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Theorists

There are highly cultivated, wonderfully endowed minds
whose wills suffer from a particular form of lethargy. Its
undeniable symptoms include a facility for exposition, a
creative and restless imagination, an aversion to the
laboratory, and an indomitable dislike for concrete science
and seemingly unimportant data... When faced with a difficult
problem, they feel an irresistible urge to formulate a theory
rather than question nature.

As might be expected, disappointments plague the theorist...



Neuroscience of Learning
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Psychobiology of Learning
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e ubiquitous learning of predictions

* forward/inverse models



Biological Learning

e conditioning and neural reinforcement
learning

— temporal difference learning and dopamine
— uncertainty, acetylcholine and correlations
— contexts and non-parametric Bayes

— model-based, model-free and episodic RL



Computational Conditioning

parameters
o @ n \W‘; e output model

— stimulus combination

e update model

— expected/unexpected
uncertainty

— uncertainty-dependent
— learning rates

— correlations

— contexts

e decision model
— action system competition

— reinforcement learning



Unconditioned Stimulus

Conditioned Stimulus

Unconditioned Response (reflex);
Conditioned Response (reflex)

-
Y

lvan Pavlov

slides from Yael Niv



Animals learn predictions

WATCH WHAT I CAN
MAKE PAVLOV DO.
AS SOON AS I DROOL,
HE'LL SMILE AND WRITE
IN HIS LITTLE BOOK.

Acquisition
100
80 * * . * <
60 * * e — Ry EE)
40 . o ¢ . . LLM Vv
20 .
0
12 3 456 7 8 91011121314 very general across
Blocks of 10 Trials species, stimuli, behaviors

slides from Yael Niv



But do they really?

1. Rescorla’s control

cs. US (dots)

US (dots) contingent on CS

US (dots) not contingent on CS
but CS-US pairing unchanged

temporal contiguity is not enough - need contingency

P(food | light) > P(food | no light)

slides from Yael Niv



But do they really?

2. Kamin’s blocking

— Noise albne WM Lightalone &= Compound C3 (noise & light)

Phase 1 (Blocking CS albone) Phase 2 (Compound C3)

— — e — -— -
-

contingency is not enough either... need surprise

slides from Yael Niv



Rescorla-\Wagner

e delta rule:

- V(n) = 2 wiu;(n)
- 6(n) =rn) =Vn)
- Aw; = a;(n)o(n)u;(n)

Assumptions:
— learning is driven by error (formalizes notion of surprise)
— summations of predictors is linear

A simple model - but very powerful!

— explains: gradual acquisition & extinction, blocking, overshadowing,
conditioned inhibition, and more..

— predicted overexpectation
— associabilities

slides from Yael Niv



Rescorla-\Wagner learning

7

r+1

=V, +n(r,-7,)

how is the prediction on trial (t) influenced by rewards at times (t-1), (t-2), ...?

Vt+1 = (1 - n)Vt +

the R-W rule estimates
expected reward using a
weighted average of past
rewards

0.6 -
0.5 -

04 1 recent rewards weigh more heavily

gz learning rate = forgetting rate

0.1 1

10 © 8 7 6 b5 4 3 2 4 slides from Yael Niv



But: second order conditioning

phase 1: gjj — fi% 45 -
¢ — 40 -
R
phase 2: @ - b"
3 .

condltlodled
1ng
(\®]
o

respon

15+

-y
test: ?

what would Rescorla-Wagner learning predict here?

number of phase 2 pairings

animals learn that a predictor of a predictor is also a predictor of reward!
=> not interested solely in predicting immediate reward

slides from Yael Niv



need new formulation

Marr's 3 levels:
* The problem: optimal prediction of future reward

want to predict expected sum of
future reward in a trial/episode

(N.B. here t indexes time within a trial)

« what's the obvious prediction error?

« what's the obvious problem with this? | |
slides from Yael Niv



lets start over: this time from the top

Marr's 3 levels:
* The problem: optimal prediction of future reward

want to predict expected sum of
future reward in a trial/episode

I/t =Ert+rt+1+rt+2

+..+7;

Bellman eqgn
for policy
evaluation

slides from Yael Niv



dopamine and prediction error
5t = rt + I/t+1 _V;

no prediction prediction, reward prediction, no reward



prediction error hypothesis of dopamine

i... mu.

(11 =fd

p=0.7

n.l.l..h. mmq.ﬁ.,ull.,u.l.

Tobler et al, 2005
0.0 ml 0.025 ml 0.075 ml 0.15 ml

¥ ):

5 spikes/s

Fiorillo et al, 2003

Onset of conditioned stimuli predicting expected reward value



prediction error hypothesis of dopamine
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Risk Experiment

S stimuli:
D 40¢
20¢
0/40¢
Oc¢
h Oc
\_ )
You won
40 cents
\_ 4 N
19 subjects (dropped 3 non learners, N=16]
3T scanner, TR=2sec, interleaved
234 trials: 130 choice, 104 single stimulus
& )

randomly ordered and counterbalanced



Neural results: Prediction Errors

what would a prediction error look like (in BOLD)?

40 cents

40
20
0
oo . 9o .
0 5 0 5

10

BOLD signal

40

20 0 20
0 20 [
_20‘ i 0/40 win ||
0 5 0 5 0/40 lose |5
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time




Neural results: Prediction errors in NAC

unbiased anatomical ROI
in nucleus accumbens
(marked per subject™)
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can actually decide between different neuroeconomic models of risk

OF COURSE WE WERE
AWARE OF THE RISK.

THAT IS WHY WE

WOULD GET THE

DID A VERY CAREFUL
ANALYSIS OF WHO

* thanks to Laura deSouza

CARTOON BY MICHAEL MITTAG, WAWW.COOLRISK COM



Biological Learning

* conditioning and neural reinforcement
learning

— uncertainty, acetylcholine and correlations



Kalman Filter
. @ para::eters CW'

1 1 expt

reward given

w=w 4+

r==w-u- ¢

é
u—= | W | PR allowable drift 1 ~ N[0, 2]
output noise € ~ NJ0, p?]
y Y
r r

 Markov random walk (or OU process)
* no punctate changes

» additive model of combination
 forward inference



Kalman Posterior

T he Kalman filter maintains uncertainty:
P(V)=N[w-u,u- 2 -u]
where

€

5/



Assumed Density KF

Diagonal approx to X = diag(c?)

If w ~ N |Ww,diag(c?)|, then

Aw,; =

* Rescorla-Wagner error correction

* competitive allocation of learning

— Pearce & Hall



Blocking

forward L—r | L+T—r| T— .
backward | L4+ T —r L—r |1 — .

* forward blocking: error correction
(r—u-w)

* backward blocking: -ve off-diag > T7<0
wT

0.5 0.5

....
i

-0. 0. —0.
—8.5 0 05 1 15 —8.5 0 05 1 15 —8.5 0 05 1 15
trial 1 w trial 20 trial 40



Mackintosh vs P&H

* under diagonal approximation:

E(r—u-W)? = 2 + 5, 0%u?

e for slow learning,

0]2 changes with correlation of (r — V) and w;

— effect like Mackintosh



Summary

Kalman filter models many standard conditioning
paradigms

elements of RW, Mackintosh, P&H

but:
— downwards unblocking

L—=rtAr L4+T—=r T%+Lr

predictor competition

— representational learning L—r; T—r; L+T—-

recency vs primacy (Kruschke)



How are Learning Rates Implemented?

dopamine

Prefront/alvcortex :

/" Caudatenuicleus and putamen

b

Nucleus accumbens %

Amygdala

Arcuate nucleus

Ventral tegmcntai‘ a;‘ca
acetylcholine
Cingulate bundle\_;

External capsule

Septal nuclei
Nucleus basalis

Hippocampus

‘Stibstantia nigta),

SHT

Neocortex

Hypothalamus —

Amygdala

_ Cerebellum
Hippocampus

Rostral raphe nuclei

Caudal raphe nuclei N
To spinal cord

norepinephrine

Neocortex

Hypeothalamus ———
Amygdala —

Hi & B 4
‘Ppacampus Locus

coeruleus

To spiﬁ&l cord

general excitability, signal/noise ratios

specific prediction errors, uncertainty signals



ACh In Hippocampus

Given unfamiliarity, ACh:

e boosts bottom-up, suppresses
recurrent processing
e boosts recurrent plasticity

Entorhinal cortex

................................... { e e kb S DA Db
N .
]
\
]
\
"

Hippocampus Rapid (DG)
. self-organized
Self-organized representation

representation *
Hetero-
Comparison z::zgﬁlanve Autoassaociative
(CAl)  je—— Recdll (CA3)
............................ R ar 2% NS—— —
: ACh :

Regulation of (MS)
learning dynamics

(Hasselmo, 1995)

ACh in Conditioning

Given uncertainty, ACh:

e boosts learning to stimuli of
uncertain consequences

Table 1. Outline of procedures for Experiment 1

Treatment condition Phase 1: consistent Phase 2: experimental Phase 3: test of
(groups) L-T relation change in L-T relation conditioning to L
Consistent L—>T-—food; L—>T L—>T-—food;L>T L — food

(CTL-C, PPC-C)
Shift L—>T—-food;L—>T L — T —food; L L — food

(CTL-S, PPC-S)

Control PPC-Lesion

100 - 100 —
., 804 80 -
2
g | |
(]
< 60 1 60
m | ]
=
5 40 - 40 A
=
I ]

20 + 20 -
T T T T 7T T T T 1 T T T T T T T 11
12345678910 12345678910
Half-Session Blocks Half-Session Blocks

(Bucci, Holland, & Galllagher, 1998)



Uncertainty and Learning

faster learning for more expected uncertainty

cholinergic substrate — but cortical
representations also

animals seem to elide reducible and irreducible
uncertainty

what about unexpected uncertainty?



Biological Learning

* conditioning and neural reinforcement
learning

— contexts and non-parametric Bayes






% Freezing
(Difference score)




structure [:
tone causes shock

structure Il:

latent variable (y)
causes tone and shock

structure lll:
tone and shock caused
by independent latent

variables (y,z)




conditioning as clustering: DPM

Gershman & Niv;
Daw & Courville; Redish

> Y4 Within each cluster:
“learning as usual”
(5 (Rescorla-Wagner, RL etc.)



d550CIdtlive Iealring versus sStdlc

learning
Gershman & Niv

(create new state)



how to erase a fear memory

hypothesis: prediction errors (dissimilar data) lead to new states

acquisition extinction

1) &/,



g ra d u a I eXﬁ n Cﬁ O n Gershman, Jones, Norman, Monfils

acquisition

e

gradual
extinction

regular

il

extinction .=

gradual
reverse

M

& Niv - under review
extinction

g



g ra d u a I eXﬁ n Cﬁ O n Gershman, Jones, Norman, Monfils

& Niv - under review

acquisition extinction
e
extinction «
regular fif
extinction .
s
reverse :

test one day (reinstatement) or 30 days later (spontaneous recovery)



—s— Standard
—=— Gradual
—=— Gradual reverse

—s— Standard
—=— Gradual
—=— @Gradual reverse




B Reinstatement
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unexpected uncertainty

stability-plasticity dilemma (Grossberg)
— solved by clustering

realization:
— norepinephrine — neural interrupt

— orbitofrontal cortex
NPB — sensitive to prior for novel context

explains surprising effects in extinction,
reconsolidiation, etc



Biological Learning

* conditioning and neural reinforcement
learning

— model-based, model-free and episodic RL



Reinforcement Learning

| 58% Sz‘ X| [ood S. - |

]
~&
forward model (goal directed) ) caching (habitual)
\e\o‘\q’i{\\‘é\ (NB: trained hungry)
L =4 = H;S, L>4
L S, R X |=0|=0 H;S,L>4 H;S, R0
S1R<:S3L<:DDD = 9| = H;S,,R—>3 NS, L>2
R k =3|=1 H;S;,R—>3

acquire with simple learning rules acquire recursively



Two Svsterps:

Stage Distal action
) tm;ning — short or extensive training (lever press or chain pull) deva ued
® = T -
(hungry) 2 ) _— =3 o2 10
£
€
[
paired with lliness %
5k
2. devaluation {conlrol. not paired) 5
2
0
3. test action tested without outcome Moderate Extensive Extensive
’ training training, training,
one action, two actions,
one outcome two outcomes
b Cache system a Tree System
Sy S;
Initial state Initial state
Press Enter Press | Enter
lever magazine lever ‘ magazine
Q=1 Q=0 7.8 e
s1
Food delivered
Press Enter S, S,
lever magazine :
Q=0 Q=1 Food delivered No reward
Press Enter
S, lever magazine R=0
7 4 \
No reward
Q=0
S, S, S
Food obtained No reward Food obtained

Q=1

R=0

R=1




Behavioural Effects

Stage
1. traini
men T, — S0

initial
state

approach press approach press
magazine lever magazine lever
cached cachedcomputed computed

Q=0 Q=1 Q=0 Q=1

Stage
1. tralning

thungey)

initial
state

2 — B

approach press approach press
2. devaluation g@m @ magazine lever magazine lever
cached cachedcomputed computed

Q=0

approach
magazine

3. test

* Actions based on model will decline
* Actions based on model-free will persist



Learning

 uncertainty-sensitive learning for both
systems:

— model-based:

« data efficient
« computationally ruinous

« data inefficient
« computationally trivial

— uncertainty-sensitive control migrates from
actions to



uncertainty-
sensitive
learning

Actions per min

One Outcome

Distal action

(lever press or chain pull)

11

Uncertainty

Expected value

Response rate
relative to non-dev.
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Human Canary...

e if a — c and ¢ — £££f , then do moreofaorb?
— MB: b
— MF: a (or even no effect)



Behaviour g /;<;

u 3
A model free B model based C data
1
M common
M rare
=
3
3
3 I I I
Q
>
Ju
0.5 rewarded unrewarded rewarded unrewarded rewarded unrewarded

e assume a mix
0,,(x,a)= (1= B0,y (x,a) + fO,5 (x,0)

e expectthat B will vary by subject (but be
fixed)



Neural Prediction Errors (1—2)

B model-based

A prediction error C conjunction a&b

R ventral striatum o
D corr. with behavior E conjunction a&d

* note that MB RL does not use this prediction
error — training signal?



Neural Prediction Errors (1)
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Model-based and Model-free

» categories justified by statistical/
computational costs

e separate neural substrates

* but:
— more integrated than we thought
— process account for MB (DYNA-2)?
— related to many other dichotomies
— MB priors?



Why have Episodic memory?

CAN'T JUST PUT A MEMORY STICK IN YOUR EAR!
/ > o

st;f% /3 6/4 a

FSA reseNaAAA R \M%

performa

e fulmir [

YOU HAVE TO STUDY FOR TESTS, DUMMY! — You]
® mentec

MAANAA ide to future

_\

. past isotmb\dl::\— L\J CI TN T AWV W
— why single events and not statistics?
— role of hippocampus in control?



The Third Way

simple domain

o
og
[ J

.
| |
A « model-based control:
:—:=4l — build a tree
[b—T 1 — evaluate states
L — count cost of uncertainty
/—/ A
p—— \
y : - episodic control:
J

— store conjunction of states,
actions, rewards

A
% \ A — if reward > expectation,

Fww—— E store all actions in the
w s whole episode (Duzel)
L — choose rewarded action;
B N else random

el X
Lvanance of mean rewardj
:
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Semantic Controller

transition beliefs
(confidences, scale=50)

((((((



actions

Y VAN

0 0.5 1
transition beliefs
(confidences, scale=50)

Semantic Controller
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Episodic Controller

T=0

best
reward



T=1

w 4
g3
B 2
@ 1
0 0.5 1
best reward

best
reward

Episodic Controller
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Performance

A=4, D=2 B=2 B=3 B=4
x 35 T e e e 35 T
_______ - - model-based parfecty _.==""7""|==--model-based perfect - = = model-based pearfect
3.5 Le= "7 ——model-based noisy | 3 L7 ——model-based noisy 3 _ . - - ——model-based noisy ||
. — episodic R — episodic e — episodic
3 25t 25 -
25 .’
: 2 | 2
E 2 E ' E
(=3 ]
€ t 1.5 t 15
@
a 15 a i o
1 1, 1
' I
0 05 05,
0 0 0
0 0 0 5 10 15 0 0
Leamin g time Leaming time Leaming time

» episodic advantage for early trials
* lasts longer for more complex environments
e can’'t compute statistics/semantic information



Neural Reinforcement Learning

error minimization/delta rule

temporal difference learning

Kalman filter

Chinese restaurant process/NPB

Bayesian Q-learning; Bayes-adaptive MDPs
memory-based RL

mixture models for attention

particle filter for inference

unsupervised learning random effects models for
individual differences



Other Issues

active learning

— exploration/exploitation
priors over decision problems
— controllability

— hierarchy
learning about others: game theory
representational learning



Biological Learning

error minimization/delta rule

temporal difference learning

Kalman filter

Dirichlet process mixture/NPB

Bayesian Q-learning; Bayes-adaptive MDPs
memory-based reasoning

particle filters for inference

unsupervised structural’ learning



Computational Neuromodulation

dopamine

Prefrontal cortex
Caudate nucleus and-putamen

3 ‘Stibstantia nigta),

Nucleus accumbens

Amygdala

Arcuate nucleus

Ventral tegmentalarea
acetylcholine
Cingulate bund]e\_;

External capsule

Septal nuclei
Nucleus basalis

Hippocampus

general: excitability, signal/noise ratios

SHT

Neocortex

X

Basal gariglia .
Thalamus

Hypothalamus —

Amygdala

. 1 Cerebellum
Hippocampus

Rostral raphe nuclei

Caudal raphe nuclei N
To spinal cord

norepinephrine

Neocortex

Hypeothalamus ———
Amygdala —

Hippocampus

/
Locus
coeruleus

To spinal cord

specific: prediction errors, uncertainty signals



