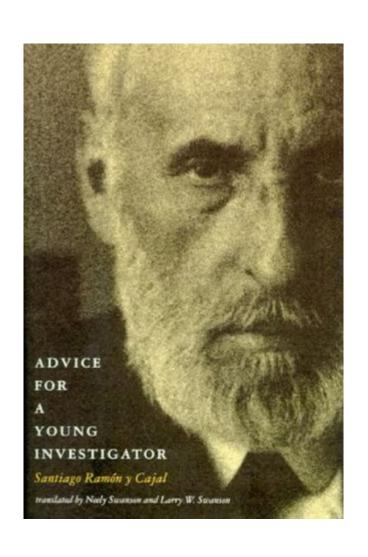
Biological Learning

Peter Dayan

Gatsby Computational Neuroscience Unit

Nathaniel Daw Sam Gershman Sham Kakade Yael Niv

5. Diseases of the Will

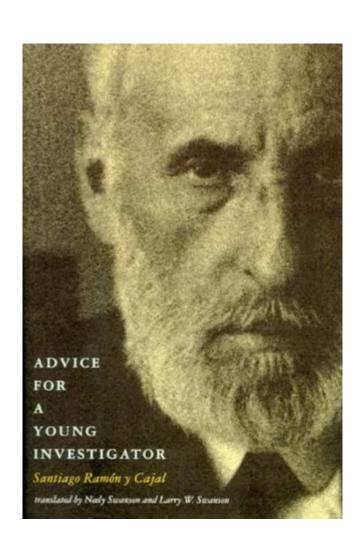


- Contemplators
- Bibliophiles and Polyglots
- Megalomaniacs
- Instrument addicts
- Misfits

Biological Learning

- error minimization/delta rule
- temporal difference learning
- Kalman filter
- Dirichlet process mixture/NPB
- Bayesian Q-learning; Bayes-adaptive MDPs
- memory-based reasoning
- particle filters for inference
- unsupervised `structural' learning

5. Diseases of the Will



- Contemplators
- Bibliophiles and Polyglots
- Megalomaniacs
- Instrument addicts
- Misfits

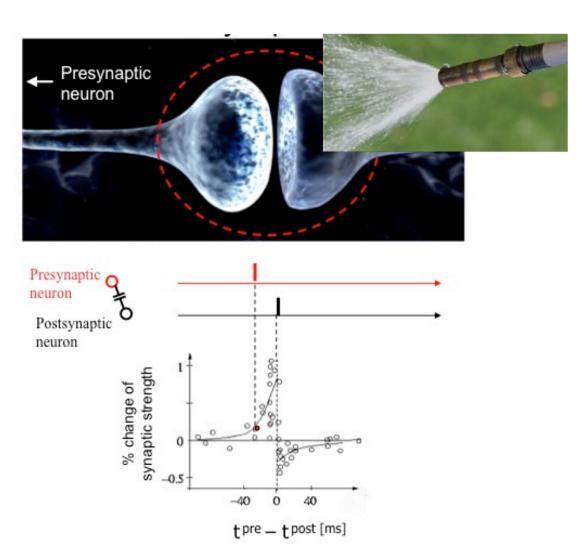
Theorists

Theorists

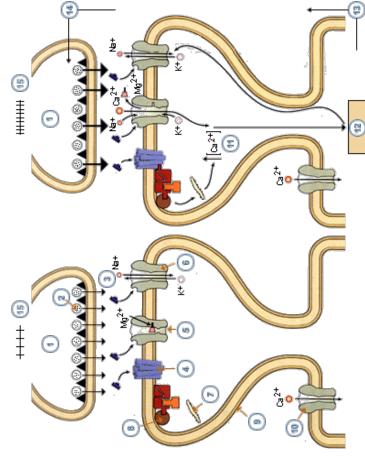
There are highly cultivated, wonderfully endowed minds whose wills suffer from a particular form of lethargy. Its undeniable symptoms include a facility for exposition, a creative and restless imagination, an aversion to the laboratory, and an indomitable dislike for concrete science and seemingly unimportant data... When faced with a difficult problem, they feel an irresistible urge to formulate a theory rather than question nature.

As might be expected, disappointments plague the theorist...

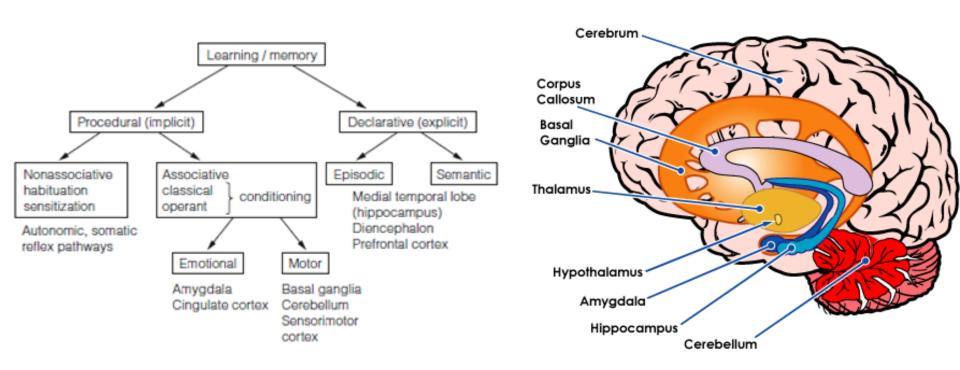
Neuroscience of Learning



dopamine; acetylcholine



Psychobiology of Learning

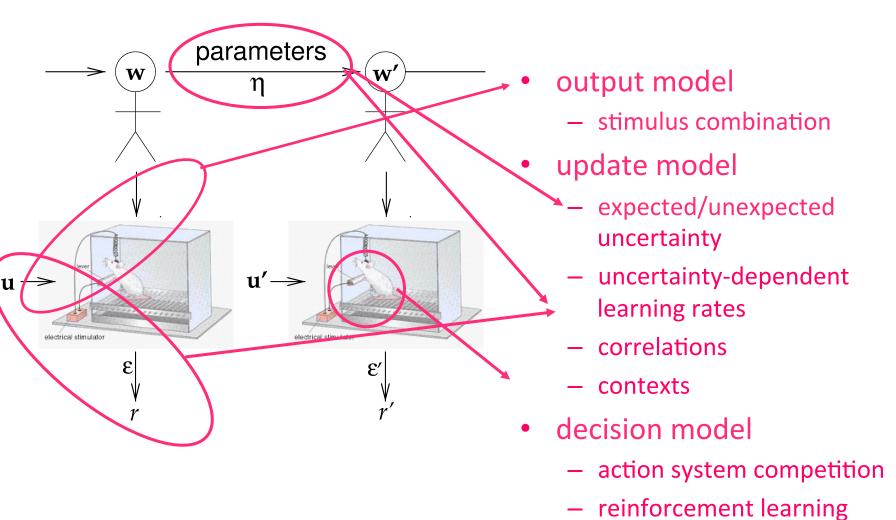


- representational learning
- ubiquitous learning of predictions
- forward/inverse models

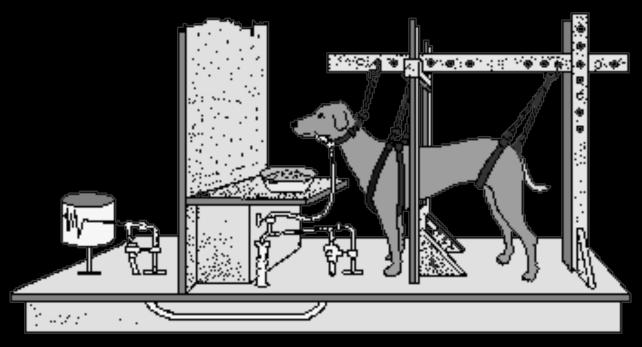
Biological Learning

- conditioning and neural reinforcement learning
 - temporal difference learning and dopamine
 - uncertainty, acetylcholine and correlations
 - contexts and non-parametric Bayes
 - model-based, model-free and episodic RL
- representational learning
 - Hebb, PCA and infomax
 - deep learning and beyond

Computational Conditioning



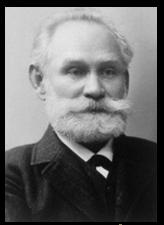
Layer 1: simple prediction learning



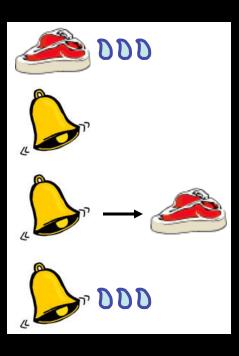
Unconditioned Stimulus

= Conditioned Stimulus

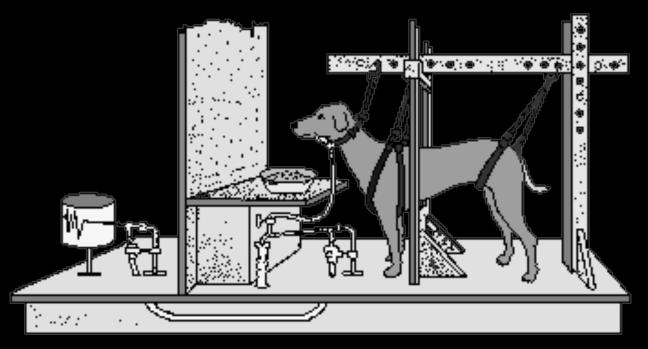
Unconditioned Response (reflex);Conditioned Response (reflex)

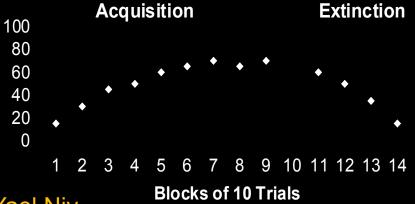


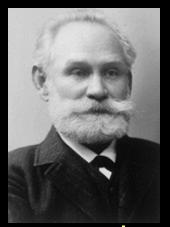
Ivan Pavlov



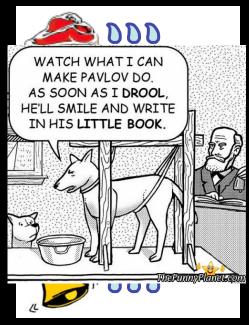
Animals learn predictions







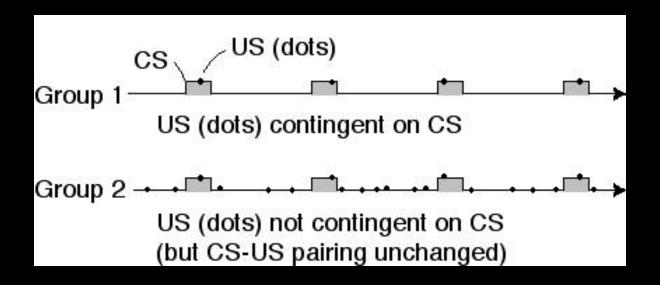
Ivan Pavlov



very general across species, stimuli, behaviors

But do they really?

1. Rescorla's control

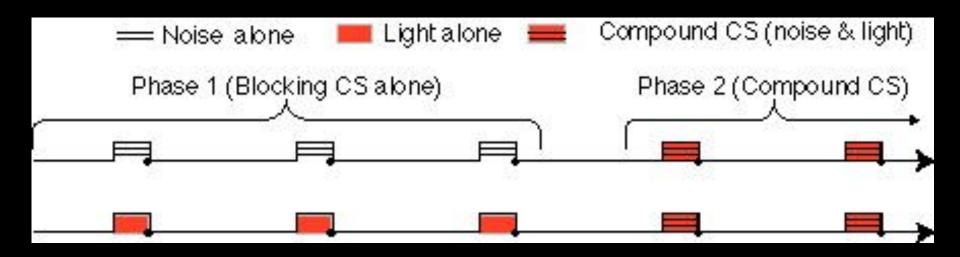


temporal contiguity is not enough - need contingency

P(food | light) > P(food | no light)

But do they really?

2. Kamin's blocking



contingency is not enough either... need surprise

Rescorla-Wagner

delta rule:

- $-V(n) = \sum_{i} w_i u_i(n)$
- $-\delta(n) = r(n) V(n)$
- $-\Delta w_i = \alpha_i(n)\delta(n)u_i(n)$

Assumptions:

- learning is driven by error (formalizes notion of surprise)
- summations of predictors is linear

A simple model - but very powerful!

- explains: gradual acquisition & extinction, blocking, overshadowing, conditioned inhibition, and more..
- predicted overexpectation
- associabilities

Rescorla-Wagner learning

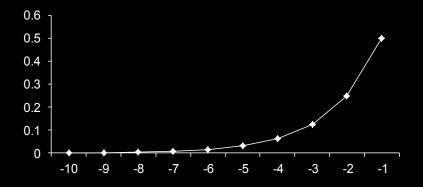
$$V_{t+1} = V_t + \eta (r_t - V_t)$$

how is the prediction on trial (t) influenced by rewards at times (t-1), (t-2), ...?

$$V_{t+1} = (1 - \eta)V_t + \eta r_t$$

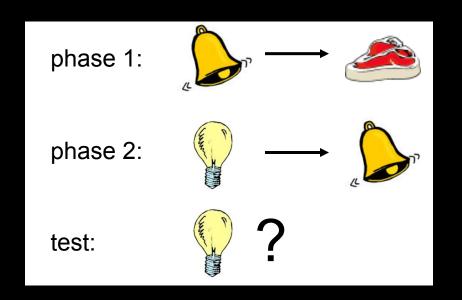
$$V_{t} = \eta \sum_{i=1}^{t} (1 - \eta)^{t-i} r_{i}$$

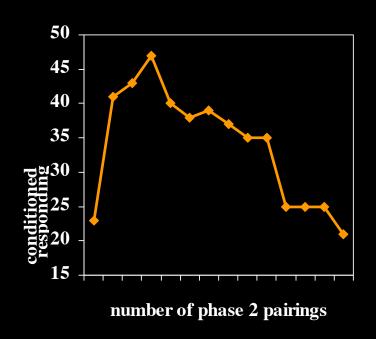
the R-W rule estimates expected reward using a weighted average of past rewards



recent rewards weigh more heavily learning rate = forgetting rate

But: second order conditioning





what would Rescorla-Wagner learning predict here?

animals learn that a predictor of a predictor is also a predictor of reward!

⇒ not interested solely in predicting immediate reward

need new formulation

Marr's 3 levels:

The problem: optimal prediction of future reward

$$V_{t} = E\left[\sum_{i=t}^{T} r_{i}\right]$$
 want to predict expected sum of future reward in a trial/episode

(N.B. here t indexes time within a trial)

what's the obvious prediction error?

$$\delta = r - V_{CS}$$

$$\delta_t = \sum_{i=t}^T r_i - V_t$$

what's the obvious problem with this?

lets start over: this time from the top

Marr's 3 levels:

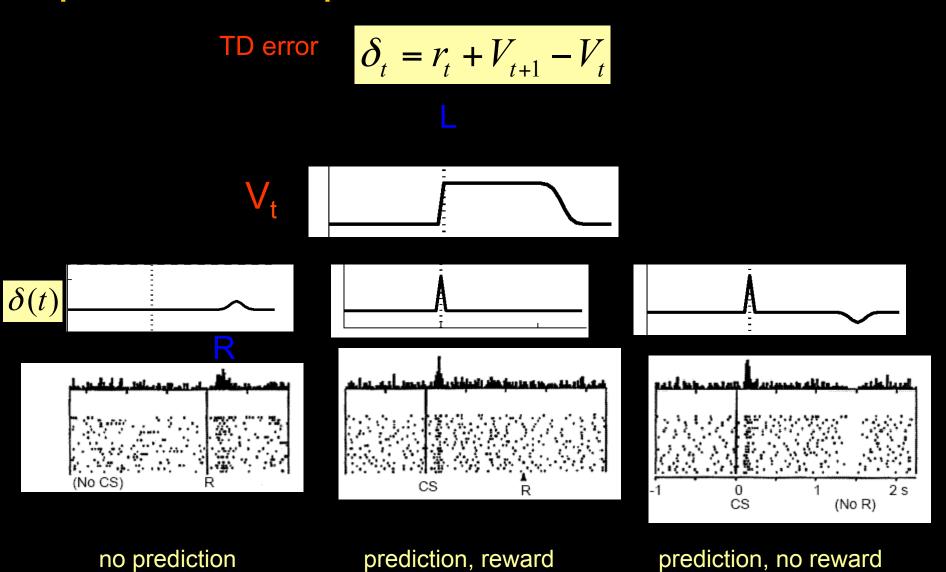
The problem: optimal prediction of future reward

$$V_{t} = E\left[\sum_{i=t}^{T} r_{i}\right]$$
 want to predict expected sum of future reward in a trial/episode

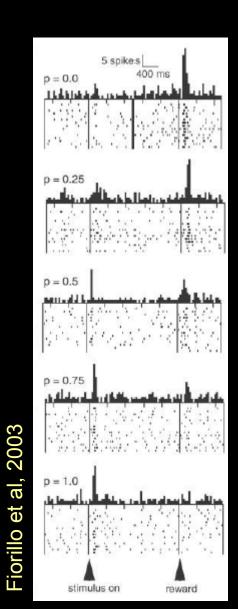
$$V_t = E[r_t + r_{t+1} + r_{t+2} + \dots + r_T]$$

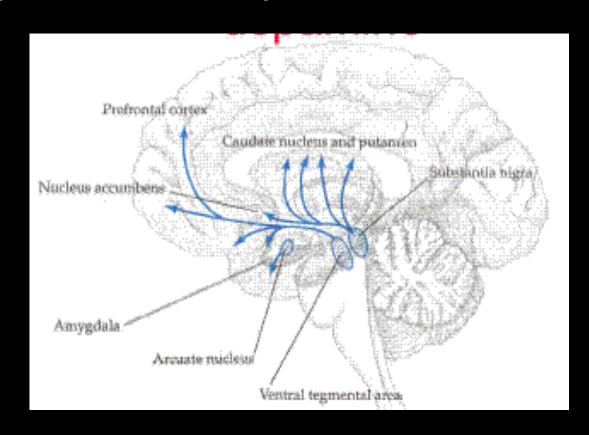
Bellman eqn for policy evaluation

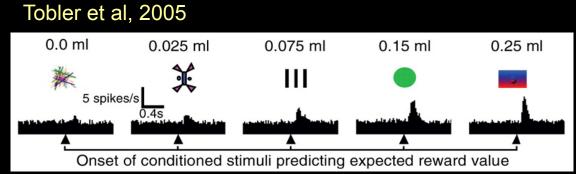
dopamine and prediction error



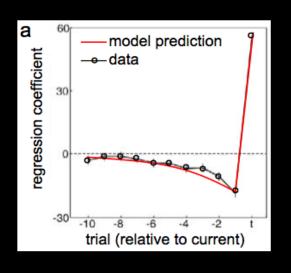
prediction error hypothesis of dopamine

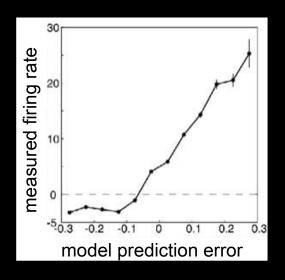






prediction error hypothesis of dopamine

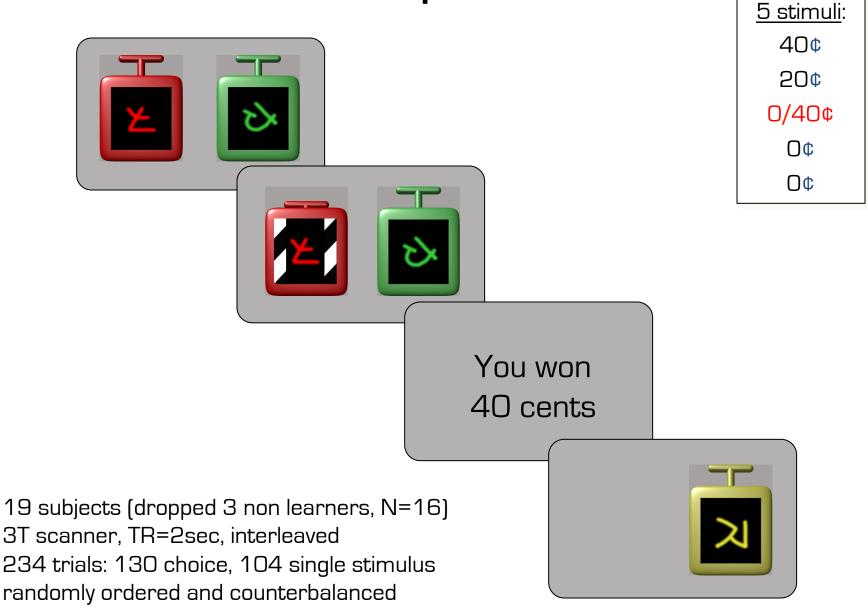




at end of trial: $\delta_t = r_t - V_t$ (just like R-W)

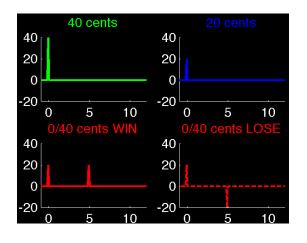
$$V_{t} = \eta \sum_{i=1}^{t} (1 - \eta)^{t-i} r_{i}$$

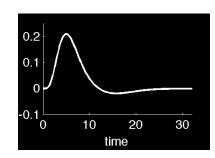
Risk Experiment

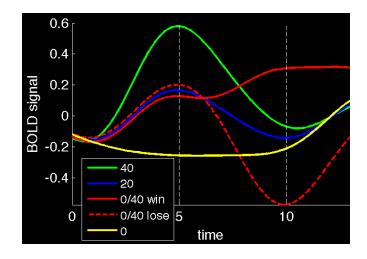


Neural results: Prediction Errors

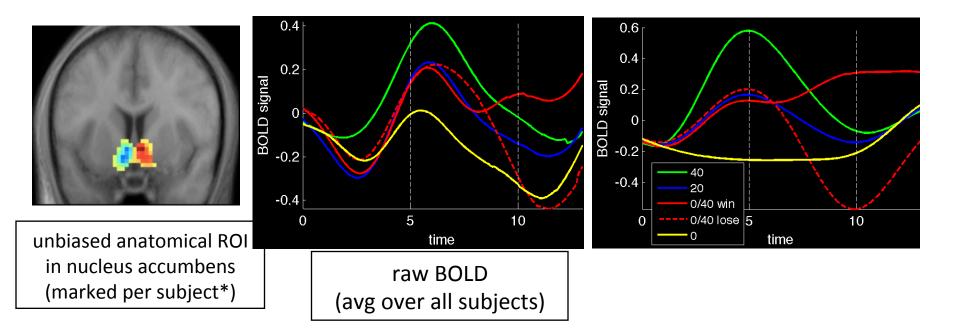
what would a prediction error look like (in BOLD)?







Neural results: Prediction errors in NAC



can actually decide between different neuroeconomic models of risk

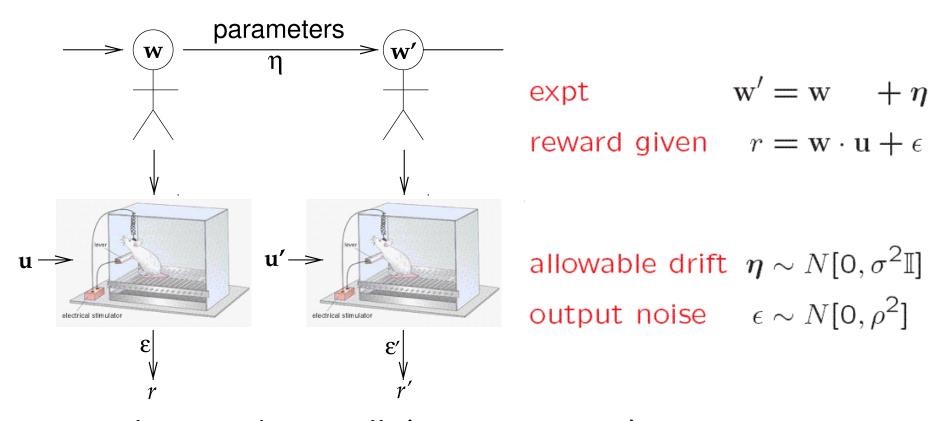


* thanks to Laura deSouza

Biological Learning

- conditioning and neural reinforcement learning
 - temporal difference learning and dopamine
 - uncertainty, acetylcholine and correlations
 - contexts and non-parametric Bayes
 - model-based, model-free and episodic RL
- representational learning
 - Hebb, PCA and infomax
 - deep learning and beyond

Kalman Filter



- Markov random walk (or OU process)
- no punctate changes
- additive model of combination
- forward inference

Kalman Posterior

The Kalman filter maintains uncertainty:

$$P(V) = \mathcal{N}[\hat{\mathbf{w}} \cdot \mathbf{u}, \mathbf{u} \cdot \mathbf{\Sigma} \cdot \mathbf{u}]$$

where

Assumed Density KF

Diagonal approx to $\Sigma = \text{diag}(\sigma_i^2)$

If $\mathbf{w} \sim \mathcal{N}\left[\widehat{\mathbf{w}}, \mathsf{diag}(\sigma_i^2)\right]$, then

$$\Delta \hat{w}_i = \frac{\sigma_i^2}{\sum_j \sigma_j^2 + \rho^2} (r - \mathbf{u} \cdot \hat{\mathbf{w}}) u_i$$

- Rescorla-Wagner error correction
- competitive allocation of learning
 - Pearce & Hall

Blocking

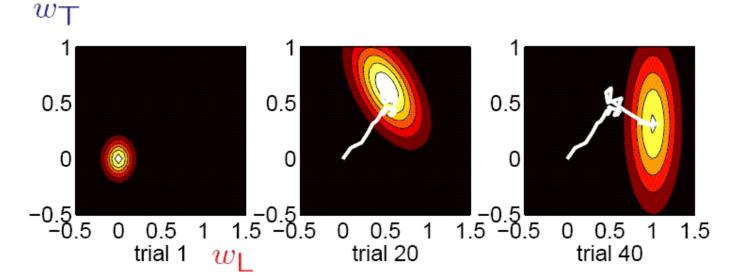
forward	L→r	L+T→r	extstyle ext
backward	L+T→r	L→r	$T \rightarrow \cdot$

forward blocking: error correction

$$\cdot (r - \mathbf{u} \cdot \hat{\mathbf{w}})$$

backward blocking: -ve off-diag

 $\Sigma_{\mathsf{LT}} < 0$



Mackintosh vs P&H

under diagonal approximation:

$$\mathbf{E}(r - \mathbf{u} \cdot \hat{\mathbf{w}})^2 = \rho^2 + \sum_j \sigma_j^2 u_i^2$$

for slow learning,

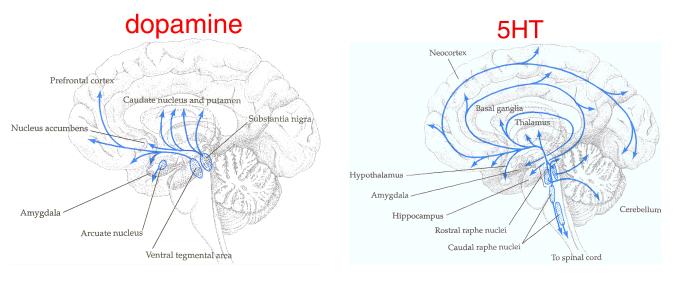
 σ_j^2 changes with correlation of (r-V) and u_i

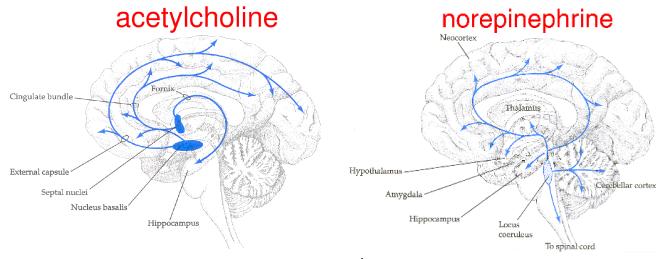
effect like Mackintosh

Summary

- Kalman filter models many standard conditioning paradigms
- elements of RW, Mackintosh, P&H
- but:
 - downwards unblocking $L \to r \Delta r \qquad L + T \to r \qquad T \looparrowright \pm r$ predictor competition
 - representational learning L \rightarrow r; T \rightarrow r; L+T \rightarrow ·
- recency vs primacy (Kruschke)

How are Learning Rates Implemented?





general excitability, signal/noise ratios

specific prediction errors, uncertainty signals

ACh in Hippocampus

ACh in Conditioning

Given *unfamiliarity*, ACh:

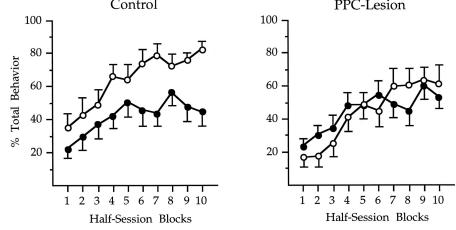
- boosts bottom-up, suppresses recurrent processing
- boosts recurrent plasticity

Entorhinal cortex Hippocampus Rapid (DG) self-organized representation Self-organized representation Heteroassociative Autoassociative Comparison recall Recall (CA3) CA1 ACh Regulation of (MS) learning dynamics

Given *uncertainty*, ACh:

boosts learning to stimuli of uncertain consequences

Table 1. Outline of procedures for Experiment 1				
Treatment condition (groups)	Phase 1: consistent L–T relation	Phase 2: experimental change in L-T relation	Phase 3: test of conditioning to I	
Consistent (CTL-C, PPC-C)	$L \to T \to \text{food}; \ L \to T$	$L \to T \to \text{food}; L \to T$	$L \to food$	
Shift (CTL-S, PPC-S)	$L \to T \to \text{food}; L \to T$	$L \to T \to \text{food}; L$	$L \to food$	
Control		PPC-Lesion		



(Hasselmo, 1995)

(Bucci, Holland, & Galllagher, 1998)

Uncertainty and Learning

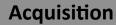
- faster learning for more expected uncertainty
- cholinergic substrate but cortical representations also
- animals seem to elide reducible and irreducible uncertainty
- what about unexpected uncertainty?

Biological Learning

- conditioning and neural reinforcement learning
 - temporal difference learning and dopamine
 - uncertainty, acetylcholine and correlations
 - contexts and non-parametric Bayes
 - model-based, model-free and episodic RL
- representational learning
 - Hebb, PCA and infomax
 - deep learning and beyond

reinstatement

Test



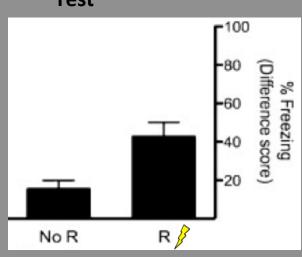
Extinction

extinction ≠ unlearning

Acquisition

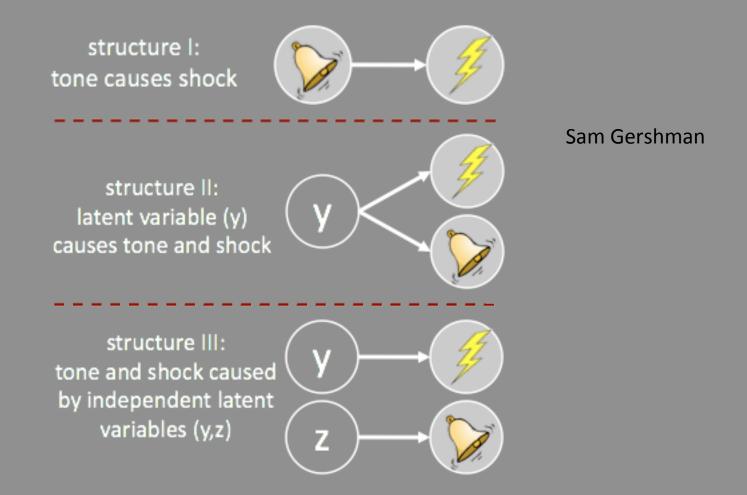
Extinction

Test



Storsve, McNally & Richardson, 2012

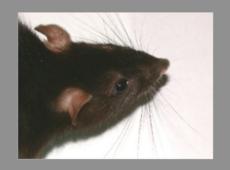
learning causal structure: Gershman & Niv

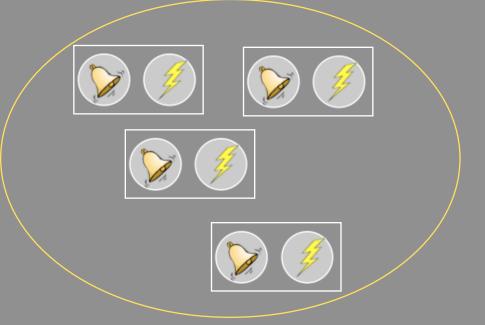


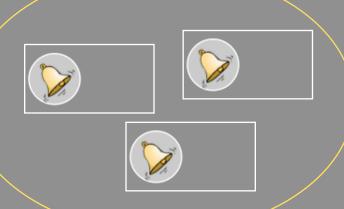
conditioning as clustering: DPM

Gershman & Niv;

Daw & Courville; Redish





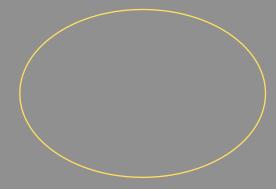


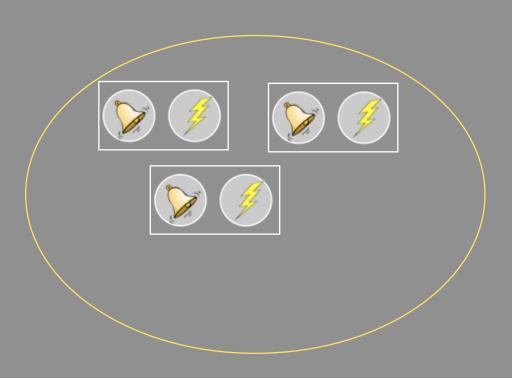
Within each cluster: "learning as usual" (Rescorla-Wagner, RL etc.)

associative learning versus state

learning Gershman & Niv



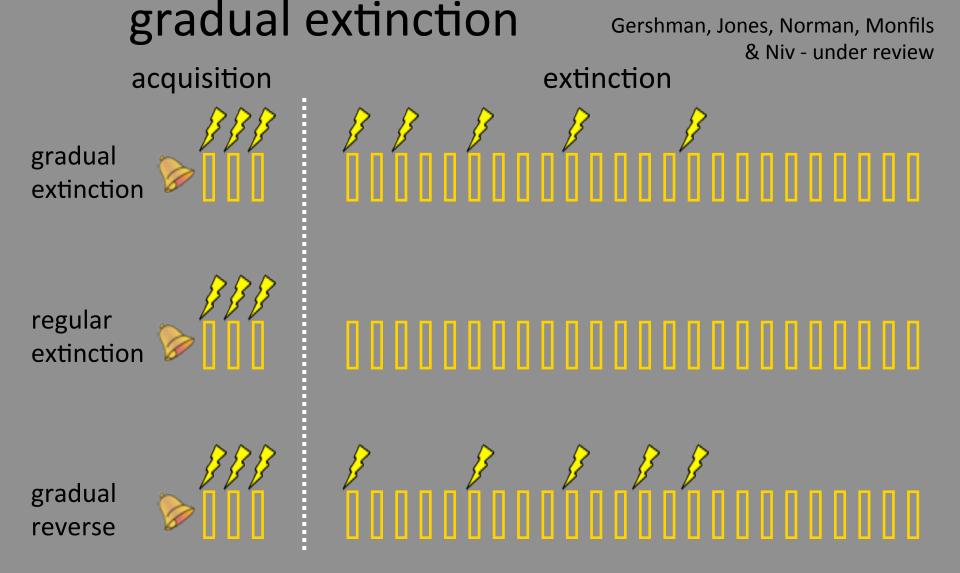


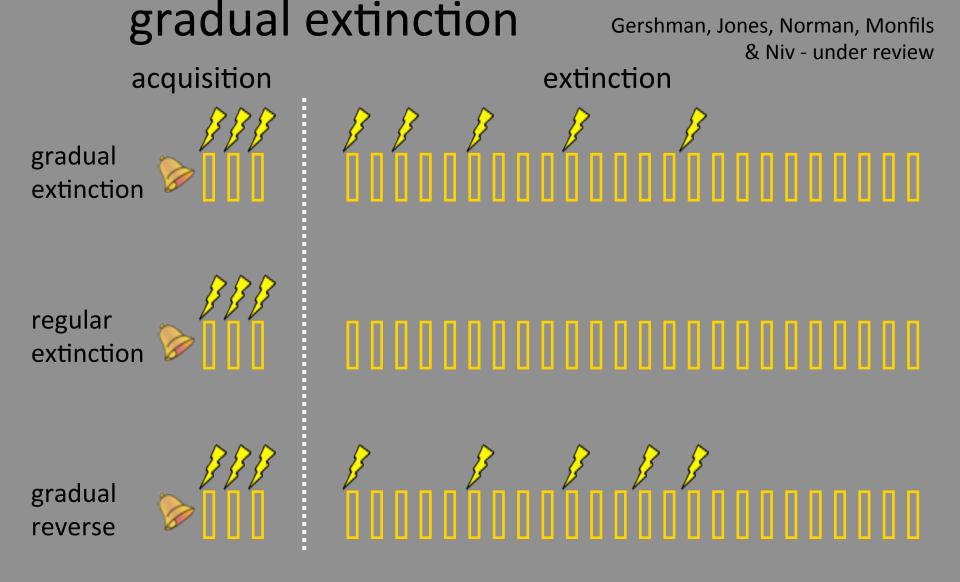


how to erase a fear memory

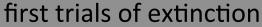
hypothesis: prediction errors (dissimilar data) lead to new states

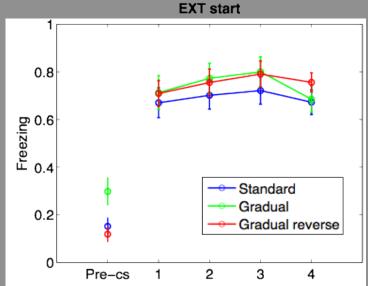
what if we make extinction a bit more similar to acquisition?



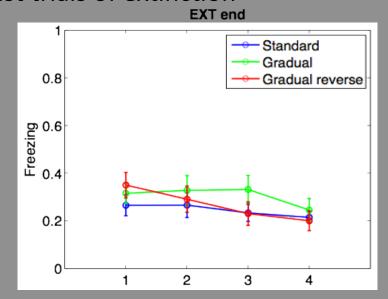


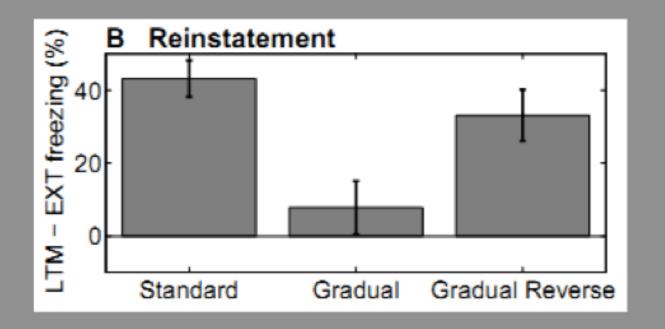
test one day (reinstatement) or 30 days later (spontaneous recovery)





last trials of extinction





only gradual extinction group shows no reinstatement

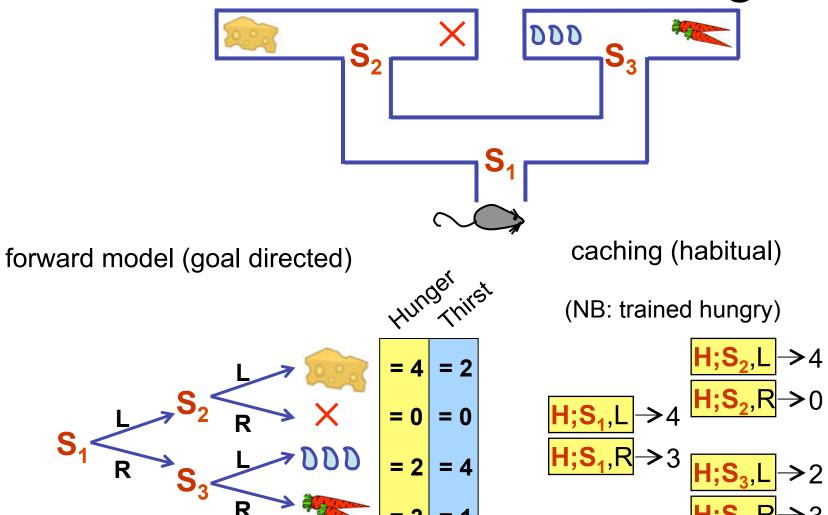
unexpected uncertainty

- stability-plasticity dilemma (Grossberg)
 - solved by clustering
- realization:
 - norepinephrine neural interrupt
 - orbitofrontal cortex
- NPB sensitive to prior for novel context
- explains surprising effects in extinction, reconsolidiation, etc

Biological Learning

- conditioning and neural reinforcement learning
 - temporal difference learning and dopamine
 - uncertainty, acetylcholine and correlations
 - contexts and non-parametric Bayes
 - model-based, model-free and episodic RL
- representational learning
 - Hebb, PCA and infomax
 - deep learning and beyond

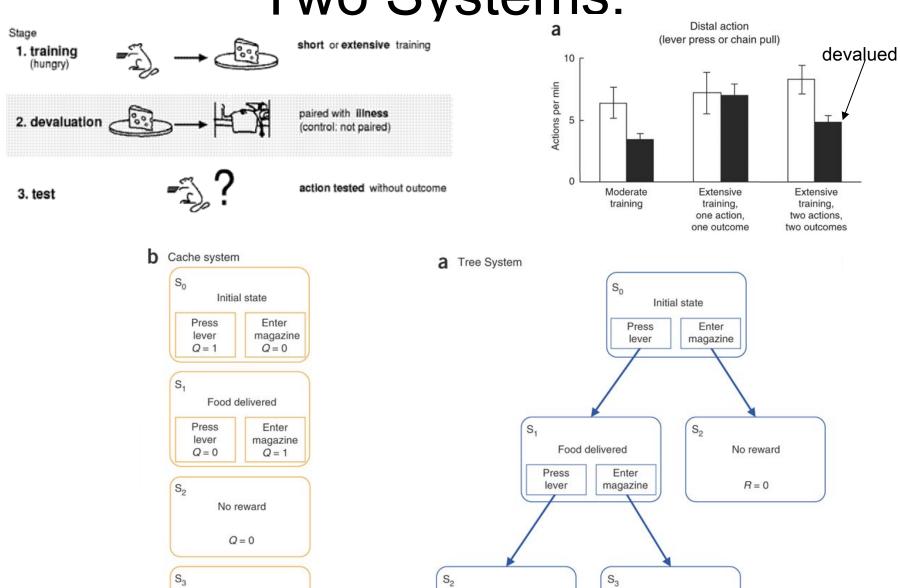
Reinforcement Learning



acquire with simple learning rules

acquire recursively

Two Systems:



No reward

R = 0

Food obtained

R = 1

Food obtained

Q = 1

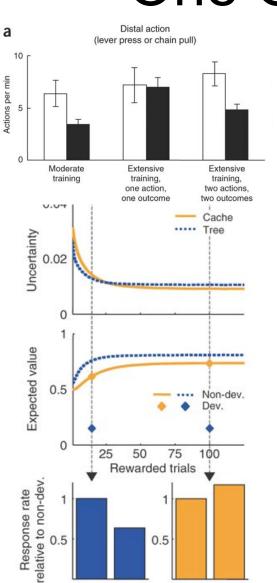
Behavioural Effects



Learning

- uncertainty-sensitive learning for both systems:
 - model-based:
 - data efficient
 - computationally ruinous
 - model-free:
 - data inefficient
 - computationally trivial
 - uncertainty-sensitive control migrates from actions to habits

One Outcome



Dev.

Non-

dev.

Dev.

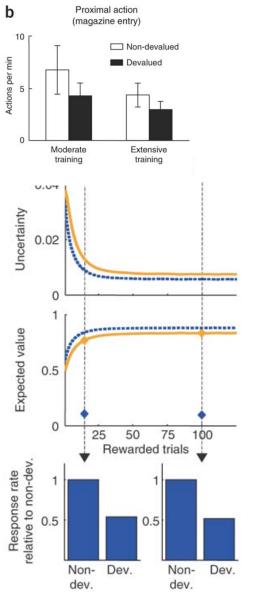
Non-

dev.

uncertainty-

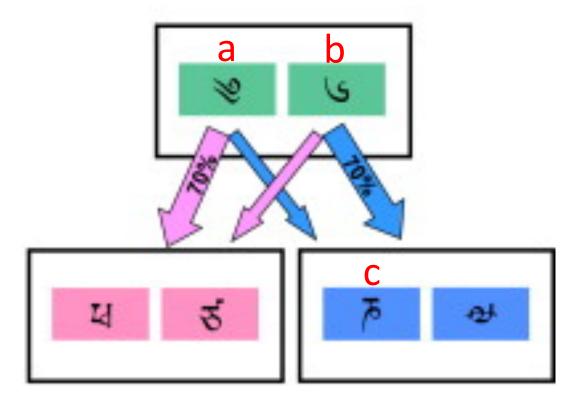
sensitive

learning



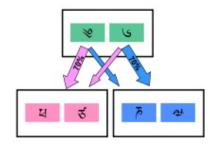
shallow tree implies goal-directed control wins Niv, Dayan

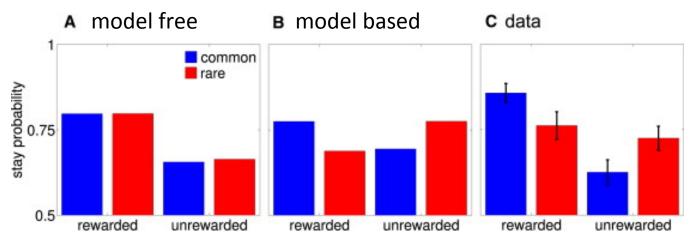
Human Canary...



- if $a \rightarrow c$ and $c \rightarrow fff$, then do more of a or b?
 - MB: b
 - MF: a (or even no effect)

Behaviour



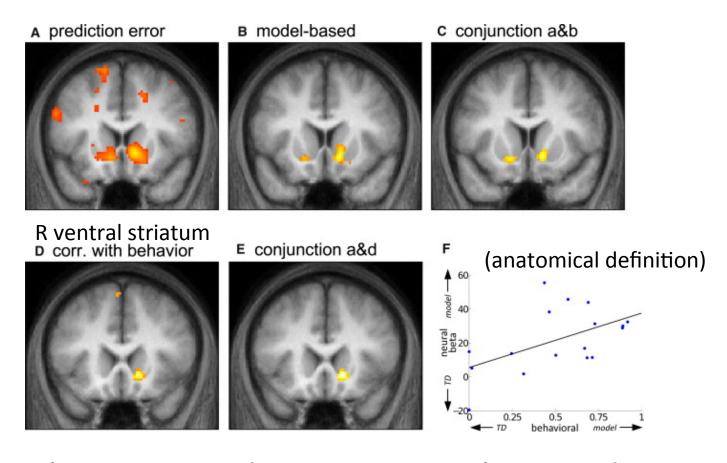


assume a mix

$$Q_{tot}(x,a) = (1-\beta)Q_{MF}(x,a) + \beta Q_{MB}(x,a)$$

• expect that β will vary by subject (but be fixed)

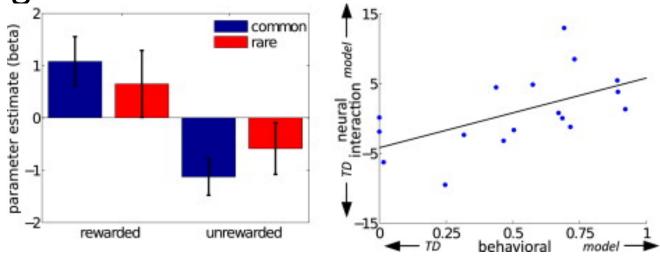
Neural Prediction Errors $(1\rightarrow 2)$

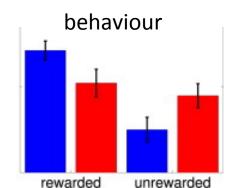


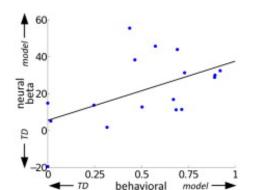
 note that MB RL does not use this prediction error – training signal?

Neural Prediction Errors (1)

right nucleus accumbens





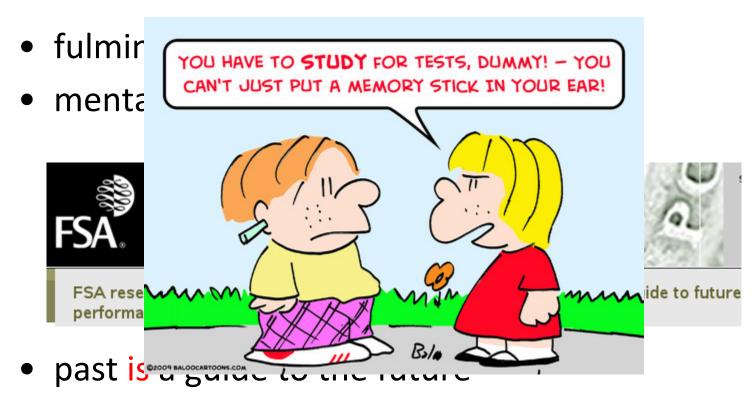


1-2, not 1

Model-based and Model-free

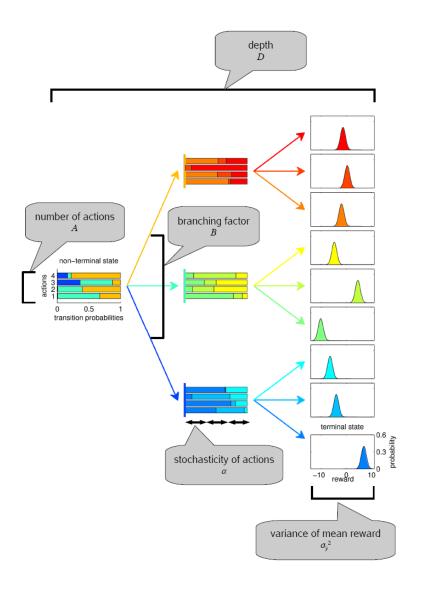
- categories justified by statistical/ computational costs
- separate neural substrates
- but:
 - more integrated than we thought
 - process account for MB (DYNA-2)?
 - related to many other dichotomies
 - MB priors?

Why have Episodic memory?



- why single events and not statistics?
- role of hippocampus in control?

The Third Way



simple domain

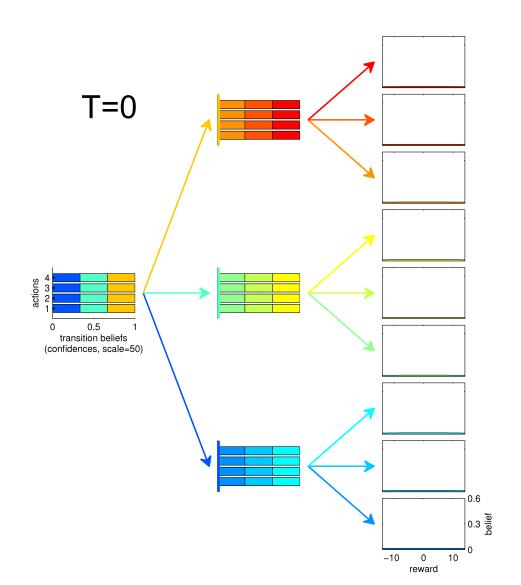
model-based control:

- build a tree
- evaluate states
- count cost of uncertainty

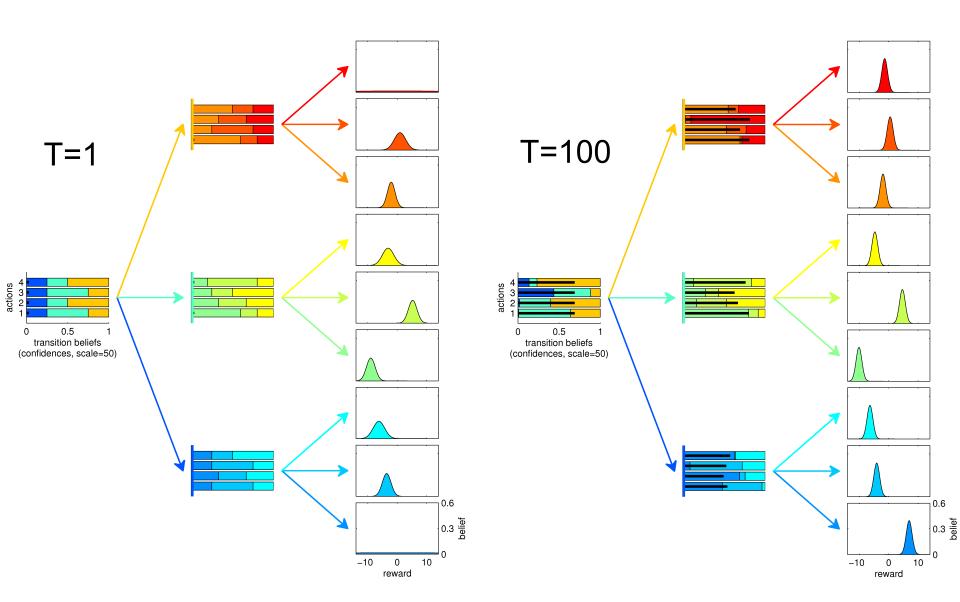
episodic control:

- store conjunction of states, actions, rewards
- if reward > expectation, store all actions in the whole episode (Düzel)
- choose rewarded action; else random

Semantic Controller



Semantic Controller



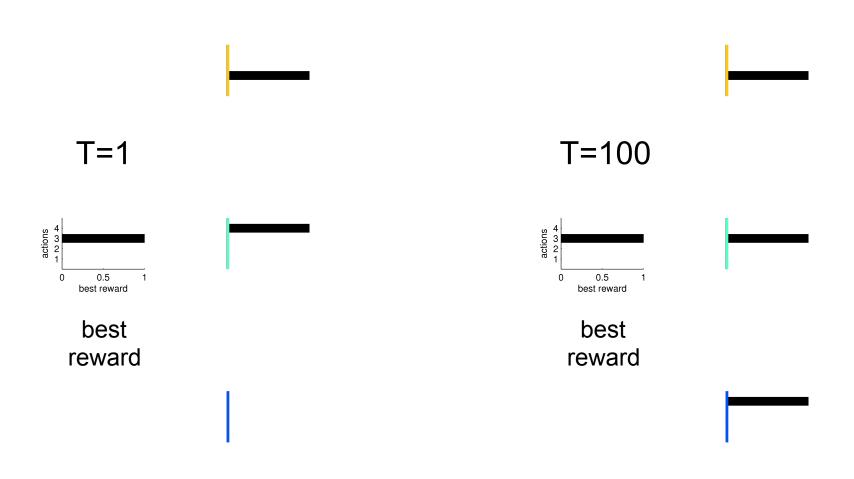
Episodic Controller

T=0

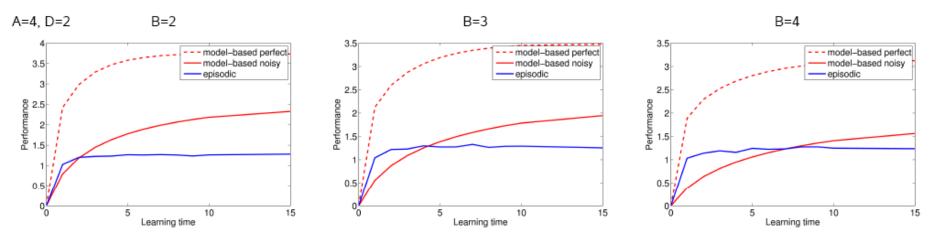
0 0.5 1 best reward

best reward

Episodic Controller



Performance



- episodic advantage for early trials
- lasts longer for more complex environments
- can't compute statistics/semantic information

Neural Reinforcement Learning

- error minimization/delta rule
- temporal difference learning
- Kalman filter
- Chinese restaurant process/NPB
- Bayesian Q-learning; Bayes-adaptive MDPs
- memory-based RL
- mixture models for attention
- particle filter for inference
- unsupervised learning random effects models for individual differences

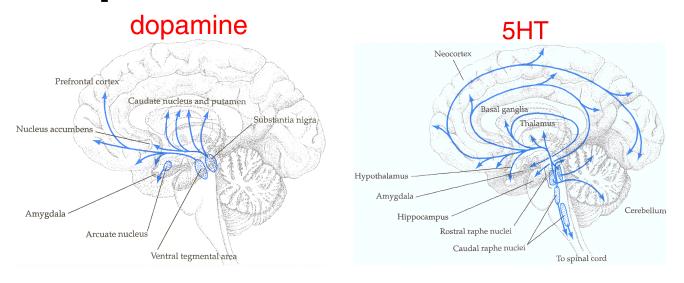
Other Issues

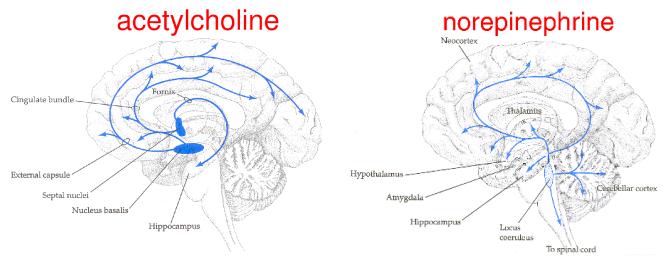
- active learning
 - exploration/exploitation
- priors over decision problems
 - controllability
 - hierarchy
- learning about others: game theory
- representational learning

Biological Learning

- error minimization/delta rule
- temporal difference learning
- Kalman filter
- Dirichlet process mixture/NPB
- Bayesian Q-learning; Bayes-adaptive MDPs
- memory-based reasoning
- particle filters for inference
- unsupervised `structural' learning

Computational Neuromodulation





general: excitability, signal/noise ratios

specific: prediction errors, uncertainty signals