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What is Machine Learning?

Many related terms:

• Pattern Recognition

• Neural Networks

• Data Mining

• Adaptive Control

• Statistical Modelling

• Data analytics / data science

• Artificial Intelligence

• Machine Learning



Learning:
The view from different fields

• Engineering: signal processing, system identification, adaptive and optimal
control, information theory, robotics, ...

• Computer Science: Artificial Intelligence, computer vision, information retrieval,
...

• Statistics: learning theory, data mining, learning and inference from data, ...

• Cognitive Science and Psychology: perception, movement control, reinforcement
learning, mathematical psychology, computational linguistics, ...

• Computational Neuroscience: neuronal networks, neural information processing,
...

• Economics: decision theory, game theory, operational research, ...



Different fields, Convergent ideas

• The same set of ideas and mathematical tools have emerged in many of these
fields, albeit with different emphases.

• Machine learning is an interdisciplinary field focusing on both the
mathematical foundations and practical applications of systems that learn,
reason and act.



Modeling vs toolbox views of Machine Learning

• Machine Learning is a toolbox of methods for processing data: feed the data
into one of many possible methods; choose methods that have good theoretical
or empirical performance; make predictions and decisions

• Machine Learning is the science of learning models from data: define a
space of possible models; learn the parameters and structure of the models from
data; make predictions and decisions



Probabilistic Modelling

• A model describes data that one could observe from a system

• If we use the mathematics of probability theory to express all

forms of uncertainty and noise associated with our model...

• ...then inverse probability (i.e. Bayes rule) allows us to infer

unknown quantities, adapt our models, make predictions and

learn from data.



Bayes Rule

P (hypothesis|data) =
P (data|hypothesis)P (hypothesis)

P (data)

Rev’d Thomas Bayes (1702–1761)

• Bayes rule tells us how to do inference about hypotheses from data.

• Learning and prediction can be seen as forms of inference.



Plan

• Introduce Foundations

• The Intractability Problem

• Approximation Tools

• Advanced Topics

• Limitations and Discussion



Detailed Plan [Some parts will be skipped]

• Introduce Foundations

– Some canonical problems: classification,

regression, density estimation

– Representing beliefs and the Cox axioms

– The Dutch Book Theorem

– Asymptotic Certainty and Consensus

– Occam’s Razor and Marginal Likelihoods

– Choosing Priors

∗ Objective Priors:

Noninformative, Jeffreys, Reference

∗ Subjective Priors

∗ Hierarchical Priors

∗ Empirical Priors

∗ Conjugate Priors

• The Intractability Problem

• Approximation Tools

– Laplace’s Approximation

– Bayesian Information Criterion (BIC)

– Variational Approximations

– Expectation Propagation

– MCMC

– Exact Sampling

• Advanced Topics

– Feature Selection and ARD

– Bayesian Discriminative Learning (BPM vs SVM)

– From Parametric to Nonparametric Methods

∗ Gaussian Processes

∗ Dirichlet Process Mixtures

• Limitations and Discussion

– Reconciling Bayesian and Frequentist Views

– Limitations and Criticisms of Bayesian Methods

– Discussion



Some Canonical Machine Learning Problems

• Linear Classification

• Polynomial Regression

• Clustering with Gaussian Mixtures (Density Estimation)



Linear Classification

Data: D = {(x(n), y(n))} for n = 1, . . . , N
data points

x(n) ∈ RD

y(n) ∈ {+1,−1}
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Model:

P (y(n) = +1|θ,x(n)) =

 1 if

D∑
d=1

θd x
(n)
d + θ0 ≥ 0

0 otherwise

Parameters: θ ∈ RD+1

Goal: To infer θ from the data and to predict future labels P (y|D,x)



Polynomial Regression

Data: D = {(x(n), y(n))} for n = 1, . . . , N

x(n) ∈ R

y(n) ∈ R
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Model:
y(n) = a0 + a1x

(n) + a2x
(n)2 . . .+ amx

(n)m + ε

where
ε ∼ N (0, σ2)

Parameters: θ = (a0, . . . , am, σ)

Goal: To infer θ from the data and to predict future outputs P (y|D, x,m)



Clustering with Gaussian Mixtures
(Density Estimation)

Data: D = {x(n)} for n = 1, . . . , N

x(n) ∈ RD

Model:

x(n) ∼
m∑
i=1

πi pi(x
(n))

where
pi(x

(n)) = N (µ(i),Σ(i))

Parameters: θ =
(
(µ(1),Σ(1)) . . . , (µ(m),Σ(m)),π

)
Goal: To infer θ from the data, predict the density p(x|D,m), and infer which
points belong to the same cluster.



Bayesian Modelling

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



A Simple Example: Learning a Gaussian

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)
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• The model m is a multivariate Gaussian.

• Data, D are the blue dots.

• Parameters θ are the mean vector and covariance matrix of the Gaussian.



That’s it!



Questions

• What motivates the Bayesian framework?

• Where does the prior come from?

• How do we do these integrals?



Representing Beliefs (Artificial Intelligence)

Consider a robot. In order to behave intelligently
the robot should be able to represent beliefs about
propositions in the world:

“my charging station is at location (x,y,z)”

“my rangefinder is malfunctioning”

“that stormtrooper is hostile”

We want to represent the strength of these beliefs numerically in the brain of the
robot, and we want to know what mathematical rules we should use to manipulate
those beliefs.



Representing Beliefs II

Let’s use b(x) to represent the strength of belief in (plausibility of) proposition x.

0 ≤ b(x) ≤ 1
b(x) = 0 x is definitely not true
b(x) = 1 x is definitely true
b(x|y) strength of belief that x is true given that we know y is true

Cox Axioms (Desiderata):

• Strengths of belief (degrees of plausibility) are represented by real numbers

• Qualitative correspondence with common sense

• Consistency

– If a conclusion can be reasoned in several ways, then each way should lead to the same answer.

– The robot must always take into account all relevant evidence.

– Equivalent states of knowledge are represented by equivalent plausibility assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(x, y)) must satisfy the rules of
probability theory, including sum rule, product rule and therefore Bayes rule.

(Cox 1946; Jaynes, 1996; van Horn, 2003)



The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the strength of your
beliefs. That is, b(x) = 0.9 implies that you will accept a bet:{

x is true win ≥ $1
x is false lose $9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule,
there exists a set of simultaneous bets (called a “Dutch Book”) which you are
willing to accept, and for which you are guaranteed to lose money, no matter
what the outcome.

The only way to guard against Dutch Books to to ensure that your beliefs are
coherent: i.e. satisfy the rules of probability.



Asymptotic Certainty

Assume that data set Dn, consisting of n data points, was generated from some
true θ∗, then under some regularity conditions, as long as p(θ∗) > 0

lim
n→∞

p(θ|Dn) = δ(θ − θ∗)

In the unrealizable case, where data was generated from some p∗(x) which cannot
be modelled by any θ, then the posterior will converge to

lim
n→∞

p(θ|Dn) = δ(θ − θ̂)

where θ̂ minimizes KL(p∗(x), p(x|θ)):

θ̂ = argmin
θ

∫
p∗(x) log

p∗(x)

p(x|θ)
dx = argmax

θ

∫
p∗(x) log p(x|θ) dx

Warning: careful with the regularity conditions, these are just sketches of the theoretical results



Asymptotic Consensus

Consider two Bayesians with different priors, p1(θ) and p2(θ),
who observe the same data D.

Assume both Bayesians agree on the set of possible and impossible values of θ:

{θ : p1(θ) > 0} = {θ : p2(θ) > 0}

Then, in the limit of n → ∞, the posteriors, p1(θ|Dn) and p2(θ|Dn) will converge
(in uniform distance between distributions ρ(P1, P2) = sup

E
|P1(E)− P2(E)|)

coin toss demo: bayescoin...



A simple probabilistic calculation

Consider a binary variable (“rain” or “no rain” for weather, “heads” or “tails” for
a coin), x ∈ {1, 0}. Let’s model observations D = {xn : n = 1 . . . N} using a
Bernoulli distribution:

P (xn|q) = qxn(1− q)(1−xn)

for 0 ≤ q ≤ 1.

Q: Is this a sensible model?
Q: Do we have any other choices?

To learn the model parameter q, we need to start with a prior, and condition on the
observed data D. For example, a uniform prior would look like this:

P (q) = 1 for 0 ≤ q ≤ 1

Q: What is the posterior after x1 = 1?

coin toss demo: bayescoin



Model Selection
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Learning Model Structure

How many clusters in the data?
k-means, mixture models

What is the intrinsic dimensionality of the data?
PCA, LLE, Isomap, GPLVM

Is this input relevant to predicting that output?
feature / variable selection

What is the order of a dynamical system?
state-space models, ARMA, GARCH

How many states in a hidden Markov model?
HMM

SVYDAAAQLTADVKKDLRDSWKVIGSDKKGNGVALMTTY

How many independent sources in the input?
ICA

What is the structure of a graphical model?

A

D

C

B

E



Bayesian Occam’s Razor and Model Selection

Compare model classes, e.g. m and m′, using posterior probabilities given D:

p(m|D) =
p(D|m) p(m)

p(D)
, p(D|m) =

∫
p(D|θ,m) p(θ|m) dθ

Interpretations of the Marginal Likelihood (“model evidence”):

• The probability that randomly selected parameters from the prior would generate D.

• Probability of the data under the model, averaging over all possible parameter values.

• log2

(
1

p(D|m)

)
is the number of bits of surprise at observing data D under model m.

Model classes that are too simple are unlikely
to generate the data set.

Model classes that are too complex can
generate many possible data sets, so again,
they are unlikely to generate that particular
data set at random.

too simple

too complex

"just right"

All possible data sets of size n

P
(D

|m
)

D



Bayesian Model Selection: Occam’s Razor at Work
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Model Evidence

For example, for quadratic polynomials (m = 2): y = a0 + a1x + a2x
2 + ε, where

ε ∼ N (0, σ2) and parameters θ = (a0 a1 a2 σ)

demo: polybayes



On Choosing Priors

• Objective Priors: noninformative priors that attempt to capture ignorance and
have good frequentist properties.

• Subjective Priors: priors should capture our beliefs as well as possible. They
are subjective but not arbitrary.

• Hierarchical Priors: multiple levels of priors:

p(θ) =

∫
dα p(θ|α)p(α)

=

∫
dα p(θ|α)

∫
dβ p(α|β)p(β)

• Empirical Priors: learn some of the parameters of the prior from the data
(“Empirical Bayes”)



Objective Priors

Non-informative priors:

Consider a Gaussian with mean µ and variance σ2.

The parameter µ informs about the location of the data.
If we pick p(µ) = p(µ− a) ∀a then predictions are location invariant

p(x|x′) = p(x− a|x′ − a)

But p(µ) = p(µ− a) ∀a implies p(µ) = Unif(−∞,∞) which is improper.

Similarly, σ informs about the scale of the data, so we can pick p(σ) ∝ 1/σ

Problems: It is hard (impossible) to generalize to all parameters of a complicated
model. Risk of incoherent inferences (e.g. ExEy[Y |X] 6= Ey[Y ]), paradoxes, and
improper posteriors.



Objective Priors

Reference Priors:

Captures the following notion of noninformativeness. Given a model p(x|θ) we wish
to find the prior on θ such that an experiment involving observing x is expected to
provide the most information about θ.

That is, most of the information about θ will come from the experiment rather than
the prior. The information about θ is:

I(θ|x) = −
∫
p(θ) log p(θ)dθ − (−

∫
p(θ, x) log p(θ|x)dθ dx)

This can be generalized to experiments with n obserations (giving different answers)

Problems: Hard to compute in general (e.g. MCMC schemes), prior depends on
the size of data to be observed.



Objective Priors

Jeffreys Priors:

Motivated by invariance arguments: the principle for choosing priors should not
depend on the parameterization.

p(φ) = p(θ)

∣∣∣∣dθdφ
∣∣∣∣

p(θ) ∝ h(θ)1/2

h(θ) = −
∫
p(x|θ) ∂

2

∂θ2
log p(x|θ) dx (Fisher information)

Problems: It is hard (impossible) to generalize to all parameters of a complicated
model. Risk of incoherent inferences (e.g. ExEy[Y |X] 6= Ey[Y ]), paradoxes, and
improper posteriors.



Subjective Priors

Priors should capture our beliefs as well as possible.

Otherwise we are not coherent.

How do we know our beliefs?

• Think about the problems domain.

• Generate data from the prior. Does it match expectations?

Even very vague priors beliefs can be useful, since the data will concentrate the
posterior around reasonable models.

The key ingredient of Bayesian methods is not the prior, it’s the idea of averaging
over different possibilities.



Empirical “Priors”

Consider a hierarchical model with parameters θ and hyperparameters α

p(D|α) =

∫
p(D|θ)p(θ|α) dθ

Estimate hyperparameters from the data

α̂ = argmax
α

p(D|α) (level II ML)

Prediction:
p(x|D, α̂) =

∫
p(x|θ)p(θ|D, α̂) dθ

Advantages: Robust—overcomes some limitations of mis-specification of the prior.

Problem: Double counting of data / overfitting.



Exponential Family and Conjugate Priors

p(x|θ) in the exponential family if it can be written as:

p(x|θ) = f(x)g(θ) exp{φ(θ)>s(x)}

φ vector of natural parameters
s(x) vector of sufficient statistics
f and g positive functions of x and θ, respectively.

The conjugate prior for this is

p(θ) = h(η, ν) g(θ)η exp{φ(θ)>ν}

where η and ν are hyperparameters and h is the normalizing function.

The posterior for N data points is also conjugate (by definition), with
hyperparameters η +N and ν +

∑
n s(xn). This is computationally convenient.

p(θ|x1, . . . , xN) = h
(
η +N, ν +

∑
n

s(xn)
)
g(θ)η+N exp

{
φ(θ)>(ν +

∑
n

s(xn))

}



A prior exercise: logistic regression

Consider logistic regression:1

P (y = 1|w, b,x) = p =
1

1 + exp{−w>x + b}
Assume x ∈ {0, 1}D. How should we choose the prior p(w, b)?
For simplicity, let’s focus on the case:

p(w) = N(0, σ2I) p(b) = N(0, σ2)

Q: For D = 1, what happens if we choose σ � 0 as a “non-informative” prior?

Q: How does p behave for very small σ?

Q: Repeat for D = 10.

Q: Repeat for D = 1000 where we expect x to be sparse (with density 1%).

Q: Can you think of a hierarchical prior which captures a range of desired behaviors?

demo: blr
1or a typical neuron in a neural network



How to choose stupid priors: a tutorial

• Choose an improper or uninformative prior so that your marginal likelihoods are
meaningless.

• Alternatively, choose very dogmatic narrow priors that can’t adapt to the data.

• Choose a prior that is very hard to compute with.

• After choosing your prior, don’t sample from your model to see whether simulated
data make sense.

• Never question the prior. Don’t describe your prior in your paper, so that your
work is not reproducible.



Bayesian Modelling

Everything follows from two simple rules:

Sum rule: P (x) =
∑
y P (x, y)

Product rule: P (x, y) = P (x)P (y|x)

P (θ|D,m) =
P (D|θ,m)P (θ|m)

P (D|m)

P (D|θ,m) likelihood of parameters θ in model m

P (θ|m) prior probability of θ

P (θ|D,m) posterior of θ given data D

Prediction:

P (x|D,m) =

∫
P (x|θ,D,m)P (θ|D,m)dθ

Model Comparison:

P (m|D) =
P (D|m)P (m)

P (D)

P (D|m) =

∫
P (D|θ,m)P (θ|m) dθ



Computing Marginal Likelihoods can be
Computationally Intractable

Observed data y, hidden variables x, parameters θ, model class m.

p(y|m) =

∫
p(y|θ,m) p(θ|m) dθ

• This can be a very high dimensional integral.

• The presence of latent variables results in additional dimensions that need to
be marginalized out.

p(y|m) =

∫ ∫
p(y,x|θ,m) p(θ|m) dx dθ

• The likelihood term can be complicated.



Approximation Methods for Posteriors and Marginal Likelihoods

• Laplace approximation

• Bayesian Information Criterion (BIC)

• Variational approximations

• Expectation Propagation (EP)

• Markov chain Monte Carlo methods (MCMC)

• Exact Sampling

• ...

Note: there are many other deterministic approximations; we won’t review them all.



Laplace Approximation

data set y, models m,m′, . . ., parameter θ, θ′ . . .

Model Comparison: p(m|y) ∝ p(m)p(y|m)

For large amounts of data (relative to number of parameters, d) the parameter
posterior is approximately Gaussian around the MAP estimate θ̂:

p(θ|y,m) ≈ (2π)−
d
2 |A|12 exp

{
−1

2
(θ − θ̂)

>
A (θ − θ̂)

}
where −A is the d× d Hessian of the log posterior Aij = − d2

dθidθj
ln p(θ|y,m)

∣∣∣
θ=θ̂

p(y|m) =
p(θ,y|m)

p(θ|y,m)

Evaluating the above expression for ln p(y|m) at θ̂:

ln p(y|m) ≈ ln p(θ̂|m) + ln p(y|θ̂,m) +
d

2
ln 2π − 1

2
ln |A|

This can be used for model comparison/selection.



Bayesian Information Criterion (BIC)

BIC can be obtained from the Laplace approximation:

ln p(y|m) ≈ ln p(θ̂|m) + ln p(y|θ̂,m) +
d

2
ln 2π − 1

2
ln |A|

by taking the large sample limit (n→∞) where n is the number of data points:

ln p(y|m) ≈ ln p(y|θ̂,m)− d
2

lnn

Properties:

• Quick and easy to compute
• It does not depend on the prior
• We can use the ML estimate of θ instead of the MAP estimate
• It is equivalent to the MDL criterion
• Assumes that as n→∞ , all the parameters are well-determined (i.e. the model

is identifiable; otherwise, d should be the number of well-determined parameters)
• Danger: counting parameters can be deceiving! (c.f. sinusoid, infinite models)



Lower Bounding the Marginal Likelihood

Variational Bayesian Learning

Let the latent variables be x, observed data y and the parameters θ.
We can lower bound the marginal likelihood (Jensen’s inequality):

ln p(y|m) = ln

∫
p(y,x,θ|m) dx dθ

= ln

∫
q(x,θ)

p(y,x,θ|m)

q(x,θ)
dx dθ

≥
∫
q(x,θ) ln

p(y,x,θ|m)

q(x,θ)
dx dθ.

Use a simpler, factorised approximation for q(x,θ) ≈ qx(x)qθ(θ):

ln p(y|m) ≥
∫
qx(x)qθ(θ) ln

p(y,x,θ|m)

qx(x)qθ(θ)
dx dθ

def
= Fm(qx(x), qθ(θ),y).



Variational Bayesian Learning . . .

Maximizing this lower bound, Fm, leads to EM-like iterative updates:

q(t+1)
x (x) ∝ exp

[∫
ln p(x,y|θ,m) q

(t)
θ (θ) dθ

]
E-like step

q
(t+1)
θ (θ) ∝ p(θ|m) exp

[∫
ln p(x,y|θ,m) q(t+1)

x (x) dx

]
M-like step

Maximizing Fm is equivalent to minimizing KL-divergence between the approximate
posterior, qθ(θ) qx(x) and the exact posterior, p(θ,x|y,m):

ln p(y|m)−Fm(qx(x), qθ(θ),y) =

∫
qx(x) qθ(θ) ln

qx(x) qθ(θ)

p(θ,x|y,m)
dx dθ = KL(q‖p)

In the limit as n → ∞, for identifiable models, the variational lower bound
approaches the BIC criterion.



The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize p(θ|y,m) w.r.t. θ

E Step: compute

q(t+1)
x (x) = p(x|y,θ(t))

M Step:

θ
(t+1)

=argmax
θ

∫
q
(t+1)
x (x) ln p(x, y, θ) dx

Variational Bayesian EM

Goal: lower bound p(y|m)

VB-E Step: compute

q(t+1)
x (x) = p(x|y, φ̄(t)

)

VB-M Step:

q
(t+1)
θ (θ) ∝ exp

[∫
q
(t+1)
x (x) ln p(x, y, θ) dx

]

Properties:
• Reduces to the EM algorithm if qθ(θ) = δ(θ − θ∗).

• Fm increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VB-E step has same complexity as corresponding E step.

• We can use the junction tree, belief propagation, Kalman filter, etc, algorithms
in the VB-E step of VB-EM, but using expected natural parameters, φ̄.



Variational Bayesian EM

The Variational Bayesian EM algorithm has been used to approximate Bayesian
learning in a wide range of models such as:

• probabilistic PCA and factor analysis
• mixtures of Gaussians and mixtures of factor analysers
• hidden Markov models
• state-space models (linear dynamical systems)
• independent components analysis (ICA)
• discrete graphical models...

The main advantage is that it can be used to automatically do model selection
and does not suffer from overfitting to the same extent as ML methods do.

Also it is about as computationally demanding as the usual EM algorithm.

See: www.variational-bayes.org

mixture of Gaussians demo: run simple



Expectation Propagation (EP)

Data (iid) D = {x(1) . . . ,x(N)}, model p(x|θ), with parameter prior p(θ).

The parameter posterior is: p(θ|D) =
1

p(D)
p(θ)

N∏
i=1

p(x(i)|θ)

We can write this as product of factors over θ: p(θ)

N∏
i=1

p(x(i)|θ) =

N∏
i=0

fi(θ)

where f0(θ)
def
= p(θ) and fi(θ)

def
= p(x(i)|θ) and we will ignore the constants.

We wish to approximate this by a product of simpler terms: q(θ)
def
=

N∏
i=0

f̃i(θ)

min
q(θ)

KL

(
N∏
i=0

fi(θ)

∥∥∥∥∥
N∏
i=0

f̃i(θ)

)
(intractable)

min
f̃i(θ)

KL
(
fi(θ)‖f̃i(θ)

)
(simple, non-iterative, inaccurate)

min
f̃i(θ)

KL
(
fi(θ)

∏
j 6=i

f̃j(θ)
∥∥∥f̃i(θ)

∏
j 6=i

f̃j(θ)
)

(simple, iterative, accurate) ← EP



Expectation Propagation

Input f0(θ) . . . fN(θ)
Initialize f̃0(θ) = f0(θ), f̃i(θ) = 1 for i > 0, q(θ) =

∏
i f̃i(θ)

repeat
for i = 0 . . . N do

Deletion: q\i(θ)← q(θ)

f̃i(θ)
=
∏
j 6=i

f̃j(θ)

Projection: f̃newi (θ)← arg min
f(θ)

KL(fi(θ)q\i(θ)‖f(θ)q\i(θ))

Inclusion: q(θ)← f̃newi (θ) q\i(θ)
end for

until convergence

The EP algorithm. Some variations are possible: here we assumed that f0 is in
the exponential family, and we updated sequentially over i. The names for the steps
(deletion, projection, inclusion) are not the same as in (Minka, 2001)

• Minimizes the opposite KL to variational methods

• f̃i(θ) in exponential family → projection step is moment matching

• Loopy belief propagation and assumed density filtering are special cases

• No convergence guarantee (although convergent forms can be developed)



An Overview of Sampling Methods

Monte Carlo Methods:

• Simple Monte Carlo
• Rejection Sampling
• Importance Sampling
• etc.

Markov Chain Monte Carlo Methods:

• Gibbs Sampling
• Metropolis Algorithm
• Hybrid Monte Carlo
• etc.

Exact Sampling Methods



Markov chain Monte Carlo (MCMC) methods

Assume we are interested in drawing samples from some desired distribution p∗(θ),
e.g. p∗(θ) = p(θ|D,m).

We define a Markov chain:

θ0 → θ1 → θ2 → θ3 → θ4 → θ5 . . .

where θ0 ∼ p0(θ), θ1 ∼ p1(θ), etc, with the property that:

pt(θ
′) =

∫
pt−1(θ) T (θ → θ′) dθ

where T (θ → θ′) is the Markov chain transition probability from θ to θ′.

We say that p∗(θ) is an invariant (or stationary) distribution of the Markov chain
defined by T iff:

p∗(θ′) =

∫
p∗(θ)T (θ → θ′) dθ



Markov chain Monte Carlo (MCMC) methods

We have a Markov chain θ0 → θ1 → θ2 → θ3 → . . . where θ0 ∼ p0(θ), θ1 ∼ p1(θ),
etc, with the property that:

pt(θ
′) =

∫
pt−1(θ) T (θ → θ′) dθ

where T (θ → θ′) is the Markov chain transition probability from θ to θ′.
A useful condition that implies invariance of p∗(θ) is detailed balance:

p∗(θ′) T (θ′ → θ) = p∗(θ) T (θ → θ′)

MCMC methods define ergodic Markov chains, which converge to a unique
stationary distribution (also called an equilibrium distribution) regardless of the
initial conditions p0(θ):

lim
t→∞

pt(θ) = p∗(θ)

Procedure: define an MCMC method with equilibrium distribution p(θ|D,m), run
method and collect samples. There are also sampling methods for p(D|m).

demos?



Exact Sampling

a.k.a. perfect simulation, coupling from the past

Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/0521642981

You can buy this book for 30 pounds or $50. See http://www.inference.phy.cam.ac.uk/mackay/itila/ for links.
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(from MacKay 2003)

• Coupling: running multiple Markov chains (MCs) using the same
random seeds. E.g. imagine starting a Markov chain at each possible
value of the state (θ).

• Coalescence: if two coupled MCs end up at the same state at time
t, then they will forever follow the same path.

• Monotonicity: Rather than running an MC starting from every
state, find a partial ordering of the states preserved by the coupled
transitions, and track the highest and lowest elements of the partial
ordering. When these coalesce, MCs started from all initial states
would have coalesced.

• Running from the past: Start at t = −K in the past, if highest and
lowest elements of the MC have coalesced by time t = 0 then all
MCs started at t = −∞ would have coalesced, therefore the chain
must be at equilibrium, therefore θ0 ∼ p∗(θ).

Bottom Line This procedure, when it produces a sample, will produce
one from the exact distribution p∗(θ).



Discussion



Myths and misconceptions about Bayesian methods

• Bayesian methods make assumptions where other methods don’t
All methods make assumptions! Otherwise it’s impossible to predict. Bayesian
methods are transparent in their assumptions whereas other methods are often
opaque.

• If you don’t have the right prior you won’t do well
Certainly a poor model will predict poorly but there is no such thing as
the right prior! Your model (both prior and likelihood) should capture a
reasonable range of possibilities. When in doubt you can choose vague priors
(cf nonparametrics).

• Maximum A Posteriori (MAP) is a Bayesian method
MAP is similar to regularization and offers no particular Bayesian advantages.
The key ingredient in Bayesian methods is to average over your uncertain
variables and parameters, rather than to optimize.



Myths and misconceptions about Bayesian methods

• Bayesian methods don’t have theoretical guarantees
One can often apply frequentist style generalization error bounds to Bayesian
methods (e.g. PAC-Bayes). Moreover, it is often possible to prove convergence,
consistency and rates for Bayesian methods.

• Bayesian methods are generative
You can use Bayesian approaches for both generative and discriminative
learning (e.g. Gaussian process classification).

• Bayesian methods don’t scale well
With the right inference methods (variational, MCMC) it is possible to
scale to very large datasets (e.g. excellent results for Bayesian Probabilistic
Matrix Factorization on the Netflix dataset using MCMC), but it’s true that
averaging/integration is often more expensive than optimization.



But surely Bayesian methods are not needed for Big Data...

• Argument: As the number of data N →∞, Bayes → maximum likelihood, prior
washes out, integration becomes unneccessary!

• But this assumes we want to learn a fixed simple model from N → ∞ iid data
points... not really a good use of Big Data!

• More realistically, Big Data = { Large Set of little data sets }, e.g. recommender
systems, personalised medicine, genomes, web text, images, market baskets...

• We would really like to learn models in which the number of parameters grows
with the size of the data set (c.f. nonparametrics)

• Since we still need to guard from overfitting, and represent uncertainty, a coherent
way to do this is to use probabilistic models and probability theory (i.e. sum,
product, Bayes rule) to learn them.



TrueSkill: a planetary scale Bayesian model



Reconciling Bayesian and Frequentist Views

Frequentist theory tends to focus on sampling properties of estimators, i.e. what
would have happened had we observed other data sets from our model. Also look
at minimax performance of methods – i.e. what is the worst case performance if
the environment is adversarial. Frequentist methods often optimize some penalized
cost function.

Bayesian methods focus on expected loss under the posterior. Bayesian methods
generally do not make use of optimization, except at the point at which decisions
are to be made.

There are some reasons why frequentist procedures are useful to Bayesians:

• Communication: If Bayesian A wants to convince Bayesians B, C, and D of the validity of

some inference (or even non-Bayesians) then he or she must determine that not only does this

inference follows from prior pA but also would have followed from pB, pC and pD, etc. For this

reason it’s useful sometimes to find a prior which has good frequentist (sampling / worst-case)

properties, even though acting on the prior would not be coherent with our beliefs.

• Robustness: Priors with good frequentist properties can be more robust to mis-specifications of

the prior. Two ways of dealing with robustness issues are to make sure that the prior is vague

enough, and to make use of a loss function to penalize costly errors.

also, see PAC-Bayesian frequentist bounds on Bayesian procedures.



Cons and pros of Bayesian methods

Limitations and Criticisms:

• They are subjective.
• It is hard to come up with a prior, the assumptions are usually wrong.
• The closed world assumption: need to consider all possible hypotheses for the

data before observing the data.
• They can be computationally demanding.
• The use of approximations weakens the coherence argument.

Advantages:

• Coherent.
• Conceptually straightforward.
• Modular.
• Often good performance.



Summary

Probabilistic (i.e. Bayesian) methods are:

• simple (just two rules)
• general (can be applied to any model)
• avoid overfitting (because you don’t fit)
• are a coherent way of representing beliefs (Cox axioms)
• guard against inconsistency in decision making (Dutch books)

Some further reading:

- Ghahramani, Z. (2013) Bayesian nonparametrics and the probabilistic approach to modelling.

Philosophical Transactions of the Royal Society A. 371: 20110553.

- Ghahramani, Z. (2004) Unsupervised Learning. In Bousquet, O., von Luxburg, U. and Rätsch,

G. Advanced Lectures in Machine Learning. Lecture Notes in Computer Science 3176, pages

72-112. Berlin: Springer-Verlag.

Thanks for your patience!



Appendix



Two views of machine learning

• The goal of machine learning is to produce general
purpose black-box algorithms for learning. I should
be able to put my algorithm online, so lots of
people can download it. If people want to apply
it to problems A, B, C, D... then it should work
regardless of the problem, and the user should not
have to think too much.

• If I want to solve problem A it seems silly to use some
general purpose method that was never designed for
A. I should really try to understand what problem
A is, learn about the properties of the data, and
use as much expert knowledge as I can. Only then
should I think of designing a method to solve A.


