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Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Why Bayesian Nonparametrics...?

• Why Bayesian?

Simplicity (of the framework)

• Why nonparametrics?

Complexity (of real world phenomena)



Parametric vs Nonparametric Models

• Parametric models assume some finite set of parameters θ. Given the parameters,
future predictions, x, are independent of the observed data, D:

P (x|θ,D) = P (x|θ)

therefore θ capture everything there is to know about the data.

• So the complexity of the model is bounded even if the amount of data is
unbounded. This makes them not very flexible.

• Non-parametric models assume that the data distribution cannot be defined in
terms of such a finite set of parameters. But they can often be defined by
assuming an infinite dimensional θ. Usually we think of θ as a function.

• The amount of information that θ can capture about the data D can grow as
the amount of data grows. This makes them more flexible.



Why nonparametrics?

• flexibility

• better predictive performance

• more realistic
0 2 4 6 8 10

−20

−10

0

10

20

30

40

50

60

70

Almost all successful methods in machine learning are essentially nonparametric1:

• kernel methods / SVM / GP

• deep networks / large neural networks

• k-nearest neighbors, ...

1or highly scalable!



Examples of non-parametric models

Bayesian nonparametrics has many uses.

Parametric Non-parametric Process Application

polynomial regression Gaussian processes GP function approx.

logistic regression Gaussian process classifiers GP classification

mixture models, k-means Dirichlet process mixtures DP / CRP clustering

hidden Markov models infinite HMMs HDP time series

factor analysis/pPCA/PMF infinite latent factor models BP / IBP feature discovery

...



Gaussian and Dirichlet Processes

• Gaussian processes define a distribution on functions
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f ∼ GP(·|µ, c)

where µ is the mean function and c is the covariance function.
We can think of GPs as “infinite-dimensional” Gaussians

• Dirichlet processes define a distribution on distributions

G ∼ DP(·|G0, α)

where α > 0 is a concentration parameter, and G0 is the base measure.
We can think of DPs as “infinite-dimensional” Dirichlet distributions.

Note that both f and G are infinite dimensional objects.



A picture
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Dirichlet Distribution

The Dirichlet distribution is a distribution on the K-dim probability simplex.

Let p be a K-dimensional vector s.t. ∀j : pj ≥ 0 and
∑K
j=1 pj = 1

P (p|α) = Dir(α1, . . . , αK)
def
=

Γ(
∑
j αj)∏

j Γ(αj)

K∏

j=1

p
αj−1

j

where the first term is a normalization constant2 and E(pj) = αj/(
∑
k αk)

The Dirichlet is conjugate to the multinomial distribution. Let

c|p ∼ Multinomial(·|p)

That is, P (c = j|p) = pj. Then the posterior is also Dirichlet:

P (p|c = j,α) =
P (c = j|p)P (p|α)

P (c = j|α)
= Dir(α′)

where α′j = αj + 1, and ∀` 6= j : α′` = α`
2Γ(x) = (x− 1)Γ(x− 1) =

∫∞
0 tx−1e−tdt. For integer n, Γ(n) = (n− 1)!



Dirichlet Distributions

Examples of Dirichlet distributions over θ = (θ1, θ2, θ3) which can be plotted in 2D
since θ3 = 1− θ1 − θ2:



Dirichlet Process

Let Θ be a measurable space, G0 be a probability measure on Θ, and α a positive
real number.

For all (A1, . . . AK) finite partitions of Θ,

G ∼ DP(·|G0, α)

means that

(G(A1), . . . , G(AK)) ∼ Dir(αG0(A1), . . . , αG0(AK))

(Ferguson, 1973)



Dirichlet Process

G ∼ DP(·|G0, α) OK, but what does it look like?

Samples from a DP are discrete with probability one:

G(θ) =

∞∑

k=1

πkδθk(θ)

where δθk(·) is a Dirac delta at θk, and θk ∼ G0(·).

Note: E(G) = G0

As α→∞, G looks more “like” G0.



Clustering



Infinite mixture models
(e.g. Dirichlet Process Mixtures)

Why?

• You might not believe a priori that your data comes from a finite number of
mixture components (e.g. strangely shaped clusters; heavy tails; structure at
many resolutions)

• Inflexible models (e.g. a mixture of 6 Gaussians) can yield unreasonable inferences
and predictions.

• For many kinds of data, the number of clusters might grow over time: clusters
of news stories or emails, classes of objects, etc.

• You might want your method to automatically infer the number of clusters in the
data.



Samples from a Dirichlet Process Mixture of Gaussians
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Notice that more structure (clusters) appear as you draw more points.
(figure inspired by Neal)



Infinite mixture models

p(x) =

K∑

k=1

πk pk(x)

How?

• Start from a finite mixture model with K components and take the limit as
number of components K →∞

• If you use symmetric Dirichlet priors on the {πk} you get a Dirichlet Process
Mixture; the distribution over partitions is given by a Chinese Restaurant Process.

• But you have infinitely many parameters!

• Rather than optimize the parameters (ML, MAP), you integrate them out (Bayes)
using, e.g:

– MCMC sampling (Escobar & West 1995; Neal 2000; Rasmussen 2000)...

– expectation propagation (EP; Minka and Ghahramani, 2003)

– variational methods (Blei and Jordan, 2005)

– Bayesian hierarchical clustering (Heller and Ghahramani, 2005)



Relationship between DPs and CRPs

• DP is a distribution on distributions

• DP results in discrete distributions, so if you draw n points you are likely to get
repeated values

• A DP induces a partitioning of the n points
e.g. (1 3 4) (2 5)⇔ θ1 = θ3 = θ4 6= θ2 = θ5

• Chinese Restaurant Process (CRP) defines the corresponding distribution on
partitions

• Although the CRP is a sequential process, the distribution on θ1, . . . , θn is
exchangeable (i.e. invariant to permuting the indices of the θs): e.g.

P (θ1, θ2, θ3, θ4) = P (θ2, θ4, θ3, θ1)



Dirichlet Processes: Big Picture

There are many ways to derive the Dirichlet Process:

• Dirichlet distribution

• Urn model

• Chinese restaurant process

• Stick breaking

• Gamma process

DP: distribution on distributions

Dirichlet process mixture (DPM): a mixture model with infinitely many
components where parameters of each component are drawn from a DP. Useful
for clustering; assignments of points to clusters follows a CRP.



Bayesian nonparametrics for structured data

Bayesian nonparametrics applied to models of other structured objects:

• Clusters [and hierarchies]

• Time Series

• Sparse Matrices and Feature Allocation Models

• Networks



Times Series



Hidden Markov Models

Hidden Markov models (HMMs) are widely used sequence models for speech
recognition, bioinformatics, biophysics, text modelling, video monitoring, etc.
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In an HMM, the sequence of observations y1, . . . ,yT is modelled by assuming that
it was generated by a sequence of discrete hidden states s1, . . . , sT with Markovian
dynamics.

If the HMM has K states (st ∈ {1, . . .K}) the transition matrix has K×K elements.

HMMs can be thought of as time-dependent mixture models.



Infinite hidden Markov models (iHMMs)

HMMs can be thought of as time-dependent mixture
models.

In an HMM with K states, the transition matrix has
K ×K elements.

We want to let K →∞
Infinite HMMs can be derived from the HDP.
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β|γ ∼ Stick(·|γ) (base distribution over states)
πk|α, β ∼ DP(·|α, β) (transition parameters for state k = 1, . . . )
θk|H ∼ H(·) (emission parameters for state k = 1, . . . )

st|st−1, (πk)
∞
k=1 ∼ πst−1(·) (transition)

yt|st, (θk)∞k=1 ∼ p(·|θst) (emission)

(Beal, Ghahramani, and Rasmussen, 2002) (Teh et al. 2005)



Infinite hidden Markov models (iHMMs)

Let the number of hidden states K →∞.

Here are some typical state trajectories for an
iHMM. Note that the number of states visited
grows with T .
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• Introduced in (Beal, Ghahramani and Rasmussen, 2002).

• Teh, Jordan, Beal and Blei (2005) showed that iHMMs can be derived from hierarchical Dirichlet

processes, and provided a more efficient Gibbs sampler.

• We have recently derived a much more efficient sampler based on Dynamic Programming

(Van Gael, Saatci, Teh, and Ghahramani, 2008). http://mloss.org/software/view/205/

• And we have parallel (.NET) and distributed (Hadoop) implementations

(Bratieres, Van Gael, Vlachos and Ghahramani, 2010).



Infinite HMM: Changepoint detection and video segmentation

Experiment:  Changepoint Detection
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(w/ Tom Stepleton, 2009)



Sparse Matrices and Feature Models



Latent Cluster vs Feature Models

clustering feature allocation

Chinese Restaurant Process (CRP) Indian Buffet Process (IBP)
Dirichlet process Beta process



Sparse binary matrices and latent feature models

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)



Indian buffet process
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‘‘Many Indian restaurants offer

lunchtime buffets with an apparently

infinite number of dishes”

• First customer starts at the left of the buffet, and takes a serving from each dish,
stopping after a Poisson(α) number of dishes as his plate becomes overburdened.

• The nth customer moves along the buffet, sampling dishes in proportion to
their popularity, serving himself dish k with probability mk/n, and trying a
Poisson(α/n) number of new dishes.

• The customer-dish matrix, Z, is a draw from the IBP.

(w/ Tom Griffiths 2006; 2011)



Properties of the Indian buffet process

P ([Z]|α) = exp
{
− αHN

} αK+∏
h>0Kh!

∏
k≤K+

(N −mk)!(mk − 1)!

N !

Shown in (Griffiths and Ghahramani 2006, 2011):

• It is infinitely exchangeable.

• The number of ones in each row is Poisson(α)

• The expected total number of ones is αN .

• The number of nonzero columns grows as O(α logN).
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• Has a stick-breaking representation (Teh, et al 2007)

• Has as its de Finetti mixing distribution the Beta process (Thibaux and Jordan 2007)

• More flexible two and three parameter versions exist (w/ Griffiths & Sollich 2007; Teh

and Görür 2010)



Modelling Data with Indian Buffet Processes

Latent variable model: let X be the N ×D matrix of observed data, and Z be the
N ×K matrix of sparse binary latent features

P (X,Z|α) = P (X|Z)P (Z|α)

By combining the IBP with different likelihood functions we can get different kinds
of models:

• Models for graph structures (w/ Wood, Griffiths, 2006; w/ Adams and Wallach, 2010)

• Models for protein complexes (w/ Chu, Wild, 2006)

• Models for choice behaviour (Görür & Rasmussen, 2006)

• Models for users in collaborative filtering (w/ Meeds, Roweis, Neal, 2007)

• Sparse latent trait, pPCA and ICA models (w/ Knowles, 2007, 2011)

• Models for overlapping clusters (w/ Heller, 2007)



Infinite Independent Components Analysis

Model: Y = G(Z⊗X) + E

x ⊗ z

G

y

...

where Y is the data matrix, G is the mixing matrix Z ∼ IBP(α, β) is a mask
matrix, X is heavy tailed sources and E is Gaussian noise.

(w/ David Knowles, 2007, 2011)



Nonparametric Binary Matrix Factorization

genes × patients
users × movies

Meeds et al (2007) Modeling Dyadic Data with Binary Latent Factors.



A Picture:
Relations between some models
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Posterior Inference in IBP Models

P (Z, α|X) ∝ P (X|Z)P (Z|α)P (α)

Gibbs sampling: P (znk = 1|Z−(nk),X, α) ∝ P (znk = 1|Z−(nk), α)P (X|Z)

• If m−n,k > 0, P (znk = 1|z−n,k) =
m−n,k
N

• For infinitely many k such that m−n,k = 0: Metropolis steps with truncation∗ to
sample from the number of new features for each object.
• If α has a Gamma prior then the posterior is also Gamma → Gibbs sample.

Conjugate sampler: assumes that P (X|Z) can be computed.

Slice sampler: works for non-conjugate case, is not approximate, and has an
adaptive truncation level using an IBP stick-breaking construction (Teh, et al 2007)

see also (Adams et al 2010).

Deterministic Inference: variational inference (Doshi et al 2009a) parallel inference
(Doshi et al 2009b), beam-search MAP (Rai and Daume 2011), power-EP (Ding et al 2010),
submodular MAP (w/ Reed, 2013)



Some Case Studies

• Networks and relational data

• Scaling

• Discovering structure in Gaussian process kernels



Modelling Networks

We are interested in modelling networks.

Real Networks Are Complex

Taken from Barabasi & Oltvai, 2004. A protein-protein interaction

network of budding yeast.

CBL: Network Models RCC, Feb 2012 2

Biological networks: protein-protein interaction networks

Social networks: friendship networks; co-authorship networks

We wish to have models that will be able to

• predict missing links,

• infer latent properties or classes of the objects,

• generalise learned properties from smaller observed networks to larger networks.

Figure from Barabasi and Oltvai 2004: A protein-protein interaction network of budding yeast



Networks and Relational Data

Real Networks Are Complex

Taken from Barabasi & Oltvai, 2004. A protein-protein interaction

network of budding yeast.

CBL: Network Models RCC, Feb 2012 2

Networks are just a way of representing certain kinds of relational data:

• friend(John,Mary)

• buy(Jack,iPhone)

• rate(Fred,Titanic,5)

• cite(PaperA,PaperB)

• author(PaperA,John)

• regulate(TranscriptionFactorA,GeneB) ...

Relational data are ubiquitous; we need general models for such data.

There are deep and interesting connections between network modelling ↔ matrix
factorization ↔ exchangeable arrays ↔ relational data.



Nonparametric Latent Class Models
Infinite Relational Model (Kemp et al 2006)

Latent Class Models
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Latent class models assume each vertex has an (unknown) class

assignment. Classes: A, B, C and D.

CBL: Network Models RCC, Feb 2012 9

Each node vi has a hidden class ci ∈ {1, . . . ,∞}

For all i: ci|c1, . . . , ci−1 ∼ CRP(α)

Probability of a link between two nodes vi and vj depends on their classes:

P (yij = 1|ci = k, cj = `) = ρk`

Note that ρ is an infinitely large matrix, but if we give each element a beta prior we
can integrate it out.

Inference done via MCMC. Fairly straightforward to implement.



Latent Feature ModelsLatent Feature Models
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latent feature models associate each vertex with K latent features

CBL: Network Models RCC, Feb 2012 30

• Each node posses some number of latent features.

• Alternatively we can think of this model as capturing overlapping clusters or
communities

• The link probability depends on the latent features of the two nodes.

• The model should be able to accommodate a potentially unbounded (infinite)
number of latent features (e.g. (Miller, Griffiths and Jordan 2010) use an IBP).



Exchangeable Sequences

Exchangeable sequence:
A sequence is exchangeable if its joint distribution is invariant under arbitrary
permutation of the indices:

(X1, X2, ...)
d
= (Xπ(1), Xπ(2), ...) ∀π ∈ S∞.

de Finetti’s Theorem:
(Xi)i∈N is exchangeable if and only if there exists a random probability measure Θ
on X such that X1, X2, . . . |Θ ∼ iid Θ

Interpretation:
Any probabilistic model of data which assumes that the order of the data does not
matter, can be expressed as a Bayesian mixture of iid models. Note that Θ may in
general need to be infinite dimensional (i.e. nonparameteric).



Exchangeable Arrays

Exchangeable arrays: An array X = (Xij)i,j∈N is called an exchangeable array if

(Xij)
d
= (Xπ(i)π(j)) for every π ∈ S∞.

Aldous-Hoover Theorem:
A random matrix (Xij) is exchangeable if and only if there is a random (measurable)

function F : [0, 1]3 → X such that (Xij)
d
= (F (Ui, Uj, Uij)) for every collection

(Ui)i∈N and (Uij)i≤j∈N of i.i.d. Uniform[0, 1] random variables, where Uji = Uij for
j < i ∈ N.

0
0

1
1

U1

U1

U2

U2

0

1

Pr{Xij = 1}

Θ

Interpretation:
Any model of matrices, arrays (or graphs) where the order of rows and columns
(nodes) is irrelevant can be expressed by assuming latent variables associated with
each row and column, and a random function mapping these latent variables to the
observations.



Random Function Model

We develop a nonparametric probabilistic model for simple arrays and graphs that
makes explicit the Aldous Hoover representation:

0
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1
1

U1

U1

U2

U2

0

1

Pr{Xij = 1}

Θ

Θ ∼ GP(0, κ)

U1, U2, . . .
iid∼ Uniform[0, 1]

Wij = Θ(Ui, Uj)

Xij ∼ P [·|Wij]

(w/ James Lloyd, Dan Roy, Peter Orbanz, NIPS 2012)



Random Function Model

The random function model can be related to a number of existing models for
matrices, arrays/tensors, and graphs.



Random Function Model: Results



Scalable approximate inference



Scalable approximate inference

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ

How do we compute these integrals in practice?

• Laplace Approximation
• Bayesian Information Criterion (BIC)
• Variational Bayesian approximations
• Expectation Propagation (and loopy belief propagation)
• Markov chain Monte Carlo
• Sequential Monte Carlo
• ...



Review of IBPs:
Sparse binary matrices and feature allocation models

Figure 5: Binary matrices and the left-order

znk = 1 means object n has feature k:

znk ∼ Bernoulli(θk)

θk ∼ Beta(α/K, 1)

• Note that P (znk = 1|α) = E(θk) = α/K
α/K+1, so as K grows larger the matrix

gets sparser.

• So if Z is N×K, the expected number of nonzero entries is Nα/(1+α/K) < Nα.

• Even in the K → ∞ limit, the matrix is expected to have a finite number of
non-zero entries.

• K →∞ results in an Indian buffet process (IBP)



Submodular MAP inference in IBPs

Approach: maximise over Z while maintaining a variational approximation to the
integral over the other model parameters

Yields a submodular maximisation algorithm that can be maximized with a simple
greedy algorithm with a (1/3)-approximability guarantee

Submodularity: (diminishing returns) for A ⊆ B and f a set function:

f(A ∪ {e})− f(A) ≥ f(B ∪ {e})− f(B)

(w/ Colorado Reed, ICML 2013)



Submodular MAP inference in IBPs: Results
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Synthetic datasets: N = 105 data points, D = 103 dimensions, Kmax = 50 features.

meibp: our new method based on submodular maximisation (w/ Reed, 2013)

aibp: accelerated IBP (w/ Doshi-Velez, 2009)

ugibbs: uncollapsed Gibbs sampling (w/ Doshi-Velez, 2009)

vibp: variational IBP (Doshi-Velez et al, 2009)

bnmf: iterated conditional modes for NMF (Schmidt et al 2009)

bs-ibp: beam-search (didn’t complete one iteration): (Rai and Daume, 2011)

inmf: power-EP for non-negative IBP (didn’t complete one iteration) (Ding et al, 2010)



Submodular MAP inference in IBPs: Results
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Structure Discovery for Gaussian Process Kernels



Nonlinear regression and Gaussian processes

Consider the problem of nonlinear regression:

You want to learn a function f with error bars
from data D = {X,y}

x

y

A Gaussian process defines a distribution on functions p(f) which can be used for
Bayesian regression:

p(f |D) =
p(f)p(D|f)

p(D)

Let f = (f(x1), f(x2), . . . , f(xn)) be an n-dimensional vector of function values
evaluated at n points xi ∈ X . Note, f is a random variable.

Definition: p(f) is a Gaussian process if for any finite subset {x1, . . . , xn} ⊂ X ,
the marginal distribution over that subset p(f) is multivariate Gaussian.

f ∼ GP(µ,K)



Bayesian kernelised regression and classification

Logistic 
Regression

Linear  
Regression

Kernel  
Regression

Bayesian 
Linear  

Regression

GP  
Classification

Bayesian 
Logistic  

Regression

Kernel  
Classification

GP 
Regression

Classification

Bayesian
Kernel



Bayesian kernelised structured prediction
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(w/ Bratieres and Quadrianto, arXiv 2013)



How do we learn the kernel (covariance function)?

f ∼ GP(µ,K)

• Usual approach: parametrise the kernel with a few hyperparameters and optimise
or infer these. An example covariance function:

K(xi, xj) = v0 exp

{
−
(|xi − xj|

r

)α}
+ v1 + v2 δij

with parameters (v0, v1, v2, r, α). These kernel parameters are interpretable and
can be learned from data:

v0 signal variance

v1 variance of bias

v2 noise variance

r lengthscale

α roughness

• Structure discovery for the kernel by searching over a grammar of kernels



Kernel Composition

By taking a few simple base kernels and two composition rules, kernel addition
and multiplication, we can span a rich space of structured kernels.
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Kernel Composition: Mauna Loa CO2 Keeling Curve

Structure Discovery in Nonparametric Regression through Compositional Kernel Search

was able to discover such structure automatically from
data. Our work is tackling a similar problem, but in a
supervised setting.

5. Structure discovery in time series

In order to investigate our method’s ability to discover
structure, we performed the search over kernels on sev-
eral time series datasets. Our method discovers rich
structure in these datasets, and produces plausible ex-
trapolations.

As discussed in section 2, a gp whose kernel is a sum
of kernels can be viewed as a sum of functions drawn
from component gps. This provides another method
of visualizing the learned structures. In particular, all
kernels in our search space can be equivalently writ-
ten as sums of products of base kernels by applying
distributivity e.g.

SE⇥ (RQ + Lin) = SE⇥RQ + SE⇥ Lin.

We visualize the decompositions into sums of compo-
nents using the formulae given in the appendix. The
search was run to depth 10, using the base kernels from
Section 2.

Mauna Loa atmospheric CO2 First, we analyzed
records of carbon dioxide levels recorded at the Mauna
Loa observatory. Since this dataset was analyzed in
detail by Rasmussen & Williams (2006), it serves as a
test of our algorithm’s ability to recover known struc-
ture.

Figure 3. Posterior mean and variance for di↵erent depths
of kernel search. The dashed line marks the extent of the
dataset. In the first column, the function is only modeled
as a locally smooth function, and the extrapolation is poor.
Next, a periodic component is added, and the extrapolation
improves. At depth 3, the kernel can capture most of the
relevant structure, and is able to extrapolate reasonably.

Figure 3 shows the posterior function estimates un-
der increasingly structured models, as measured by
approximate marginal likelihood, as the search depth
increases on this dataset.

=

+

+

+

Figure 4. First row: The posterior on the Mauna Loa
dataset, after a search of depth 10. Subsequent rows show
the automatic decomposition of the time series. The de-
compositions shows long-term, yearly periodic, medium-
term anomaly components and residuals, respectively. In
the third row, the scale has been changed in order to clearly
show the yearly periodic structure.
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Figure 5. Full posterior and residuals on the solar irradi-
ance dataset.

Note that, while the data can be smoothly interpo-
lated by a single base kernel model, the extrapolations
improve dramatically as the search depth increases.

Figure 4 shows the complete posterior of the final
model chosen by our method, together with its decom-
position into additive components. The final model ex-
hibits both a plausible extrapolation and interpretable
components: a long-term trend, annual periodicity
and medium-term deviations from the trend. We also
plot the residuals, observing that there is little obvious
structure left in the data.

Airline passenger data Figure 6 shows the decom-
position produced by applying our method to monthly
totals of international airline passengers (Box et al.,
1976). We observe similar components to the previ-
ous dataset i.e. a long term trend, annual periodicity
and medium term deviations. In addition, the com-
posite kernel captures the near-linearity of the trend
as well as the linearly growing amplitude of the annual
oscillations.

Solar irradiance Data Finally, we analyzed annual
solar irradiation data from 1610 to 2011 (Lean et al.,
1995). The posterior and residuals of the learned ker-
nel are shown in figure 5. None of the models in our
search space are capable of parsimoniously represent-
ing the lack of variation from 1645 to 1715.

=

+

+

+

Figure 6. First row: The airline dataset and posterior after
a search of depth 10. Subsequent rows: Additive decom-
position of posterior into long-term smooth trend, yearly
variation, and short-term deviations. Due to the linear ker-
nel, the marginal variance grows over time, making this a
heteroskedastic model.
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Table 1. Kernels used to generate synthetic data, dimensionality D of the input space, inferred kernels, and estimated
noise level.

True kernel D Inferred kernels Estimated �n (Truth = 0.1)
SE + RQ 1 RQ 0.090
Lin ⇥ Per 1 Lin ⇥ Per 0.098
SE1 + RQ2 2 SE1 + RQ2 0.094

SE1 + SE2 ⇥ Per1 + SE3 3 SE1 + SE2 ⇥ Per1 + SE3 ⇥ Lin2 0.082
SE1 ⇥ SE2 4 SE1 ⇥ SE2 ⇥ Lin1 0.103

SE1 ⇥ SE2 + SE2 ⇥ SE3 4 (SE1 ⇥ SE2 + SE2 ⇥ SE3) ⇥ Lin3 0.089
(SE1 + SE2) ⇥ (SE3 + SE4) 4 (SE1 + SE2) ⇥ (SE3 + SE4 ⇥ Lin4) 0.084

Table 2. Comparison of multidimensional regression performance. Bold results are not significantly di↵erent from the
best-performing method in each experiment, in a paired t-test with a p-value of 5%.

Mean Squared Error (MSE) Negative Log-Likelihood
Method bach concrete puma servo housing bach concrete puma servo housing
Linear Regression 1.031 0.404 0.641 0.523 0.289 2.430 1.403 1.881 1.678 1.052
GAM 1.259 0.149 0.598 0.281 0.161 1.708 0.467 1.195 0.800 0.457
HKL 0.199 0.147 0.346 0.199 0.151 - - - - -
gp SE-ARD 0.045 0.157 0.317 0.126 0.092 �0.131 0.398 0.843 0.429 0.207
gp Additive 0.045 0.089 0.316 0.110 0.102 �0.131 0.114 0.841 0.309 0.194
Structure Search 0.044 0.087 0.315 0.102 0.082 �0.141 0.065 0.840 0.265 0.059

to perform all experiments is available on github4.

8. Discussion

“It would be very nice to have a formal
apparatus that gives us some ‘optimal’ way of
recognizing unusual phenomena and invent-
ing new classes of hypotheses that are most
likely to contain the true one; but this re-
mains an art for the creative human mind.”

E. T. Jaynes, 1985

The ability to learn kernel parameters and combina-
tion weights automatically has been an important fac-
tor in enabling the widespread use of kernel methods.
For the most part, however, it has been up to the user
to choose the proper form for the kernel, a task which
requires considerable expertise.

Towards the goal of automating this process, we in-
troduced a space of composite kernels defined compo-
sitionally as sums and products of a small number of
base kernels. We proposed a search procedure for this
space of kernels which parallels the process of scientific
discovery.

We found that the learned structures are often capa-
ble of accurate extrapolation in complex time series
datasets and are competitive with widely used kernel
classes and kernel combination methods on a variety
of prediction tasks. The learned kernels often yield de-

4github.com/jamesrobertlloyd/gp-structure-search

compositions of a signal into diverse and interpretable
components, which provides an additional degree of re-
assurance that the learned structure reflects the world.
We believe that a data-driven approach to choosing
kernel structures automatically can help make non-
parametric regression and classification methods ac-
cessible to non-experts.

A. Appendix

Kernel definitions For scalar-valued inputs, the
squared exponential (SE), periodic (Per), linear
(Lin), and rational quadratic (RQ) kernels are defined
as follows:

kSE(x, x0) = �2 exp
⇣
� (x�x0)2

2`2

⌘

kPer(x, x0) = �2 exp
⇣
� 2 sin2(⇡|x�x0|/p)

`2

⌘

kLin(x, x0) = �2
b + �2

v(x� `)(x0 � `)

kRQ(x, x0) =
⇣
1 + (x�x0)2

2↵`2

⌘�↵

Posterior decomposition We can analytically de-
compose a gp posterior distribution over additive com-
ponents using the following identity: The conditional
distribution of a Gaussian vector f1 conditioned on its
sum with another Gaussian vector f = f1 + f2 where
f1 ⇠ N (µ1,K1) and f2 ⇠ N (µ2,K2) is given by

f1|f ⇠ N
�
µ1 + K1

T(K1 + K2)
�1 (f � µ1 � µ2) ,

K1 �K1
T(K1 + K2)

�1K1

�
.



Summary of kernel structure discovery

Structure learning on kernels can be useful both for good automated prediction, and
for interpretable results.

...towards and automated statistician.



Summary

• Bayesian machine learning is simply the application of probability theory to
learning from data.

• Nonparametrics is needed to capture complexity of real data.

• New models for complex structured data:

– Random Function Model for exchangeable arrays and relations

• Fast scalable inference:

– submodular maximisation in IBPs

• Automatic structure discovery:

– kernel structure discovery in Gaussian processes



Thanks to

Konstantina Palla David Knowles Colorado Reed Andrew Wilson

James Lloyd Peter Orbanz Dan Roy David Duvenaud

http://learning.eng.cam.ac.uk/zoubin

zoubin@eng.cam.ac.uk

postdocs available! to be advertised on ml-news@googlegroups.com



Some References

• Adams, R.P., Wallach, H., Ghahramani, Z. (2010) Learning the Structure of Deep Sparse

Graphical Models. AISTATS 2010.

• Beal, M. J., Ghahramani, Z. and Rasmussen, C. E. (2002) The infinite hidden Markov model.

NIPS 14:577–585.

• Bratieres, S., van Gael, J., Vlachos, A., and Ghahramani, Z. (2010) Scaling the iHMM:

Parallelization versus Hadoop. International Workshop on Scalable Machine Learning and

Applications (SMLA-10), 1235–1240.

• Bratieres, S., Quadrianto, N, and Ghahramani, Z. (2013) Bayesian Structured Prediction Using

Gaussian Processes. http://arxiv.org/abs/1307.3846

• Bru, M. (1991). Wishart processes. Journal of Theoretical Probability 4(4):725751.

• Doshi-Velez, F. and Z. Ghahramani. (2009) Accelerated Sampling for the Indian Buffet Process.

In International Conference on Machine Learning (ICML 2009).

• Doshi-Velez, F., K.T. Miller, J. Van Gael, and Y.W. Teh. (2009) Variational Inference for the

Indian Buffet Process. In Artificial Intelligence and Statistics Conference (AISTATS 2009).

• Duvenaud, D., Lloyd, J. R., Grosse, R., Tenenbaum, J. B. and Ghahramani, Z. (2013) Structure

Discovery in Nonparametric Regression through Compositional Kernel Search. ICML 2013.

• Ghahramani, Z. (2013) Bayesian nonparametrics and the probabilistic approach to modelling.

Phil. Trans. R. Soc. A 371: 20110553.

• Griffiths, T.L., and Ghahramani, Z. (2006) Infinite Latent Feature Models and the Indian Buffet

Process. NIPS 18:475–482.

• Griffiths, T.L., and Ghahramani, Z. (2011) The Indian buffet process: An introduction and

review. Journal of Machine Learning Research 12(Apr):1185–1224.



• Kemp, C., J. B. Tenenbaum, T. L. Griffiths, T. Yamada, and N. Ueda. (2006) Learning systems

of concepts with an infinite relational model. In Proceedings of the 21st National Conference on

Artificial Intelligence.

• Lloyd, J., Orbanz, P., Ghahramani, Z. and Roy, D. (2012) Random function priors for

exchangeable graphs and arrays. NIPS 2012.

• Meeds, E., Ghahramani, Z., Neal, R. and Roweis, S.T. (2007) Modeling Dyadic Data with Binary

Latent Factors. NIPS 19:978–983.

• Miller, K.T., T. L. Griffiths, and M. I. Jordan. (2010) Nonparametric latent feature models for

link predictions. In Advances in Neural Information Processing Systems 22.

• Neal, R.M. (2000) Markov chain sampling methods for Dirichlet process mixture models. Journal

of Computational and Graphical Statistics, 9:249–265.

• Nowicki, K. and Snijders, T. A. B. (2001) Estimation and prediction for stochastic blockstructures.

Journal of the American Statistical Association, 96:1077–1087.

• Orbanz, P. (2010) Construction of nonparametric Bayesian models from parametric Bayes

equations. In Advances in Neural Information Processing Systems 22, 2010.

• Rasmussen, C.E. and Williams, C.K.I. (2006) Gaussian processes for Machine Learning. The MIT

Press.

• Reed, C. and Ghahramani, Z. (2013) Scaling the Indian Buffet Process via Submodular

Maximization. ICML 2013.

• Stepleton, T., Ghahramani, Z., Gordon, G., Lee, T.-S. (2009) The Block Diagonal Infinite Hidden

Markov Model. AISTATS 2009, 552–559.

• Teh, Y.W., Jordan, M.I, Beal, M. and Blei, D. (2004) Hierarchical Dirichlet processes. In

Advances in Neural Information Processing Systems 17. MIT Press, Cambridge, MA.



• Teh, Y.W., D. Görür, and Z. Ghahramani (2007) Stick-breaking construction for the Indian buffet

process. In Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS

2007), San Juan, Puerto Rico.

• Teh, Y.W. and Görür, D. (2010) Indian Buffet Processes with Power-law Behavior. In NIPS

2010.

• Thibaux, R. and M. I. Jordan. (2007) Hierarchical Beta processes and the Indian buffet process.

In Eleventh International Conference on Artificial Intelligence and Statistics (AISTATS 2007).

• Wilson, A.G. and Adams, R.P. (2013) Gaussian process covariance kernels for pattern discovery

and extrapolation. International Conference on Machine Learning (ICML).

• Wood, F. and T. L. Griffiths. (2007) Particle filtering for nonparametric Bayesian matrix

factorization. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information

Processing Systems 19, pages 1513–1520. MIT Press, Cambridge, MA, 2007.

• Wood, F., T. L. Griffiths, and Z. Ghahramani. (2006) A non-parametric Bayesian method

for inferring hidden causes. In Proceedings of the 22nd Conference in Uncertainty in Artificial

Intelligence (UAI ’06).

• van Gael, J., Saatci, Y., Teh, Y.-W., and Ghahramani, Z. (2008) Beam sampling for the infinite

Hidden Markov Model. ICML 2008, 1088-1095.

• van Gael, J and Ghahramani, Z. (2010) Nonparametric Hidden Markov Models. In Barber, D.,

Cemgil, A.T. and Chiappa, S. Inference and Learning in Dynamic Models. CUP.



Appendix



Dirichlet Process: Conjugacy

G ∼ DP(·|G0, α)

If the prior on G is a DP:
P (G) = DP(G|G0, α)

...and you observe θ...
P (θ|G) = G(θ)

...then the posterior is also a DP:

P (G|θ) =
P (θ|G)P (G)

P (θ)
= DP

(
α

α+ 1
G0 +

1

α+ 1
δθ, α+ 1

)

Generalization for n observations:

P (G|θ1, . . . , θn) = DP

(
α

α+ n
G0 +

1

α+ n

n∑

i=1

δθi, α+ n

)

Analogous to Dirichlet being conjugate to multinomial observations.



Dirichlet Process
Blackwell and MacQueen’s (1973) urn representation

G ∼ DP(·|G0, α) and θ|G ∼ G(·)
Then

θn|θ1, . . . θn−1, G0, α ∼ α

n− 1 + α
G0(·) +

1

n− 1 + α

n−1∑

j=1

δθj(·)

P (θn|θ1, . . . θn−1, G0, α) ∝
∫
dG

n∏

j=1

P (θj|G)P (G|G0, α)

The model exhibits a “clustering effect”.



Chinese Restaurant Process

The CRP generates samples from the distribution on partitions induced by a DPM.

T2T1 T4T3 ...

1
6

5

4
3

2

Generating from a CRP:

customer 1 enters the restaurant and sits at table 1.
K = 1, n = 1, n1 = 1
for n = 2, . . .,

customer n sits at table

{
k with prob nk

n−1+α for k = 1 . . .K

K + 1 with prob α
n−1+α (new table)

if new table was chosen then K ← K + 1 endif
endfor

“Rich get richer” property. (Aldous 1985; Pitman 2002)


