a;/(>", ax)

The Dirichlet is conjugate to the multinomial distribution. Let

c|p ~ Multinomial(-|p)

That is, P(c = j|p) = pj. Then the posterior is also Dirichlet:

P(c=jlp)P(p|c)
P(c = jla)

P(plc = j,a) = = Dir(c)

wherea;:aj—l—l, and V0 # j: o) = ay

T(z) = (z — DI(z — 1) = Io° t*~Ye~tdt. Forinteger n, I'(n) = (n — 1)!




Dirichlet Distributions

Examples of Dirichlet distributions over 8 = (61, 62, 63) which can be plotted in 2D
since (93 =1- 91 — 921

Dirichlet(1,1,1) Dirichlet(2,2,2) Dirichlet(10,10,10)

.

Dirichlet(2,10,2) Dirichlet(2,2,10) Dirichlet(0.9,0.9,0.9)

5\




Dirichlet Process

Let © be a measurable space, Gy be a probability measure on O, and « a positive
real number.

A
For all (A4,... Ak) finite partitions of O,
e
e

G ~ DP(-|Go, @)

b G‘o

means that ] l
A : /2\2' @AJ, Aq Ac; /\(,

il

Az Aa R A

(G(Al), « o vy G(AK)) ~ Dir(OéGo(Al) OzGo AK

(Ferguson, 1973)



Dirichlet Process

G ~ DP(:|Gy, a) OK, but what does it look like?

Samples from a DP are discrete with probability one:

G(0) = f: 710, (6)
k=1

where g, (-) is a Dirac delta at 0, and 0, ~ Go(+).

Note: E(G) = Gy

As o« — 00, G looks more “like” Gj.



Clustering



Infinite mixture models S

(e.g. Dirichlet Process Mixtures)

Why?

e You might not believe a priori that your data comes from a finite number of
mixture components (e.g. strangely shaped clusters; heavy tails; structure at
many resolutions)

e Inflexible models (e.g. a mixture of 6 Gaussians) can yield unreasonable inferences
and predictions.

e For many kinds of data, the number of clusters might grow over time: clusters
of news stories or emails, classes of objects, etc.

e You might want your method to automatically infer the number of clusters in the
data.



Samples from a Dirichlet Process Mixture of Gaussians
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Notice that more structure (clusters) appear as you draw more points.
(figure inspired by Neal)



Infinite mixture models

p(x) =) mpr(z)
k=1

How?

e Start from a finite mixture model with K components and take the limit as
number of components K — oo

e If you use symmetric Dirichlet priors on the {7} you get a Dirichlet Process
Mixture; the distribution over partitions is given by a Chinese Restaurant Process.

e But you have infinitely many parameters!

e Rather than optimize the parameters (ML, MAP), you integrate them out (Bayes)
using, e.g:
— MCMC sampling (Escobar & West 1995; Neal 2000; Rasmussen 2000)...
— expectation propagation (EP; Minka and Ghahramani, 2003)

— variational methods (Blei and Jordan, 2005)
— Bayesian hierarchical clustering (Heller and Ghahramani, 2005)



Relationship between DPs and CRPs

DP is a distribution on distributions

DP results in discrete distributions, so if you draw n points you are likely to get
repeated values

A DP induces a partitioning of the n points
e.g. (134) (25) @81 = 93 = 94 7é 92 = 95

Chinese Restaurant Process (CRP) defines the corresponding distribution on
partitions

Although the CRP is a sequential process, the distribution on 6¢,...,60, is
exchangeable (i.e. invariant to permuting the indices of the 0s): e.g.

P(01792a93394) — P(02704793791)



Dirichlet Processes: Big Picture

There are many ways to derive the Dirichlet Process:

e Dirichlet distribution >

e Urn model . ";‘.:'
e Chinese restaurant process | b g ' .°
e Stick breaking . % ’U’:
e Gamma process .“-ﬂ. .

DP: distribution on distributions

Dirichlet process mixture (DPM): a mixture model with infinitely many
components where parameters of each component are drawn from a DP. Useful
for clustering; assignments of points to clusters follows a CRP.



Bayesian nonparametrics for structured data

Bayesian nonparametrics applied to models of other structured objects:

e (Clusters
e Time Series
e Sparse Matrices and Feature Allocation Models

e Networks



Times Series



Hidden Markov Models

Hidden Markov models (HMMs) are widely used sequence models for speech
recognition, bioinformatics, biophysics, text modelling, video monitoring, etc.

by

In an HMM, the sequence of observations y1, ...,y is modelled by assuming that
it was generated by a sequence of discrete hidden states s, ..., s with Markovian
dynamics.

If the HMM has K states (s; € {1,... K}) the transition matrix has K x K elements.

HMMs can be thought of as time-dependent mixture models.



Infinite hidden Markov models (iHMMs)

>z' - _>
O COEEND ()
HMMSs can be thought of as time-dependent mixture

models.

S
In an HMM with K states, the transition matrix has , t K
K x K elements. f/”k(-)
k
We want to let K — o0 ¢
Infinite HMMs can be derived from the HDP. "
K
Bly ~  Stick(:|v) (base distribution over states)
k|, B ~ DP(:|a,B) (transition parameters for state k =1,...)
0r| H ~ H(-) (emission parameters for state k =1,... )
St|st—1, (Wk)zozl ~ 7Tst_1<'> (transition)
yelse, Ok)pzy  ~  p(]0s,) (emission)

(Beal, Ghahramani, and Rasmussen, 2002) (Teh et al. 2005)



Infinite hidden Markov models (iHMMs)

Let the number of hidden states K — oc.

Here are some typical state trajectories for an
IHMM. Note that the number of states visited

grows with T
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e Introduced in (Beal, Ghahramani and Rasmussen, 2002).

e Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet
processes, and provided a more efficient Gibbs sampler.

O

e \We have recently derived a much more efficient sampler based on Dynamic Programming
(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

e And we have parallel (.NET) and distributed (Hadoop) implementations
(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation
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(w/ Tom Stepleton, 2009)



Sparse Matrices and Feature Models



Latent Cluster vs Feature Models
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Sparse binary matrices and latent feature models

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0 ~ Beta(a/K,1)

Note that P(z,x = lla) = E(0;) = % so as K grows larger the matrix

gets sparser.
Soif Z is N x K, the expected number of nonzero entries is Na/(1+a/K) < Na.

Even in the K — oo limit, the matrix is expected to have a finite number of
non-zero entries.

K — o0 results in an Indian buffet process (IBP)



Customers
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Indian buffet process

“Many Indian restaurants offer

lunchtime buffets with an apparently
infinite number of dishes”

e First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(«) number of dishes as his plate becomes overburdened.

e The n'™ customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k& with probability my/n, and trying a
Poisson(a;/n) number of new dishes.

e The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)



Properties of the Indian buffet process

K
P([Z]|a) :exp{ —aHN} a”t H (N_mk)'(mk — 1)!

Prior sample from IBP with a=10
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Shown in (Griffiths and Ghahramani 2006, 2011): E-5: B
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e It is infinitely exchangeable. x i
e The number of ones in each row is Poisson(«) 3 = b, i
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e The expected total number of ones is alV. £ "HEFLER O "
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Additional properties: B ey
e Has a stick-breaking representation (Teh, et al 2007)
e Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

e More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh
and Goriir 2010)



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N x D matrix of observed data, and Z be the
N x K matrix of sparse binary latent features

P(X,Z|a) = P(X|Z)P(Z|a)

By combining the IBP with different likelihood functions we can get different kinds
of models:

e Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

e Models for protein complexes (w/ Chu, Wild, 2006)
e Models for choice behaviour (Goriir & Rasmussen, 2006)
e Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)
e Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

e Models for overlapping clusters (w/ Heller, 2007)



Infinite Independent Components Analysis

Model: Y =G(Z®X)+E

where Y is the data matrix, G is the mixing matrix Z ~ IBP(«, 3) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.
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(a) Top: True Z. Bottom: Inferred Z. (b) Plot of the log likelihood and poste-
Red box denotes test data. rior for the duration of the iICA5 run.

Fig. 1. True and inferred Z and algorithm convergence.

(w/ David Knowles, 2007, 2011)



Nonparametric Binary Matrix Factorization

genes X patients
users X movies

(A)

Figure 5: Gene expression results. (A) The top-left is X sorted according to contiguous features in
the final U and V in the Markov chain. The bottom-left is V7 and the top-right is U. The bottom-

right is W. (B) The same as (A). but the expected value of X, X = UWV ™. We have hilighted
regions that have both u;; and v; on. For clarity, we have only shown the (at most) two largest
contiguous regions for each feature pair.

(B)

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



A Picture:
Relations between some models

factorial ] factorial
model HMM
Jinite | HMM
mixture
IBP ] ifHMM
) factorial
DPM ] iIHMM

non-param.



Posterior Inference in IBP Modaels

P(Z,a|X) x P(X|Z)P(Z|a)P(«)
Gibbs sampling:  P(znr = 1|1Z_(5), X, @) < P(2n1 = 1|Z_ (), ) P(X|Z)

m_n.k

e Ifm_, x>0, Plzpp=1z_,1) = &

e For infinitely many k& such that m_,, , = 0: Metropolis steps with truncation® to
sample from the number of new features for each object.
e |f o has a Gamma prior then the posterior is also Gamma — Gibbs sample.

Conjugate sampler: assumes that P(X|Z) can be computed.

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)
see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010),
submodular MAP (w/ Reed, 2013)



Some Case Studies

e Networks and relational data
e Scaling

e Discovering structure in Gaussian process kernels



Modelling Networks

We are interested in modelling networks.

Biological networks: protein-protein interaction networks
Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

e predict missing links,
e infer latent properties or classes of the objects,

e generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



Networks and Relational Data

Networks are just a way of representing certain kinds of relational data:

e friend(John,Mary)
e buy(Jack,iPhone)
e rate(Fred,Titanic,5)

e cite(PaperA,PaperB)

e author (PaperA, John)

e regulate(TranscriptionFactorA,GeneB) ...
Relational data are ubiquitous; we need general models for such data.

There are deep and interesting connections between network modelling <+ matrix
factorization <> exchangeable arrays <> relational data.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)

® ®
& ©
@
® &P
" ®

®

Each node v; has a hidden class ¢; € {1,...,00}

For all : Ci|01,...,07;_1 ~J CRP(O&)
Probability of a link between two nodes v; and v; depends on their classes:

P(yij = 1llci = k,c; =) = pre

Note that p is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature Models

Each node posses some number of latent features.

Alternatively we can think of this model as capturing overlapping clusters or
communities

The link probability depends on the latent features of the two nodes.

The model should be able to accommodate a potentially unbounded (infinite)
number of latent features (e.g. (Miller, Griffiths and Jordan 2010) use an IBP).



Exchangeable Sequences

Exchangeable sequence:
A sequence is exchangeable if its joint distribution is invariant under arbitrary
permutation of the indices:

(X1, X2, ) 2 (Xn(1), Xn(2), o) V7 € S

de Finetti’'s Theorem:
(X;)ien is exchangeable if and only if there exists a random probability measure ©
on X such that X1, X5,...|® ~ iid ©

Interpretation:

Any probabilistic model of data which assumes that the order of the data does not
matter, can be expressed as a Bayesian mixture of iid models. Note that ©® may in
general need to be infinite dimensional (i.e. nonparameteric).



Exchangeable Arrays

Exchangeable arrays: An array X = (X;,); jen is called an exchangeable array if

(X@j) i (Xﬂ(i)ﬂ(j)) for every m ¢ SOO.

Aldous-Hoover Theorem:

A random matrix (X;;) is exchangeable if and only if there is a random (measurable)

function F' : [0,1]> — X such that (X ) L (F(U;,U;,U;;)) for every collection

(Uz')iEN and (Uz'j)igjeN of i.i.d. Uniform[O, 1] random variables, where sz‘ = Uz'j for
j<iéeN.

0 — . T0
Uy -t-----%--1- ® Pr{X;; =1}

Up -p-d--mamm
S -

Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns

(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the

observations.




Random Function Model

We develop a nonparametric probabilistic model for simple arrays and graphs that
makes explicit the Aldous Hoover representation:

Uq Us
0 [
o I TY
Up -p-4----#--1- ¢ Pr{X,;; =1}
L TT——
SR -
1
® ~ GP(0,k)
U, Us, ... ns Uniform|0, 1]
Wi; = OU:,Uj)

Xij ~ P[|Wy]

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)




Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.

Graph data
Random function model © ~ GP(0,k)
Latent class Wi; = myy whereU; € {1,..., K}
IRM Wi; = myuy, whereU; € {1,...,00}
Latent distance Wi = —|U;—Uj
Eigenmodel Wi = UAU;
LFRM Wij = UZ/AU] where U; € {O, 1}00
ILA Wy = Yulu v, Afy, where Ui € {0, 00}
SMGB © ~/ QP (O, K1 & KJQ)

Real-valued array data

Random function model © ~ GP(0,k)

Mondrian process based © = piece-wise constant random function
PMF Wi, = UV,

GPLVM © ~ GP(0,k®)9)




Random Function Model: Results

Data set
Latent dimensions

AUC results

High school NIPS
1 2 3 1 2 3

Protein
1 2 3

PMF
Eigenmodel
GPLVM
RFM

0.747 0.792 0.792 0.729 0.789 0.820
0.742 0.806 0.806 0.789 0.818 0.845
0.744 0.775 0.782 0.888 0.876 0.883
0.815 0.827 0.820 0.907 0.914 0.919

0.787 0.810 0.841
0.805 0.866 0.882
0.877 0.883 0.873
0.903 0.910 0.912



Scalable approximate inference



Scalable approximate inference

P(z|D.m) — / P(2]0.D.m)P(6]D, m)d6

P(Dlm) = /P(D|9,m)P(9\m)d9

How do we compute these integrals in practice?

Laplace Approximation

Bayesian Information Criterion (BIC)

Variational Bayesian approximations

Expectation Propagation (and loopy belief propagation)
Markov chain Monte Carlo

Sequential Monte Carlo



Review of IBPs:
Sparse binary matrices and feature allocation models

Znk = 1 means object n has feature k:

Znk ~ Bernoulli(6y)

0 ~ Beta(a/K,1)

Note that P(z,x = lla) = E(0;) = % so as K grows larger the matrix

gets sparser.
Soif Z is N x K, the expected number of nonzero entries is Na/(1+a/K) < Na.

Even in the K — oo limit, the matrix is expected to have a finite number of
non-zero entries.

K — o0 results in an Indian buffet process (IBP)



Submodular MAP inference in IBPs

Approach: maximise over Z while maintaining a variational approximation to the
integral over the other model parameters

Yields a submodular maximisation algorithm that can be maximized with a simple
greedy algorithm with a (1/3)-approximability guarantee

Submodularity: (diminishing returns) for A C B and f a set function:

f(AU{e}) = f(A) = f(BU{e}) — f(B)

(w/ Colorado Reed, ICML 2013)




Submodular MAP inference in IBPs: Results

108

B ugibbs ~ bnmf meibp

t-ugibbs 8
B t-aibp =
mmm aibp e
B bomf —
B f-vibp ioo
B i-vibp +
P meibp § .

| t-aibp | t—ug‘lbbs |

|
10 15 20 25 30 39

hours

Synthetic datasets: N = 10° data points, D = 103 dimensions, K. = 50 features.

meibp:
aibp:
ugibbs:
vibp:
bnmf:
bs-ibp:
inmf:

our new method based on submodular maximisation (w/ Reed, 2013)

accelerated IBP (w/ Doshi-Velez, 2009)

uncollapsed Gibbs sampling (w/ Doshi-Velez, 2009)

variational IBP (Doshi-Velez et al, 2009)

iterated conditional modes for NMF (Schmidt et al 2009)

beam-search (didn't complete one iteration): (Rai and Daume, 2011)

power-EP for non-negative IBP (didn't complete one iteration) (Ding et al, 2010)



Submodular MAP inference in IBPs: Results

106 Flickr
T T TT1T] T T T 11171 T T 111171
—4.85 |-
meibp
< ugibbs —4.9
A aibp
‘bnmf _495 | 1] R | \\HHW
m f-vibp 103 10* 10°
x 1-vibp convergence time (s)

binary image-tag indicators from Flickr - dataset of 25000 images by 1500 indicators.



Structure Discovery for Gaussian Process Kernels



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:

You want to learn a function f with error bars
from data D = {X,y}

X
A Gaussian process defines a distribution on functions p(f) which can be used for
Bayesian regression:

_ p(f)p(D|f)
Let £ = (f(x1), f(x2),..., f(x,)) be an n-dimensional vector of function values

evaluated at n points z; € X. Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {z1,...,z,} C &,
the marginal distribution over that subset p(f) is multivariate Gaussian.

f~ GP(u, K)



Bayesian kernelised regression and classification

Linear Logistic
Regression Regression
Bayesian Bayesian
Linear Logistic
Regression Regression
Kernel Kernel
Regression Classification

GP GP

Regression Classification

Classification

Bayesian
Kernel



Bayesian kernelised structured prediction

Logistic CORZ?\EI[g)rEaI
Regression Field (CRF)
Bayesian Bayesian
Logistic At
Regression
Kernelised Kernel CRF /
LOgISt'-C SVMstruct /
Regression 3
/ SVM M-N
GP
Classification GPstruct
Structured
Bayesian

Kernelised

(w/ Bratieres and Quadrianto, arXiv 2013)




How do we learn the kernel (covariance function)?

Usual approach: parametrise the kernel with a few hyperparameters and optimise
or infer these. An example covariance function:

K<371',737j) = voexp{— (‘l’z _ajj‘> } —+ U1 +U25ij

r

with parameters (v, v1, v, 7, ). These kernel parameters are interpretable and
can be learned from data:

vo  signal variance
vy  variance of bias
Vo NOIse variance
r lengthscale

«  roughness

Structure discovery for the kernel by searching over a grammar of kernels



Kernel Composition

By taking a few simple base kernels and two composition rules, kernel addition
and multiplication, we can span a rich space of structured kernels.

A

. SE x PER ..
functions periodic

LIN 4 PER periodic SE + PER periodic
with trend with noise
0 0

Squared- local varia- Periodic repeating 0

X SE tion
exp
increasing growing

(PER)
LiN x SE .. LiN x PER .
\ variation amplitude
0 : 1. . ::I A ? "

Linear linear func- Ratlonal— multi-scale f1(x14)4
(L) tions quadratic(RQ)variation SE1 + SE + fa(x2) SF1 X SE2

C
X

0

quadratic locally

LIN x LIN

N
i

;
b

structure

(w/ Duvenaud, Lloyd, Grosse, and Tenenbaum, ICML 2013)
(Wilson and Adams, ICML 2013)
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Kernel Composition: Airline passenger prediction

SE x ( Lin + Lin x ( Per + RQ) )

600
400 -~
200 -
0d
-200 — T T T T T T T
1950 1952 1954 1956 1958 1960 1962
SE x Lin
400
300
200 -
100
o0
-100 -
-200 — T T T T T T T
1950 1952 1954 1956 1958 1960 1962
SE x Lin x Per
300 1
200
100 ~
o
-100
200 - . . . . . . .
1950 1952 1954 1956 1958 1960 1962
SE x Lin x RQ
100
50 -
0 W I W
-50 -
-100 T T T T T T T
1950 1952 1954 1956 1958 1960 1962
Residuals
5
o . '. = .o e
s

1950 1952 1954 1956 1958 1960 1962



Kernel Composition: results

Mean Squared Error (MSE) Negative Log-Likelihood

Method bach concrete puma Servo housing | bach concrete puma Servo housing
Linear Regression | 1.031 0.404 0.641 0.523 0.289 2.430 1.403 1.881 1.678 1.052
GAM 1.259 0.149 0.598 0.281 0.161 1.708 0.467 1.195 0.800 0.457
HKL 0.199 0.147 0.346 0.199 0.151 - - - - -

cpP SE-ARD 0.045 0.157 0.317 0.126 0.092 —0.131 0.398 0.843 0.429 0.207
cP Additive 0.045 0.089 0.316 0.110 0.102 —-0.131 0.114 0.841 0.309 0.194
Structure Search 0.044 0.087 0.315 0.102 0.082 —0.141 0.065 0.840 0.265 0.059




Summary of kernel structure discovery

Structure learning on kernels can be useful both for good automated prediction, and
for interpretable results.

...towards and automated statistician.



Summary

Bayesian machine learning is simply the application of probability theory to
learning from data.

Nonparametrics is needed to capture complexity of real data.

New models for complex structured data:

— Random Function Model for exchangeable arrays and relations

Fast scalable inference:

— submodular maximisation in IBPs

Automatic structure discovery:

— kernel structure discovery in Gaussian processes
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Appendix



Dirichlet Process: Conjugacy

G ~ DP(|GQ, Oé)

If the prior on G is a DP:
P(G) = DP(G|Gy, @)

...and you observe 6...
P(0|G) = G(0)

...then the posterior is also a DP:

P(G|) = P(@‘]f();;((;) — DP (a j‘_ Co+— i 09, 1)

Generalization for n observations:

1 n
P(Gwl,,@n)_DP( a Go + ngi,&—Fn)
1=1

a—+n o+ n

Analogous to Dirichlet being conjugate to multinomial observations.



Dirichlet Process

Blackwell and MacQueen’s (1973) urn representation

G ~DP(-|Gp,a) and 0|G ~ G()
Then

n—1
«

n97" n— 7G7 ~ Gol-
01 1,0 o 1raco0t n—l—l— zz:

(nwly-- n— 1,GQ, ) X /dGHP(QJ‘G)P(G|G0,Oé)

j=1

The model exhibits a “clustering effect”.
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Chinese Restaurant Process

The CRP generates samples from the distribution on partitions induced by a DPM.

oo -

Generating from a CRP:

customer 1 enters the restaurant and sits at table 1.
K=1,n=1n=1

forn=2,...,
k with prob n—nlkil—oz fork=1... K
customer n sits at table _
K +1 with prob ——3—  (new table)

if new table was chosen then K + K + 1 endif
endfor

“Rich get richer” property. (Aldous 1985; Pitman 2002)



